
The Stitch Programming Language
-or-

How I Learned To Stop Worrying and Love P-Threads.

Motivation

Most "modern" programming languages trace their origins back
decades to before the advent of cheap, general purpose multicore
CPUs. They were designed for a distinctly mono-threaded environ-
ment. With Stitch, we aimed to build a language that has the pow-
er and flexibility of a fully compiled C style language, while having
native threading support for modern multi-threaded applications.

Same old C

int gcd(int a, int b) {
 while (a != b) {
 if (a > b) {
 a = a - b;
 }
 else {
 b = b - a;
 }
 }
 return a;
}

Easy(er) Multi-threading

stitch i from 0 to 255 by 1: {
 acc = a[i] * b[i];
}

print(acc)

Easy(er) Multi-threading

int i = 0;
if (a[i] != b[i]){

 stitch i from 0 to 255 by 1: {
 acc = a[i] * b[i];
 }

 print(acc)
}

Under The Hood

• Wrap everything in pthreads
• Body of the Stitch loop becomes a function
• Pointer to the function is passed into the

pthread
• Struct with copies of all variables in the

scope of the Stitch loop passed in.
• (Very) limited variety of accumulators can

be used in Stitch loops, and are then
reconciled automatically.

Not Very Pretty

(But it works)

int main() {

 int a[255] = {1,..., 1};
 int b[255] = {2,..., 2};
 int_am acc;
 int i = 0;

 stitch i from 0 to 255 by 1: {
 acc = a[i] * b[i];
 }

 print(acc);

 return 0;
}

#include “stch_headers.h”

struct stch_rangeInfo_0 {
int begin;
int end;
int stepSize;
int i;
int acc;
int b;
int a;
};

void *_0 (void *vars){{
((struct stch_rangeInfo_0 *)vars)->acc = a[i] * b[i];
}

return (void*)0;
}

int main()
{
int a[255] = {1,..., 1};
int b[255] = {2,..., 2};
int acc;
int i = 0;

pthread_t *threadpool_0 = malloc(NUMTHREADS * sizeof(pthread_t));
struct stch_rangeInfo_0 *info_0 = malloc(sizeof(struct stch_rangeInfo_0)
* NUMTHREADS);
int thread_0 = 0;
for(i = 0;i < 255;i = i+255/NUMTHREADS) {
info_0[thread_0].begin = i;
info_0[thread_0].i = i;
info_0[thread_0].acc = acc;
info_0[thread_0].b = b;
info_0[thread_0].a = a;

if((i + 2*(255/NUMTHREADS)) > 255) {
info_0[thread_0].end = 255;
i = 255;
}
else {
info_0[thread_0].end = i + 255/NUMTHREADS;
}
int e = pthread_create(&threadpool_0[thread_0], NULL, _0, &info_0[thread_0]);
if (e != 0) {
perror(“Cannot create thread!”);
free(threadpool_0); //error, free the threadpool
exit(1);
}
thread_0++;
}

//loop and wait for all the threads to fi nish
for(i = 0; i < NUMTHREADS; i++) {
pthread_join(threadpool_0[i], NULL);
}
printf(“%d\n”, acc);
return 0;
}

→

Pros
• Much simpler to write
• No dirty mutex’s
• Automatic splitting of workload

Cons
• Limited in application
• Nested Stitch loops give no benefit, but

add overhead
• Pthread code definitely not optimized (but

not too bad either)

And now for something completely the same...

Scanner Parser

AST
C-AST

C Code
Generation GCCWrite to

File

Semantic
Analysis

Singer

Highpoints of C Code Generation

• Stitch to pthread loop.
• Body of the Stitch loop is turned into a C

function.
• Stitch functions and range
info are named procedurally.
• print() and error() are dynam-
ically typed into proper printf()
call.

Testing

• Automated test suite
• Generate C Code and compile.
• Run compiled C, diff the output
• Positive (should compile and generate good

output).
• Negative (shouldn’t compile)
• Modular tests → anyone can add

Demo

• Something parallelizeable
• Something interesting
• Something that we could see the results of

Image Curves

• Used all the time in Photoshop
• Map input to output based on

predefi ned curve

Simplest Curve - Invert

→

More Useful - Increase Contrast

→

/* Image Inverter */

int main(){

 int curve[256] = { 255, ..., 2, 0 };

 /*File IO*/

 int i = 0;
 //55 = header off set, 98592 = size of fi le
 stitch i from 55 to 98592 by 1:{
 int tmp = 0;
 tmp = buff er[i];

 if (tmp < 0) {
 tmp = (tmp % 256) * -1;
 }

 buff er[i] = curve[tmp];
 }

 /*More IO*/
}

Code (Stitch)

