
SEAMscript

Sean Inouye (si2281)
Edmund Qiu (ejq2106)

Akira Baruah (akb2158)
Maclyn Brandwein (mgb2163

December 23, 2015

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Overview . 2

2 Quick-Start Tutorial 3
2.1 Prerequisites . 3
2.2 Getting Started . 3
2.3 Basic Structure of a SEAMscript Program 3
2.4 Entities . 3
2.5 Variables . 4
2.6 Functions . 4
2.7 Control Flow . 4

2.7.1 if/else . 4
2.7.2 Loops . 4

2.8 Comments . 4

3 Language Reference Manual 4
3.1 Introduction . 4
3.2 Fundamental Types . 5
3.3 Comments . 5
3.4 Literals . 5
3.5 Variables . 6

3.5.1 Names . 6
3.5.2 Declaration . 6
3.5.3 Access . 7
3.5.4 Assignment . 7

3.6 Operators . 7
3.7 Statements and Blocks . 7
3.8 Control Flow . 7

1

3.8.1 If/Else Statement . 8
3.8.2 While Loop . 8

3.9 Entities . 8
3.10 Built-In Entities . 10

3.10.1 screen . 10
3.10.2 keyboard . 11
3.10.3 loader . 11

3.11 Built-In Functions . 11
3.12 Layout . 12
3.13 File Structure . 13
3.14 Function Definitions . 13

4 Project Outline 13

5 Architectural Design 15

6 Testing Strategy 15

7 Lessons Learned 19
7.1 Sean (si2281) . 19
7.2 Edmund (ejq2106) . 19
7.3 Akira (akb2158) . 20
7.4 Maclyn (mgb2163) . 20

8 Appendix 21

1 Introduction

1.1 Motivation

Many people who try to program computer games for the first time run into
the issue of not only having to grapple with the intricacies of game develop-
ment, but also the problem of juggling libraries and runtime environments. For
those looking for a simple solution, perhaps for educational purposes, prototyp-
ing a concept, or hobbyist work, we offer SEAMScript, a simple programming
language. We distill the ideas of object oriented programming into a simple
example, in which objects represent distinct entities, a direct model which is
useful for simple games.

1.2 Overview

Therefore, the high level picture of SEAMscript is a synchronous entity simu-
lation model. Entities can be spawned, and they can be killed off. With their
own fields and functions, they also possess step functions that are called at equal
intervals of a predefined time step. Using this programming paradigm, entities
will each be responsible for their own movement and intercommunication.

2

2 Quick-Start Tutorial

SEAMscript is a source-to-source language. The seamc compiler will convert
your original SEAMscript code to SDL-compatible C source code.

2.1 Prerequisites

The following software dependencies were used for development and testing
purposes. SEAMscript may be compatible with other operating systems and
frameworks, but we can only recommend the following system prerequisites.

• Ubuntu 14.04 64-bit
Most of the latest Debian-based GNU/Linux distributions should work.

• Simple DirectMedia Layer (SDL)
On Debian-based systems, apt-get install libsdl-dev as root should
do the trick.

• SEAMscript Project Repository
The Git repository (repo) for this project is hosted at https://github.
com/teamSEAM/ProjectSEAM

2.2 Getting Started

In order to build the SEAMscript compiler, seamc, from source, navigate to the
src/ directory found inside the root of the project repo. Once you’re there,
simply typing make will build the entire compiler. After running make, you
should now have an executable script called seamc in your src/ directory.

2.3 Basic Structure of a SEAMscript Program

1 entity World:
2 string name
3 int population
4 func start():
5 name = "My world!"
6 population = 0

A SEAMscript program is simply a collection of entity definitions. Each
entity contains variable declarations and function definitions. Function defini-
tions contain more variable declarations (with function scoping) and a collection
of statements. SEAMscript uses tab indentation to notate scoping.

2.4 Entities

An entity is a primitive class type from which the universe of SEAMscript
is created. To declare one of these entities, simply type the keyword entity
followed by the name of the entity class you wish to define.

3

https://github.com/teamSEAM/ProjectSEAM
https://github.com/teamSEAM/ProjectSEAM

2.5 Variables

To declare a variable, specify the primitive type (int, float, string, etc.)
followed by the name of the variable. For example, string name declares a
variable called name that is of type string.

2.6 Functions

Function are defined in a C-like syntax, with the return type followed by the
function identifier and a comma-delimited list of formal arguments enclosed in
parentheses. This function signature must by following by a colon, as follows:
int myfunc(string s):.

2.7 Control Flow

There are many structures that can be used for control flow include condition
jumps and looping.

2.7.1 if/else

A simple if-else statement can be written as follows:

1 if (condition):
2 statement
3 else:
4 statement

2.7.2 Loops

SEAMscript supports both for and while loops, which again follow a C-like
syntax:

1 int i
2 for (i = 0; i < 4; i = i + 1):
3 statements
4
5 while (true):
6 statements

2.8 Comments

Any text enclosed by a single starting # symbol and another terminating #
symbol are considered comments and are completely ignored by the compiler.

3 Language Reference Manual

3.1 Introduction

SEAMScript is a simple high-level language that focuses on entity-based appli-
cations. Applications, primarily simulations and games, benefit from a built in

4

system for handling running events periodically, and from built in functionality
to simplify the typical I/O expected from these sorts of apps. Simple games,
such as Breakout! or Snake, can be prototyped much more rapidly than in other
languages. Other simulations, like cars interacting at an intersection, can also
be written fairly quickly. Compared to real-life, the accuracy of a SEAMScript
program is low due to concerns left to developers such as buffering and inter-
polating events between time deltas, but the native support for ‘steps’ saves
developers from the hassle of manually starting/stopping entities.

Throughout this document, “...[a comment]...” will be used to indicate places
where code of the type described in the comment is omitted for brevity but
assumed present by the compiler.

3.2 Fundamental Types

SEAMScript is statically typed and supports the following primitive types:

• int - Signed integers with architecture-specific size.

• string - ASCII-based strings of arbitrary length and enclosed by a pair
of double quotations.

• float - 64-bit IEEE floating point numbers.

• texture - Stored image primitives.

• instance - Entity types. Entity types are described in more depth below.

3.3 Comments

Only block comments are supported. They are started with the token # and
ended with another #, and may not be nested. Anything in between the com-
ments will not be read by the parser. Comments may not be nested. For exam-
ple, # This is a comment # is a comment. # Malformed # comment ##
is a malformed comment (once the parser hits “comment”, a syntax error is in-
dicated).

3.4 Literals

Literals represent fixed values of ints, strings, and floats. These values are used
in assignment or often calculation operations. The format and semantics of
literals for each type are as follows:

• int - Integers are declared with either a sequence of one or more digits
from 0-9, potentially prefixed with a - to indicate negative numbers. You
may have integers of any length, although numeric overflow may result if
you exceed the representable length of an int on your hardware.

Examples:

5

int a_number = -35 # Valid #
int num = 24. # Invalid #
int a_positive = +5 # Invalid; \+" is assumed #

• float - Floating point values are declared with an optional prefix of -
to indicate negative numbers, a sequence of zero or more digits from 0-
9, a mandatory ., and one or more digits from 0-9. Like integers, you
may write out numbers unrepresentable on your hardware, but numeric
overflow will occur. Floating point values will lose a minute amount of
precision once run on hardware.

Examples:

float a_float = -35.1 # Valid #
float another_float = -.334 # Valid #
float not_valid = 34. # Invalid; need a decimal portion. #
float also_wrong = . # Invalid #

• string - String literals are defined by ASCII characters within quotes.
To include a quotation mark within a string literal, you must first escape
it with a \. String literals may be empty, and there is no limit to their
length.

Example:

string string_beans = \String beans" # Valid #
string a_quote = \Quoth the Raven, \"Hello\"" # Valid #
string bad_quote = \He dictated \here is a dictate"" # Invalid #

• entity and texture - These types do not have associated literals.

3.5 Variables

3.5.1 Names

Variable names are a combination of lowercase letters, uppercase letters, and
underscores. They must begin and end with a letter (either uppercase or lower-
case). For example, Hello, hi_there, and variable_ would be supported,
but _variable, and hello2 would not be.

3.5.2 Declaration

Variables are declared in the format:

<type> <identifier>

You may optionally assign the newly declared variable a value upon creation, but
you must heed the standard variable assignment rules (see below). Re-declaring
variables with any reused name from any scope is unsupported, except within

6

the scope of the entity. Two entities may have member variables with same
identifier (and often will, in fact), and they may reuse identifiers in the global
scope. You may declare variables in the global scope, within functions, in the
body of an entity, and in entity member functions.

3.5.3 Access

Variables are considered “accessed” when their identifier is used outside of
their initial declaration or assignment. For example, “string catdog = con-
vert.string join(cat, dog)” would access the values stored at “cat” and “dog”,
but not “catdog” because it is being declared. Local variables – variables found
in function arguments or at the top of a function – may be accessed within the
function, but not elsewhere. Likewise, functions in an entity are able to access
variables the member variables of an entity, although if a variable declared in
the function or its arguments has the same name as a variable in an entity said
variable will be accessed instead of the entity’s member variable.

3.5.4 Assignment

Variables are assigned to literals, other variables, or the results of built in op-
erators with the = token. Variables may only being assigned to values of their
own type.

3.6 Operators

The supported operators are shown in the below table. Note that promotion is
not supported – you may not divide a float by and int, or add a float and an int,
and so on and so forth. See built-in functions for functions that deal provide
conversions to get around these sorts of issues.

Operator Meaning Supported Types (LHS/RHS)
+ Add the LHS value and the RHS value and return the result any pair of int, float
- Subtract the RHS value from the LHS value and return the result any pair of int, float

* multiply the RHS and the LHS and return the result any pair of int, float
/ divide the RHS and the LHS and return the result any pair of int, float
== Compare the LHS with the RHS for equality (true if equal, otherwise false) any pair of int, float
!= Compare the LHS with the RHS for inequality (true if not equal, otherwise false) any pair of int, float

3.7 Statements and Blocks

Statements are terminated by a newline character. Blocks of code (e.g. what
follows control flow or function declaration) are marked by increasing the level
of indentation by one tab. Tabs alone are supported – tabbing done with other
forms of whitespace will not be recognized and will generate syntax errors.

3.8 Control Flow

Control flow is supported with if/else statements, while loops, and for loops.

7

3.8.1 If/Else Statement

If statements start with an if, are followed with a left paren, an expression,
a right paren, a colon, an indented block, optionally all followed by an else,
a colon, and another indented block . The indented blocks must contain code
other than comments. For example:

if(score > 100):
score = score + 50

else:
score = score + 100

would be accepted as valid. However,

if(score > 150):
else:

score = 100

or

if(score > 200):
score = 250

else:
score = score + 10

would be considered invalid.

3.8.2 While Loop

While loops start with a while, are followed with a left paren, an expression
that evaluates to true or false, a right paren, a colon, and an indented block.
The indented block must contain code other than comments. For example:

int i = 5
while(i < 10):

i = i + 1

is considered valid. However,

int i = 5
while(true):
i = i + 5

is considered invalid.

3.9 Entities

Entities are collections of variables and methods, with special methods that are
invoked by SEAMScript at various times if they exist. Conceptually, entities are
very close to objects in other object-oriented languages, although entities lack

8

certain features of objects and possess a bit of convenience functionality. Entities
may contain methods, they may contain any number of variables (including
other entities).

Entities are started with the keyword ‘spawn’ and the type of entity that is
to be created, and destroyed with “kill” and the identifier (note that this must
be an identifier; runtime expressions will not work here). For example:

entity World:
<Car> c

func start():
c = spawn Car # Calls c.start() and adds to the step/render pipeline

func stop():
kill c # Calls c.stop() and takes out of step/render pipeline

As soon as an entity is spawned, it is considered ‘staged’ to have its step and
render functions called in the pipeline. Entities are stopped with the keyword
kill. After an entity is ‘killed’, it may no longer be used.

Entities are declared with entity, an identifier that must start with a
capital letter, a colon, and followed by an indented block containing (in order):

• Variable declarations for any variables accessible throughout the entity
and to other portions of code with a reference to the entity. Note assign-
ment with declaration is not allowed here.

• Any user-defined functions. The format for these is the same as other
function declarations. Other code can directly call these functions.

• Functions the language uses. These functions, all of which are optional,
but if used must have at least one statement of executable code, are:

– start - This function is called when an entity is created. start’s
arguments are user-defined, but all must be provided to the language
keyword spawn that starts the entity. start can be considered a
sort of constructor.

– stop - This function is called when an entity is destroyed with kill.
stop is considered like a destructor.

– step - Step is called 60 times a second on any entities that have
‘start’ed.

– render - Render is also called 60 times a second, but is called on
each entity after every entity with a step function has had step called
(i.e. in a program with 2 entities, SEAMScript will call step on
both first, and then call render on both. Render is highly recom-
mended not to modify any variable value, and should just be used
for drawing/output work, but it is to use render as a general-purpose
function.

9

Entities step and render functions are called in the order the entities are
‘spawned’. When an entity is removed with kill, the order in which step
and render functions are called is not modified, except to remove the ‘dead’
entity from the list. Neither step nor render should contain infinite loops; this
will prevent the program from running. Some examples of entity definition and
use are:

entity Player:
int score
string name

function start():
...initialization code...

function stop():
...stop code...

function step():
...step code...

function render():
...draw code...

3.10 Built-In Entities

To facilitate rapid development of certain types of applications, SEAMScript
contains a few built-in objects that behave like entities. These built-ins are:

3.10.1 screen

• Properties

– width - The width of the display screen. (int)

– height - The height of the display screen. (int)

• Methods

– draw_sprite(texture tex, int x, int y) - returns 0 -
Draw a texture ‘tex’ to the screen at x, y.

– draw_rect(int color, int x, int y, int width, int height)
- returns 0 - Draw a filled rectangle with no border with the color
color, width width, height height, x-position x, and y-position
y.

– log(string to_log) - returns 0 - Logs the string to_log to
stdout.

10

3.10.2 keyboard

• Properties

– {left,right,up,down,space}.pressed - returns boolean - Whether
one of the listed keys has been pressed. Once checked, subsequent
checks will return false until a complete key up/key down event has
been performed again. For example,

if(keyboard.left.pressed == true):
screen.log(\Left pressed!")

would be a valid use of this property.

• Methods

– (NONE)

3.10.3 loader

• Properties

– (NONE)

• Methods

– load_tex(string filename, int desired_width, int desired_height)
- returns a texture - The only way to load a texture, load_tex takes
in a filename, width, and height, and generates a texture of those pa-
rameters. If the given file (expected to be in a directory relative
to the executable) is not found, a runtime error is created and the
program will crash.

3.11 Built-In Functions

Built-in functions provide conversion facilities.

• int_to_string(int i) - Convert i to its string representation.

• int_to_float(int i) - Convert i to its floating-point representation.
This may result in a slight loss of precision.

• int_to_boolean(int i) - Convert i to its boolean representation. 0
will be converted to false, while everything else will be converted to
true.

• float_to_int(float f) - Convert f to its integer representation. If
the floating-point value exceeds what is representable in integers, or has
a decimal portion, a loss of precision will result.

• float_to_string(float f) - Convert f to its string representation.
Up to 4 decimals places will be printed.

11

• boolean_to_int(boolean b) - Convert b to its integer representa-
tion. false will be converted to 0, while true will be converted to 1.

• boolean_to_string(boolean b) - Convert b to its string represen-
tation. false will be converted to false, and true will be converted to
true.

3.12 Layout

The layout of a SEAMScript program is as follows (in order):

• File includes (optional); see file structure

• Global variable declarations (optional); assignment here is not supported

• Function definitions (optional)

• Entity definitions (optional, but necessary for any real work)

• Main (required) - A function named main that’s the entry point of the
program. Main is responsible for initially staging all entities. If a program
needs to restage entities regularly, developers should consider creating an
entity that does staging in its step function depending on various state
values stored in global variables (e.g. a couple variables called level and
is_done, and an entity of type level would be a canonical way to do it).
The main function is called once the program starts and is never called
again. Although the compiler doesn’t check, the main function should
not contain an infinite loop. Since the functions for step and render
on entities are not called on a regular basis until after main concludes,
infinite loops will prevent the program from running.

An example layout would be as follows:

include \tilemap.seam"
...more includes...

int level
...more global variables...

int get_current_terrain(int x, int y):
...function definition...

...more user functions...

entity Player:
...player definition...

...more entity declarations...

function main():
player = spawn(Player, 50, 50)
...more init code...

12

3.13 File Structure

SEAMScript does not have a robust system of library supports, but it is possible
to approximate libraries by including other files in your program so long as there
are no namespace conflicts. To other file in your program, whose mains will be
called before the main of your program, and in the order they are included,
using the following syntax:

include "filename.seam"

3.14 Function Definitions

Functions must be defined before they are called in SEAMScript. A function
declaration must adhere to the following format:

<return type OR "function" keyword> <identifier> (<argument list>):
...block of statements...

If a function definition begins with the function keyword, it is implied
that the function does not return a value (similar to void in C-like languages).
The argument list consists of 0 or more identifiers separated by commas. The
block of statements describing the function’s behavior must be one indentation
level past that of the function declaration itself. If a return type is specified
(i.e. the declaration begins with a primitive type rather than function), the
function block must contain a return statement, which returns control to the
calling function and returns the value of the expression following the return
keyword.

4 Project Outline

Entering COMS 4115, our group members were acquainted with one another’s
programming backgrounds, so we assigned jobs to everyone. Our group always
met every Monday and Wednesday after class, and usually we would get dinner
while discussing what we had accomplished in the previous week, and our goals
for the next. We would also show each other our results by posting on the
group chat that we had made a change, and we would then tell everyone else to
pull the latest commit to check it out. Within Team SEAM, there was a strict
timeline that had set due dates for each component of the program. Hence we
were each assigned several things to get done before finals week started.

On that note, we rationed out roles. Sean was our Manager, Maclyn was
our Language Guru, Akira was our System Architect, and Edmund was our
Tester. We eventually found that despite the roles, we usually worked together
to address some issues, and specialized according to job or module for others.
Still, most of us satisfied these roles to a certain extent. Sean did make sure
to remind everyone of deadlines and of problems and corner cases we had not
addressed. Maclyn figured out how to wire in external functions without pol-
luting our language’s namespace. Akira was responsible for restructuring after

13

Figure 1: Commit History

it became clear that our prior, simplistic additions to MicroC were not enough.
Edmund built a semantic checking module, and conducted tests on those.

Team members were encouraged to write clear, legible code. We did not
have a formal style guide per se, but we expected each other to comment appro-
priately, and where necessary. Not only did we work with a language which we
had just learned, but we also had to specify how the language generated C code.
This level of indirection meant that when OCaml code approached low level de-
tails, we had to comment and explain more clearly what it was doing. After all,
part of the goal of keeping code modular was allowing others to understand our
own modules.

As for our development environments, we used a varied assortment of tools
individually. Akira was used to emacs, Sean used Sublime and vim, and Edmund
and Maclyn used vim and gvim. Since we had to incorporate the SDL library
to our project, we soon realized that we had to set up build environments on
different operating systems. To help alleviate this difficulty, we also used Docker,
a container engine for isolating build environments. As for version control, all
members were most comfortable with git, so we used git as our version control
system. We also used Github to host our project, so our repo can be explored
at https://github.com/teamSEAM/ProjectSEAM, and seen as our sort
of project log.

14

https://github.com/teamSEAM/ProjectSEAM

Figure 2: Commit History (total)

5 Architectural Design

6 Testing Strategy

1
2 Test program in SEAM:
3
4 entity World:
5 func start():
6 screen.init(100, 100)
7 screen.out("Entities Exist")
8 entity Two:
9 func two():

10 screen.out("NOT GONNA PRINT")
11
12 The same program compiled to C:
13
14 #include "lib.h"
15 #include "gen.h"
16 typedef struct World {
17
18 } World;
19 void World_start(World *this) {
20
21 _screen_init(100, 100);
22 _screen_out("Entities Exist");
23 }
24
25 void World_step(void *in) {
26 World *this = (World *)in;

15

Figure 3: Architecture Block Diagram

16

27
28
29 }
30
31 void World_stop(World *this) {
32
33
34 }
35
36 void World_render(void *in) {
37 World *this = (World *)in;
38
39
40 }
41
42 World* World_spawn(){
43 World *data = malloc(sizeof(World));
44 entity_node *node = malloc(sizeof(entity_node));
45 if(!data || !node) _seam_fatal("Allocation error!");
46
47 node->step = &World_step;
48 node->render = &World_render;
49 node->data = data;
50 node->next = NULL;
51
52 entity_node *curr = ehead;
53 while(curr && curr->next) curr = curr->next;
54
55 if(curr)
56 curr->next = node;
57 else
58 ehead = node;
59
60 World_start(data);
61 return data;
62 }
63 void World_destroy(World *this){
64 World_stop(this);
65
66 entity_node *curr = ehead;
67 entity_node *prev = NULL;
68 while(curr) {
69 if(curr->data == this) break;
70 prev = curr;
71 curr = curr->next;
72 }
73
74 if(prev)
75 prev->next = curr->next;
76 else
77 ehead = curr->next;
78
79 free(this);
80 free(curr);
81 }
82 typedef struct Two {
83

17

84 } Two;
85 void Two_two(Two *this) {
86
87 _screen_out("NOT GONNA PRINT");
88 }
89
90 void Two_step(void *in) {
91 Two *this = (Two *)in;
92
93
94 }
95
96 void Two_start(Two *this) {
97
98
99 }

100
101 void Two_stop(Two *this) {
102
103
104 }
105
106 void Two_render(void *in) {
107 Two *this = (Two *)in;
108
109
110 }
111
112 Two* Two_spawn(){
113 Two *data = malloc(sizeof(Two));
114 entity_node *node = malloc(sizeof(entity_node));
115 if(!data || !node) _seam_fatal("Allocation error!");
116
117 node->step = &Two_step;
118 node->render = &Two_render;
119 node->data = data;
120 node->next = NULL;
121
122 entity_node *curr = ehead;
123 while(curr && curr->next) curr = curr->next;
124
125 if(curr)
126 curr->next = node;
127 else
128 ehead = node;
129
130 Two_start(data);
131 return data;
132 }
133 void Two_destroy(Two *this){
134 Two_stop(this);
135
136 entity_node *curr = ehead;
137 entity_node *prev = NULL;
138 while(curr) {
139 if(curr->data == this) break;
140 prev = curr;

18

141 curr = curr->next;
142 }
143
144 if(prev)
145 prev->next = curr->next;
146 else
147 ehead = curr->next;
148
149 free(this);
150 free(curr);
151 }
152 void program_ep() { World_spawn(); }

7 Lessons Learned

7.1 Sean (si2281)

My role in the project was to be the manager. Initially reading about what
the manager was responsible for, I felt that I was going to get a lot less coding
responsibility compared to the others who were actually in charge of their own
portion of the code; however I learned how vital and important it was to have
a manager because sometimes in a group setting with people doing their own
portion of the code, there needs to be someone that is communicating with all
the members. There were moments in this year where one person could be way
ahead of everyone else in their own section and in a way, even if it may sound
like a good thing, it is also a bad thing. In situations where a feature is being cut
or the program is built slightly different from what it was originally supposed to
be, the person that went way ahead of everyone will have to scrap the majority
of the work due to limitations in the code. As the manager, I realized that it
was important to keep everyone on track and also around the same place. I also
realized that as the manager, if there was a place that required my attention,
then I should help the team out by doing what needed to be done to keep
everyone at the same place. For future PLT members, I highly recommend
having a good timeline but also create individual timelines for each role so that
everyone will have a good idea what to do. It is not a good idea to have someone
go really far ahead because it may not work.

7.2 Edmund (ejq2106)

I was mostly responsible for the working preprocessor, and for developing se-
mantic analysis. I realized that the fact that we were translating rather than
generating bytecode made the job more modular, since I did not need to produce
a checked abstract syntax tree for the compiler module. Therefore, I designed
my module, semantic.ml, to take the AST and to produce error messages if
it finds anything at fault, so that the rest of the compiler will not run if there
are any problems. In theory, this made the division of labor more clear, but
in practice, as specifications changed and features were added and dropped, it
became harder for me to keep my module on top of the latest revisions. I ended
up with quite a bit to do at the end when a few issues we ran into in code gen

19

required me to overhaul the structure of my semantic checker. I had fortunately
written some functions that were generic enough to easily reuse and adapt into
the final, but other functions I had to discard. Therefore, I would recommend
that any future teams get very comfortable with the basics of OCaml, since it
is quite likely that they’ll have to adapt and change their implementation. For
example, try to know a good part of the List and String module. And, of course,
I would echo the prevailing tidbit of advice, which is to start early.

7.3 Akira (akb2158)

My largest contributions to this project involved designing and implementing
the abstract syntax tree (AST) used to parse SEAMscript programs. I ended up
writing the majority of the AST (ast.ml), scanner (scanner.mll), parser
(parser.mly), and translator (compile.ml) using OCaml, drawing upon
Stephen Edwards’s microC example as an initial reference. I found it very
helpful to model our initial compiler pipeline on a gold standard in order to
adhere to best practices and avoid reinventing the wheel when possible.

Furthermore, I found it quite productive to integrate my designs with those
of my team members, who were working on other components of the SEAMscript
compiler. For example, I was able to reuse the linked list scoping structures
used by Edmund’s semantic checker. As Maclyn discusses below, we were able
to tightly integrate the SEAMscript-to-C translator by formally writing the C
code expected to be generated by a given SEAMscript program. Using this
top-down approach, we were able to quickly converge the compiler frontend and
C backend interfaces. Finally, Sean’s test scripts were very useful in quickly
debugging issues within the entire compiler stack.

As everyone can attest, slow and steady progress is much preferred over a
mad sprint towards the end of the project. The earlier the team gets their hands
dirty working on the parser and AST, the better.

7.4 Maclyn (mgb2163)

I wrote most of the boilerplate the generate code interacted with and was re-
sponsible for structuring the output program of the compiler so it could link
with the boilerplate. Since we compiled into C, it was really helpful for Akira,
who wound up doing most of the compilation work, for me to write a sample
SEAM file and its expected conversion into C. It also helped me figure out how
to work everything together. While waiting for certain compiler features to
get implemented, I wrote a tester for my library, which was also quite helpful.
I would caution strongly against separating code gen and the runtime of your
compiled language too much, as differences in expectations of the compiler com-
ponent early on led some messiness when Akira and I went to merge our work.
Also, don’t put it off!

20

8 Appendix

Listing 1: ast.ml

1 (* signed off: Akira, Edmund, Maclyn, Sean *)
2 type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq |

Greater | Geq
3 type dtype = Bool | Int | String | Float | Instance of string |

Array of dtype * int | Texture
4 type rtype = Void | ActingType of dtype
5
6 type literal =
7 | LitBool of bool
8 | LitInt of int
9 | LitFloat of float

10 | LitString of string
11 | LitArray of literal * int
12
13 type identifier =
14 | Name of string
15 | Member of string * string (* entity id, member id *)
16
17 type expr =
18 | Literal of literal
19 | Id of identifier (* variables and fields *)
20 | Call of identifier * expr list (* functions and methods *)
21 | Binop of expr * op * expr
22 | Spawn of string
23 | Assign of identifier * expr
24 | Access of identifier * expr (* array access *)
25 | Noexpr
26
27 type stmt =
28 | Block of stmt list
29 | Expr of expr
30 | Return of expr
31 | If of expr * stmt * stmt
32 | For of expr * expr * expr * stmt
33 | While of expr * stmt
34 | Kill of identifier
35
36 type vdecl = dtype * string
37
38 type fdecl = {
39 rtype : rtype;
40 fname : string;
41 formals : vdecl list;
42 locals : vdecl list;
43 body : stmt list;
44 }
45
46 type edecl = {
47 ename : string;
48 fields : vdecl list;
49 methods : fdecl list;
50 }
51

21

52 type program = edecl list
53
54 let string_of_op = function
55 | Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
56 | Equal -> "==" | Neq -> "!="
57 | Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="
58
59 let rec string_of_dtype = function
60 | Bool -> "bool"
61 | Int -> "int"
62 | String -> "string"
63 | Float -> "float"
64 | Array(t, size) ->
65 string_of_dtype t ˆ "[" ˆ string_of_int size ˆ "]"
66 | Instance(name) -> name
67 | Texture -> "texture *"
68
69 let string_of_rtype = function
70 | Void -> "void"
71 | ActingType(at) -> string_of_dtype at
72
73 let rec string_of_literal = function
74 | LitBool(b) -> string_of_bool b
75 | LitInt(b) -> string_of_int b
76 | LitString(s) -> s
77 | LitFloat(f) -> string_of_float f
78 | LitArray(l, size) ->
79 string_of_literal l ˆ "[" ˆ string_of_int size ˆ "]"
80
81 let rec string_of_identifier = function
82 | Name(name) -> name
83 | Member(parent, name) -> parent ˆ "." ˆ name
84
85 let name_of_identifier = function
86 | Name(name) -> name
87 | Member(parent, name) -> name
88
89 let parent_of_identifier = function
90 | Name(name) -> ""
91 | Member(parent, name) -> parent
92
93 let rec string_of_expr = function
94 | Literal(lit) -> string_of_literal lit
95 | Id(id) -> string_of_identifier id
96 | Binop(e1, o, e2) ->
97 string_of_expr e1 ˆ " " ˆ string_of_op o ˆ " " ˆ string_of_expr

e2
98 | Assign(id, e) -> string_of_identifier id ˆ " = " ˆ

string_of_expr e
99 | Access(id, e) -> string_of_identifier id ˆ "[" ˆ string_of_expr

e ˆ "]"
100 | Spawn(ent) -> "spawn " ˆ ent
101 | Call(id, args) ->
102 string_of_identifier id ˆ
103 "(" ˆ String.concat ", " (List.map string_of_expr args) ˆ ")"
104 | Noexpr -> ""
105

22

106 let rec string_of_stmt = function
107 | Block(stmts) ->
108 "{\n" ˆ String.concat "" (List.map string_of_stmt stmts) ˆ "}\n"
109 | Expr(expr) -> string_of_expr expr ˆ ";\n";
110 | Kill(id) -> "kill " ˆ string_of_identifier id ˆ ";\n";
111 | Return(expr) -> "return " ˆ string_of_expr expr ˆ ";\n";
112 | If(e, s, Block([])) ->
113 "if (" ˆ string_of_expr e ˆ ")\n" ˆ string_of_stmt s
114 | If(e, s1, s2) ->
115 "if (" ˆ string_of_expr e ˆ ")\n" ˆ string_of_stmt s1 ˆ
116 "else\n" ˆ string_of_stmt s2
117 | For(e1, e2, e3, s) ->
118 "for (" ˆ string_of_expr e1 ˆ " ; " ˆ string_of_expr e2 ˆ " ; "

ˆ
119 string_of_expr e3 ˆ ") " ˆ string_of_stmt s
120 | While(e, s) -> "while (" ˆ string_of_expr e ˆ ") " ˆ

string_of_stmt s
121
122 let string_of_vdecl (t, id) = string_of_dtype t ˆ " " ˆ id ˆ ";\n"
123
124 let string_of_formal (t, id) = string_of_dtype t ˆ " " ˆ id
125
126 let string_of_fdecl fdecl =
127 string_of_rtype fdecl.rtype ˆ " " ˆ fdecl.fname ˆ "(" ˆ
128 String.concat ", " (List.map string_of_formal fdecl.formals) ˆ

")\n{\n" ˆ
129 String.concat "" (List.map string_of_vdecl fdecl.locals) ˆ
130 String.concat "" (List.map string_of_stmt fdecl.body) ˆ
131 "}\n"
132
133 let string_of_edecl edecl =
134 "entity " ˆ edecl.ename ˆ "\n{\n" ˆ
135 String.concat "" (List.map string_of_vdecl edecl.fields) ˆ "\n"

ˆ
136 String.concat "" (List.map string_of_fdecl edecl.methods) ˆ
137 "}\n"
138
139 let string_of_program entities =
140 String.concat "\n" (List.map string_of_edecl entities)

1 { open Parser }
2 (* signed off: Akira, Maclyn, Edmund, Sean *)
3 (* Generally useful regexes *)
4 let digit = [’0’-’9’]
5 let lower = [’a’-’z’]
6 let upper = [’A’-’Z’]
7 let letter = (upper | lower)
8 let minus = [’-’]
9 let plus = [’+’]

10 let sign = (plus | minus)
11 let exp = [’e’ ’E’] sign? (digit+)
12
13 (* Literals *)
14 let lit_bool = "true" | "false"
15 let lit_int = minus? (digit+)
16 let lit_string = ’"’ [ˆ’"’]* ’"’
17 let lit_float = minus? (digit*) [’.’]? (digit+) (exp)?
18 let regex_lit = (lit_bool | lit_int | lit_string | lit_float)

23

19
20 (* Identifiers *)
21 let regex_id = (letter | ’_’) ((letter | digit | ’_’)*)
22
23 (* Primitives *)
24 let type_bool = "bool"
25 let type_int = "int"
26 let type_string = "string"
27 let type_float = "float"
28 let type_instance = "instance " regex_id
29 let type_texture = "texture"
30 let regex_type =
31 (type_bool | type_int | type_string | type_float |
32 type_instance | type_texture)
33
34 rule token = parse
35 [’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf } (* Whitespace *)
36 | ’#’ { comment lexbuf } (* Comments *)
37 | ’(’ { LPAREN }
38 | ’)’ { RPAREN }
39 | ’{’ { LBRACE }
40 | ’}’ { RBRACE }
41 | ’[’ { LBRACKET }
42 | ’]’ { RBRACKET }
43 | ’;’ { SEMI }
44 | ’,’ { COMMA }
45 | ’.’ { DOT }
46 | ’+’ { PLUS }
47 | ’-’ { MINUS }
48 | ’*’ { TIMES }
49 | ’/’ { DIVIDE }
50 | ’=’ { ASSIGN }
51 | "==" { EQ }
52 | "!=" { NEQ }
53 | ’<’ { LT }
54 | "<=" { LEQ }
55 | ">" { GT }
56 | ">=" { GEQ }
57 | "if" { IF }
58 | "else" { ELSE }
59 | "for" { FOR }
60 | "while" { WHILE }
61 | "return" { RETURN }
62 | "bool" { BOOL }
63 | "int" { INT }
64 | "float" { FLOAT }
65 | "string" { STRING }
66 | "entity" { ENTITY }
67 | "func" { FUNC }
68 | "texture"{ TEXTURE }
69 | "spawn" { SPAWN }
70 | "kill" { KILL }
71 | lit_bool as b { LIT_BOOL(bool_of_string b) }
72 | lit_int as i { LIT_INT(int_of_string i) }
73 | lit_float as f { LIT_FLOAT(float_of_string f) }
74 | lit_string as s { LIT_STRING(s) }
75 | regex_id as id { ID(id) }

24

76 | eof { EOF }
77 | _ as char { raise (Failure("illegal character " ˆ Char.escaped

char)) }
78
79 and comment = parse
80 ’#’ { token lexbuf }
81 | _ { comment lexbuf }

1 %{
2 (* signed off: Akira, Macyln, Edmund, Sean *)
3 open Ast
4 %}
5
6 %token BOOL INT FLOAT STRING
7 %token ENTITY FUNC TEXTURE
8 %token LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET
9 %token SEMI COMMA DOT

10 %token PLUS MINUS TIMES DIVIDE ASSIGN
11 %token EQ NEQ LT LEQ GT GEQ
12 %token RETURN IF ELSE FOR WHILE
13 %token SPAWN KILL
14 %token <string> ID
15 %token <bool> LIT_BOOL
16 %token <int> LIT_INT
17 %token <float> LIT_FLOAT
18 %token <string> LIT_STRING
19 %token EOF
20
21 %nonassoc NOELSE
22 %nonassoc ELSE
23 %right ASSIGN
24 %left EQ NEQ
25 %left LT GT LEQ GEQ
26 %left PLUS MINUS
27 %left TIMES DIVIDE
28 %right SPAWN
29 %right KILL
30 %left DOT
31
32 %start program
33 %type <Ast.program> program
34
35 %%
36
37 program:
38 | edecls EOF { List.rev $1 }
39
40 edecls:
41 | /* nothing */ { [] }
42 | edecls edecl { $2 :: $1 }
43
44 edecl:
45 | ENTITY ID LBRACE vdecl_list fdecl_list RBRACE
46 { { ename = $2;
47 fields = List.rev $4;
48 methods = $5; } }
49
50 fdecl_list:

25

51 | /* nothing */ { [] }
52 | fdecl fdecl_list { $1 :: $2 }
53
54 fdecl:
55 | dtype ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list

RBRACE
56 { { rtype = ActingType($1);
57 fname = $2;
58 formals = $4;
59 locals = List.rev $7;
60 body = List.rev $8; } }
61 | FUNC ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list

RBRACE
62 { { rtype = Void;
63 fname = $2;
64 formals = $4;
65 locals = List.rev $7;
66 body = List.rev $8; } }
67
68 formals_opt:
69 | /* nothing */ { [] }
70 | formal_list { List.rev $1 }
71
72 formal_list:
73 | dtype ID { [($1, $2)] }
74 | formal_list COMMA dtype ID { ($3, $4) :: $1 }
75
76 vdecl_list:
77 | /* nothing */ { [] }
78 | vdecl_list vdecl { $2 :: $1 }
79
80 vdecl:
81 | dtype ID SEMI { $1, $2 }
82
83 dtype:
84 | BOOL { Bool }
85 | INT { Int }
86 | FLOAT { Float }
87 | STRING { String }
88 | LT ID GT { Instance($2) }
89 | dtype LBRACKET LIT_INT RBRACKET { Array($1, $3) }
90 | TEXTURE { Texture }
91
92 stmt_list:
93 | /* nothing */ { [] }
94 | stmt_list stmt { $2 :: $1 }
95
96 stmt:
97 | expr SEMI { Expr($1) }
98 | RETURN expr SEMI { Return($2) }
99 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

100 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
101 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
102 | FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt
103 { For($3, $5, $7, $9) }
104 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }
105 | KILL ID SEMI { Kill(Name($2)) }

26

106
107 expr_opt:
108 | /* nothing */ { Noexpr }
109 | expr { $1 }
110
111 expr:
112 | literal { Literal($1) }
113 | id { Id($1) }
114 | expr PLUS expr { Binop($1, Add, $3) }
115 | expr MINUS expr { Binop($1, Sub, $3) }
116 | expr TIMES expr { Binop($1, Mult, $3) }
117 | expr DIVIDE expr { Binop($1, Div, $3) }
118 | expr EQ expr { Binop($1, Equal, $3) }
119 | expr NEQ expr { Binop($1, Neq, $3) }
120 | expr LT expr { Binop($1, Less, $3) }
121 | expr LEQ expr { Binop($1, Leq, $3) }
122 | expr GT expr { Binop($1, Greater, $3) }
123 | expr GEQ expr { Binop($1, Geq, $3) }
124 | SPAWN ID { Spawn($2) }
125 | id ASSIGN expr { Assign($1, $3) }
126 | id LBRACKET expr RBRACKET { Access($1, $3) }
127 | id LPAREN actuals_opt RPAREN { Call($1, $3) }
128 | LPAREN expr RPAREN { $2 }
129
130 literal:
131 | LIT_BOOL { LitBool($1) }
132 | LIT_INT { LitInt($1) }
133 | LIT_FLOAT { LitFloat($1) }
134 | LIT_STRING { LitString($1) }
135
136 id:
137 | ID { Name($1) }
138 | expr DOT ID { Member(string_of_expr $1, $3) }
139
140 actuals_opt:
141 | /* nothing */ { [] }
142 | actuals_list { List.rev $1 }
143
144 actuals_list:
145 | expr { [$1] }
146 | actuals_list COMMA expr { $3 :: $1 }

1 (* signed off: Akira *)
2 open Ast
3 open Boilerplate
4
5 exception UndeclaredEntity of string
6 exception UndeclaredIdentifier of string
7
8 type symbol_table = {
9 parent : symbol_table option;

10 current_entity : edecl;
11 variables : vdecl list;
12 }
13
14 type environment = {
15 entities : edecl list;
16 scope : symbol_table;

27

17 }
18
19 let rec string_of_scope s =
20 "parent: " ˆ (match s.parent with
21 | None -> ""
22 | Some(p) -> string_of_scope p) ˆ ")\ncurrent_entity: " ˆ
23 string_of_edecl s.current_entity ˆ "\nvariables: " ˆ
24 String.concat "; " (List.map string_of_vdecl s.variables)
25
26 let string_of_env env =
27 "entities: " ˆ String.concat ", " (List.map string_of_edecl env.

entities) ˆ
28 "\nscope: " ˆ string_of_scope env.scope ˆ "\n"
29
30 let find_entity (env : environment) name =
31 try List.find (fun e -> e.ename = name) env.entities
32 with Not_found -> raise (UndeclaredEntity name)
33
34 let rec find_variable (scope : symbol_table) name =
35 try List.find (fun (_, n) -> n = name) scope.variables
36 with Not_found ->
37 match scope.parent with
38 Some(parent) -> find_variable parent name
39 | _ -> raise (UndeclaredIdentifier name)
40
41 let find_function (scope : symbol_table) name =
42 try List.find (fun f -> f.fname = name) scope.current_entity.

methods
43 with Not_found -> raise (UndeclaredIdentifier name)
44
45 let add_edecl env edecl = {
46 entities = edecl :: env.entities;
47 scope = {
48 parent = None;
49 current_entity = edecl;
50 variables = edecl.fields;
51 };
52 }
53
54 let add_scope env vdecls = {
55 entities = env.entities;
56 scope = {
57 parent = Some(env.scope);
58 current_entity = env.scope.current_entity;
59 variables = vdecls;
60 };
61 }
62
63 let in_scope scope name =
64 try
65 let _ = (List.find (fun (_, n) -> n = name) scope.variables) in
66 true
67 with Not_found -> false
68
69 let rec is_field scope name =
70 match scope.parent with
71 | None ->

28

72 if (in_scope scope name) then true
73 else true (* raise (UndeclaredIdentifier name) *)
74 | Some(parent) ->
75 if (in_scope scope name) then false
76 else is_field parent name
77
78 let pop_scope env =
79 match env.scope.parent with
80 | Some(new_scope) ->
81 {
82 entities = env.entities;
83 scope = new_scope;
84 }
85 | None -> raise (Failure "Attempting to pop from empty environment

")
86
87 let tr_identifier env id =
88 (if (is_field env.scope (name_of_identifier id)) then
89 "(this->" else "(") ˆ
90 (match parent_of_identifier id with
91 | "" -> name_of_identifier id ˆ ")"
92 | _ -> parent_of_identifier id ˆ ")->" ˆ name_of_identifier

id)
93
94 let is_builtin name =
95 try let _ = List.find (fun s -> s = name) Lib.modules in true
96 with Not_found -> false
97
98 let rec tr_expr env = function
99 | Literal(lit) -> string_of_literal lit

100 | Id(id) -> tr_identifier env id
101 | Binop(e1, o, e2) ->
102 (tr_expr env) e1 ˆ " " ˆ string_of_op o ˆ " " ˆ (tr_expr env) e2
103 | Assign(id, e) -> tr_identifier env id ˆ " = " ˆ (tr_expr env) e
104 | Access(id, e) -> tr_identifier env id ˆ "[" ˆ (tr_expr env) e ˆ

"]"
105 | Spawn(ent) -> ent ˆ "_spawn()"
106 | Call(id, args) ->
107 (match id with
108 | Name(n) -> if (n = "load") || (n = "unload")
109 then "_" ˆ n ˆ "_tex(" ˆ String.concat ", " (List.map (tr_expr

env) args) ˆ ")"
110 else tr_identifier env id ˆ "(" ˆ
111 String.concat ", " (List.map (tr_expr env) args) ˆ ")"
112 | Member(p, n) ->
113 if is_builtin p then "_" ˆ p ˆ "_" ˆ n ˆ
114 "(" ˆ String.concat ", " (List.map (tr_expr env) args) ˆ ")"
115 else tr_identifier env id ˆ
116 "(" ˆ String.concat ", " (List.map (tr_expr env) args) ˆ ")

")
117 | Noexpr -> ""
118
119 let rec tr_stmt env = function
120 | Block(stmts) ->
121 "{\n" ˆ String.concat "\n" (List.map (tr_stmt env) stmts) ˆ "\n

}"
122 | Expr(expr) -> (tr_expr env) expr ˆ ";";

29

123 | Return(expr) -> "return " ˆ (tr_expr env) expr ˆ ";";
124 | If(e, s, Block([])) ->
125 "if (" ˆ (tr_expr env) e ˆ ") " ˆ (tr_stmt env) s
126 | If(e, s1, s2) ->
127 "if (" ˆ (tr_expr env) e ˆ ") " ˆ (tr_stmt env) s1 ˆ
128 " else " ˆ (tr_stmt env) s2
129 | For(e1, e2, e3, s) ->
130 "for (" ˆ (tr_expr env) e1 ˆ " ; " ˆ (tr_expr env) e2 ˆ " ; " ˆ
131 (tr_expr env) e3 ˆ ") " ˆ (tr_stmt env) s
132 | While(e, s) -> "while (" ˆ (tr_expr env) e ˆ ") " ˆ (tr_stmt env

) s
133 | Kill(id) ->
134 let iname = name_of_identifier id in
135 let (dtype, _) = find_variable env.scope iname in
136 let ename = string_of_dtype dtype in
137 ename ˆ "_destroy(" ˆ (tr_identifier env id) ˆ ");"
138
139 let rec tr_formal (typ, name) =
140 match typ with
141 | Bool -> "int " ˆ name
142 | Int -> "int " ˆ name
143 | String -> "char *" ˆ name
144 | Float -> "float " ˆ name
145 | Instance(s) -> s ˆ " *" ˆ name
146 | Array(t, size) -> tr_formal(t, name) ˆ "[" ˆ string_of_int size

ˆ "]"
147 | Texture -> "texture *" ˆ name
148
149 let tr_vdecl vdecl = (tr_formal vdecl) ˆ ";"
150
151 let is_stub fname =
152 try let _ = List.find (fun stub -> fname = stub)
153 Boilerplate.stubs_action in true
154 with Not_found -> false
155
156 let tr_fdecl env fdecl =
157 let env = add_scope env (fdecl.formals @ fdecl.locals) in
158 let ename = env.scope.current_entity.ename in
159 let mangled_fname = ename ˆ "_" ˆ fdecl.fname in
160 let first_arg = if (is_stub fdecl.fname) then "void *in" else

ename ˆ " *this" in
161 let rtype = fdecl.rtype in
162 string_of_rtype rtype ˆ " " ˆ mangled_fname ˆ
163 "(" ˆ String.concat ", " (first_arg :: List.map string_of_formal

fdecl.formals) ˆ
164 ") {\n" ˆ
165 (if (is_stub fdecl.fname)
166 then ename ˆ " *this = (" ˆ ename ˆ " *)in;\n" else "") ˆ
167 String.concat "\n" (List.map tr_vdecl fdecl.locals) ˆ "\n" ˆ
168 String.concat "\n" (List.map (tr_stmt env) fdecl.body) ˆ "\n}\n"
169
170 let update_stub edecl fdecl =
171 try let _ = List.find (fun f -> f.fname = fdecl.fname)
172 edecl.methods
173 in edecl
174 with Not_found -> {
175 ename = edecl.ename;

30

176 fields = edecl.fields;
177 methods = List.rev (fdecl :: (List.rev edecl.methods));
178 }
179
180 let tr_edecl (env, output) edecl =
181 let stubs = [{rtype = Void;
182 fname = "step";
183 formals = [];
184 locals = [];
185 body = [];
186 };
187 {rtype = Void;
188 fname = "start";
189 formals = [];
190 locals = [];
191 body = [];
192 };
193 {rtype = Void;
194 fname = "stop";
195 formals = [];
196 locals = [];
197 body = [];
198 };
199 {rtype = Void;
200 fname = "render";
201 formals = [];
202 locals = [];
203 body = [];
204 }
205]
206 in
207 let edecl = List.fold_left update_stub edecl stubs in
208 let env = add_edecl env edecl in
209 let ename = edecl.ename in
210 let fields = List.map tr_vdecl edecl.fields in
211 let methods = List.map (tr_fdecl env) edecl.methods in
212 let translated = "typedef struct " ˆ ename ˆ " {\n" ˆ
213 String.concat "\n" fields ˆ "\n} " ˆ ename ˆ";\n" ˆ
214 String.concat "\n" methods ˆ "\n" ˆ
215 (gen_spawn ename) ˆ "\n" ˆ
216 (gen_destroy ename) in
217 (env, translated :: output)
218
219 let translate entities =
220 let empty_edecl = { ename = ""; fields = []; methods = [] } in
221 let empty_env = {
222 entities = [];
223 scope = { parent = None; current_entity = empty_edecl; variables

= [] };
224 } in
225 let (env, translated) = (List.fold_left tr_edecl (empty_env, [])

entities) in
226 String.concat "\n" (List.rev translated)

1 (* signed off: Maclyn *)
2 open Printf
3
4 let _ =

31

5 try
6 let lexbuf = Lexing.from_channel stdin in
7 let program = Parser.program Scanner.token lexbuf in
8 let verified = Semantic.semantic_check program in
9 let result =

10 if (String.compare verified "") == 0 then
11 Compile.translate program
12 else
13 (
14 output_string stderr verified;
15 output_string stderr "Continuing anyways...\n";
16 Compile.translate program
17)
18 in
19 print_endline result;
20 with
21 Parsing.Parse_error ->
22 (
23 print_endline "Parsing error!";
24 exit 1;
25)
26 | _ -> exit 1

1 #!/bin/bash
2 # Called with [input program] [output program]
3
4 if [$# -ne 2]
5 then
6 echo "usage: $0 <input file> <output program>"
7 exit 1
8 fi
9

10 # Check if libsdl2-dev is installed
11 dpkg-query -l libsdl2-dev > /dev/null
12 if ["$?" -ne "0"]
13 then
14 echo "Warning: dpkg/libsdl2-dev not installed! Compilation may

fail!"
15 fi
16
17 cat $1 | ./preprocessor > temp.seami
18 cat temp.seami | ./seam > gen.c
19 if ["$?" -ne "0"]
20 then
21 echo "Error encountered while compiling: "
22 cat gen.c
23
24 rm temp.seami
25 rm gen.c
26 exit 1
27 else
28 echo "Input program translated succesfully; compiling..."
29 fi
30
31 # See Google: http://superuser.com/questions/246837/how-do-i-add-

text-to-the-beginning-of-a-file-in-bash
32 echo "#include \"gen.h\"" | cat - gen.c > temp && mv temp gen.c
33 echo "#include \"lib.h\"" | cat - gen.c > temp && mv temp gen.c

32

34
35 echo " void program_ep() { World_spawn(); }" >> gen.c
36
37 gcc -g -c lib.c -o lib.o
38 gcc -g -c gen.c -o gen.o
39 gcc -g -c main.c -o main.o
40 gcc -g main.o lib.o gen.o -lSDL2 -o $2
41
42 if ["$?" -ne "0"]
43 then
44 echo "Compilation error! Checkout temp.seami and gen.c."
45 else
46 rm temp.seami
47 # rm gen.c
48 echo "$2 created."
49 fi

1 #!/bin/bash
2 # signed off: Maclyn
3
4 # Called with [input program] [output program]
5
6 if [$# -ne 2]
7 then
8 echo "usage: $0 <input file> <output program>"
9 exit 1

10 fi
11
12 # Check if libsdl2-dev is installed
13 dpkg-query -l libsdl2-dev > /dev/null
14 if ["$?" -ne "0"]
15 then
16 echo "Warning: dpkg/libsdl2-dev not installed! Compilation may

fail!"
17 fi
18
19 cat $1 | ./preprocessor > temp.seami
20 cat temp.seami | ./seam > gen.c
21 if ["$?" -ne "0"]
22 then
23 echo "Error encountered while compiling: "
24 cat gen.c
25
26 rm temp.seami
27 rm gen.c
28 exit 1
29 else
30 echo "Input program translated succesfully; compiling..."
31 fi
32
33 # See Google: http://superuser.com/questions/246837/how-do-i-add-

text-to-the-beginning-of-a-file-in-bash
34 echo "#include \"gen.h\"" | cat - gen.c > temp && mv temp gen.c
35 echo "#include \"lib.h\"" | cat - gen.c > temp && mv temp gen.c
36
37 echo " void program_ep() { World_spawn(); }" >> gen.c
38
39 gcc -g -c lib.c -o lib.o

33

40 gcc -g -c gen.c -o gen.o
41 gcc -g -c main.c -o main.o
42 gcc -g main.o lib.o gen.o -lSDL2 -o $2
43
44 if ["$?" -ne "0"]
45 then
46 echo "Compilation error! Checkout temp.seami and gen.c."
47 else
48 rm temp.seami
49 # rm gen.c
50 echo "$2 created."
51 fi

1 (* signed off: Edmund *)
2 (* Working preprocessor. Still needs to be integrated into
3 the project appropriately, but here it is. See
4 src/tests/preprocessor_example.txt for an example of a
5 file that would be handled by this *)
6
7
8 (* open the file, which I should figure out how to close *)
9 let myfile = stdin in

10
11 (* read in the lines one by one into a list *)
12 let rec input_lines file =
13 match try [input_line file] with End_of_file -> [] with
14 [] -> []
15 | line -> line @ input_lines file
16
17 in
18
19 (* Function for removing comments now *)
20 let remove_comments lines =
21
22 let rec eachlinehandler state_tuple current_string =
23
24 (* grab stuff from tuples *)
25 let comment_state = fst state_tuple in
26 let current_list = snd state_tuple in
27
28 (* first check if length of string is 0 *)
29 if String.length current_string == 0 then
30 (comment_state, [])
31 else
32 try
33 let pound_index = String.index current_string ’#’ in
34 let end_diff = (String.length current_string) - (pound_index

+ 1) in
35 let ahalf = [String.sub current_string 0 pound_index;] in
36 let bhalf = String.sub current_string (pound_index + 1)

end_diff in
37
38 if comment_state then
39 let choice_tuple = (false, []) in
40 let result_tuple = eachlinehandler choice_tuple bhalf in
41 (fst result_tuple, current_list @ (snd result_tuple))
42 else
43 let choice_tuple = (true, []) in

34

44 let result_tuple = eachlinehandler choice_tuple bhalf in
45 (fst result_tuple, (current_list @ (ahalf @ (snd

result_tuple))))
46 with
47 Not_found ->
48 if comment_state then
49 (true, [])
50 else
51 (false, current_string :: [])
52 in
53
54
55 (* now use the recursive line handler to do things *)
56
57 let remove_comment_aux aux_tuple next_line =
58 (* cumulative list and whether we’re starting with a

comment *)
59 let start_with_comment = fst aux_tuple in
60 let list_so_far = snd aux_tuple in
61
62 (* eachlinehandler spits out (still comment?, [list,

of, strings] *)
63 let result_tuple = eachlinehandler (start_with_comment, [])

next_line in
64 let new_string_tokens = snd result_tuple in
65
66 (* put the small strings together into one line

again, backwards *)
67 (fst result_tuple, String.concat "" new_string_tokens ::

list_so_far)
68 in
69
70 (* call auxiliary function with the lines, then reverse the

output *)
71 let results = List.fold_left remove_comment_aux (false, []) lines

in
72 List.rev (snd results)
73 in
74
75
76 (* read in all lines, then remove the comments *)
77 let lineList = remove_comments (input_lines myfile) in
78
79
80 (* this is where the indent-removal magic happens*)
81
82 let rec process_indents current_list current_indent_level =
83
84 (* returns whether string is only whitespaces *)
85 let only_whitespace my_string =
86 let length = String.length my_string in
87 let rec check_whitespace pos =
88 if pos == length then true
89 else
90 let item = String.get my_string pos in
91 if (item == ’\t’ || item == ’ ’) then
92 true && check_whitespace (pos + 1)

35

93 else false
94 in check_whitespace 0
95 in
96
97 (* counts the number of tabs in the left side *)
98 let count_tabs my_string =
99 let length = String.length my_string in

100 let rec count_tabs_rec pos =
101 if String.get my_string pos == ’\t’ then
102 1 + count_tabs_rec (pos + 1)
103 else 0 in
104 if length == 0 then 0 else count_tabs_rec 0
105 in
106
107 (* make new line *)
108 let make_new_line my_string =
109 try
110 let colon_index = String.rindex my_string ’:’ in
111 String.concat "" [(String.sub my_string 0 colon_index); " {";

]
112 with
113 Not_found -> String.concat "" [my_string; "; ";]
114 in
115
116 (* generates a string of n number of tabs together *)
117 let generate_n_tabs n =
118 let rec tab_list tabs =
119 if tabs <= 0 then []
120 else
121 "\t" :: (tab_list (tabs - 1)) in
122 String.concat "" (tab_list n)
123 in
124
125 (* n is the number of brackets we need,
126 old_level is the indentation level we left, so we can
127 properly tab and indent, and make everyting look nice*)
128 let generate_n_close_brackets n old_level=
129 let rec bracket_list brackets level=
130 if brackets <= 0 then []
131 else
132 let rest_of_list = bracket_list (brackets - 1) (level - 1)

in
133 generate_n_tabs (level - 1) :: "} \n" :: rest_of_list in
134 String.concat "" (bracket_list n old_level)
135 in
136
137 match current_list with
138 (* if we have *)
139 | [] -> String.concat "" [generate_n_close_brackets

current_indent_level
140 current_indent_level;]
141 | head :: tail ->
142 if only_whitespace head then
143 (* okay just do the next line *)
144 process_indents tail current_indent_level
145 else

36

146 (* Finds the closing brackets
necessary based

147 on the indentation level *)
148 let new_indent_level = count_tabs head in
149 let close_needed = current_indent_level - new_indent_level in
150 let new_close_brackets = generate_n_close_brackets

close_needed
151 current_indent_level in
152 if (String.length new_close_brackets) > 0 then
153 String.concat "" [(* We have to close some brackets*)
154 new_close_brackets;
155 (make_new_line head);"\n";
156 process_indents tail new_indent_level;]
157
158 else
159 String.concat "" [
160 (* stick on same

indent level *)
161 make_new_line head; "\n";
162 process_indents tail new_indent_level;]
163 in
164
165 print_endline (process_indents lineList 0) ;;
166
167 semantic.ml - Edmund
168
169 include Errors (* note how if we need Ast, Errors includes Ast *)
170
171 module IntMap = Map.Make(struct type t = int let compare = compare

end) (* for int map support *)
172 module StringMap = Map.Make(String)
173
174
175 (* The following is my procedure:
176
177 Perform repeat entity declaration checks
178 Perform repeat function declaration checks
179 Perform repeat variable declaration checks
180 Iterate through the functions to check everything
181
182 *)
183
184 type translation_env = {
185 current_scope: int;
186 (* a map from scopes to the map of things in each scope,
187 which maps the variable name to a vdecl *)
188 variables: vdecl StringMap.t IntMap.t;
189 entities: edecl StringMap.t;
190 functions: fdecl StringMap.t;
191
192 (* errors *)
193 errors: error list;
194 }
195
196
197 (* //
198 auxiliary functions for variables and scoping *)

37

199
200 (* first let’s introduce this auxiliary function for the

add_var_decl
201 and also useful in expression checking *)
202 let find_variable_scope env var =
203 let current_scope = env.current_scope in
204 let rec search_scope scope_number =
205 (* -1, didn’t find *)
206 if scope_number < 0 then scope_number
207 else
208 (* get the map corresponding to this scope *)
209 let var_map = IntMap.find scope_number env.variables in
210 (* see whether the variable is present *)
211 let result = StringMap.mem var var_map in
212 if result then
213 scope_number
214 else
215 search_scope (scope_number - 1)
216 in
217 search_scope current_scope
218
219
220 let add_var_decl env possible_error_locus var_decl =
221
222 (* use find_variable_scope *)
223 let var_name = snd var_decl in
224 let scope_number = find_variable_scope env var_name in
225
226 (* react accordingly *)
227 if scope_number == env.current_scope then
228 (* error, we have a duplicate variable declaration
229 inside the same scope... *)
230 let new_error = (
231 possible_error_locus,
232 VariableRepeatDecl(var_decl))
233 in
234 { env with errors = new_error :: env.errors }
235
236 else
237 (* whether NOT FOUND or declared in an earlier scope
238 it’s okay, we’re adding it to the current scope now *)
239 let current_stringmap = IntMap.find env.current_scope env.

variables in
240 let updated_stringmap = StringMap.add var_name var_decl

current_stringmap in
241 let updated_mapping = IntMap.add env.current_scope

updated_stringmap env.variables in
242 { env with variables = updated_mapping; }
243
244
245 (* Auxiliary function to set a given scope’s variables to zero *)
246 let clear_variable_scope env scope_number =
247 let revised_variables =
248 let empty_stringmap = StringMap.empty in
249 IntMap.add scope_number empty_stringmap env.variables
250 in
251 let fixed_env = { env with variables = revised_variables;}

38

252 in fixed_env
253
254 let make_basic_env =
255 let empty_intmap = IntMap.empty in
256 let basic_environment =
257 {
258 current_scope = 0;
259 variables = empty_intmap;
260 entities = StringMap.empty;
261 functions = StringMap.empty;
262 errors = [];
263 } in
264 clear_variable_scope basic_environment 0
265
266
267 (* In fact searching for the ID should be generalized *)
268 let check_id_usage env expr error_locus identifier = match

identifier with
269 | Member(entity, id_name) ->
270
271 (env, Void)
272 (* use our searcher *)
273 | Name(id_name) ->
274 let scope = find_variable_scope env id_name in
275 if scope < 0 then
276 (* We didn’t even find it gg *)
277 (* Error message in environment, then spit out a Void

result *)
278 let new_error = (error_locus, UndeclaredVariable(id_name

, expr)) in
279 let updated_env = { env with errors = new_error :: env.

errors } in
280 (updated_env, Void)
281 else
282 (* this is a Stringmap *)
283 let var_map = IntMap.find scope env.variables in
284 let dtype = fst (StringMap.find id_name var_map) in
285 let wrapped_dtype = ActingType(dtype) in
286 (env, wrapped_dtype)
287
288
289
290
291 (* //
292 the meat of the checking is here *)
293
294 (* We will return a type of rtype, with the possibility of Void,
295 the absense of return *)
296 let rec check_expression env func error_locus expr = match expr with
297 | Noexpr -> (env, Void)
298 | Literal (lit) ->
299 let lit_dtype_lookup = function
300 | LitBool(b) -> Bool
301 | LitInt(i) -> Int
302 | LitFloat(f) -> Float
303 | LitString(s) -> String
304 | LitArray(_, _) -> Int in

39

305 let equiv_dtype = match lit with
306 | LitArray(inner_lit, i) -> ActingType(
307 Array(lit_dtype_lookup inner_lit, i))
308 | LitBool(b) -> ActingType(Bool)
309 | LitInt(i) ->ActingType(Int)
310 | LitFloat(f) ->ActingType(Float)
311 | LitString(s) ->ActingType(String) in (env, equiv_dtype

)
312
313 | Call(id, []) -> (env, Void) (*of identifier * expr list (*

functions and methods *) *)
314 | Call(id, hd::tl) -> (env, Void) (*of identifier * expr list (*

functions and methods *) *)
315 | Binop(e1, o, e2) ->
316 (* First, check e1 and e2 *)
317 let tuple1 = check_expression env func error_locus e1 in
318 let tuple2 = check_expression (fst tuple1) func error_locus e2

in
319
320 (* Next, compare their types *)
321 let type1 = snd tuple1 in
322 let type2 = snd tuple2 in
323
324
325 let resulttype = match o with
326 | Add | Sub | Mult | Div -> type1
327 | Equal| Neq | Less | Leq | Greater| Geq ->ActingType(Bool) in
328 let str1 = rtype_to_str type1 in
329 let str2 = rtype_to_str type2 in
330 let env = fst tuple2 in
331
332 if String.compare str1 str2 != 0 then
333 let error_type = BinopTypeMismatch (type1, o, type2) in
334 let new_error = (error_locus, error_type) in
335 let updated_env = { env with errors = new_error :: env.

errors } in
336 (updated_env, type1)
337 else
338 (env, resulttype)
339
340 | Assign(id, val_expr)
341 ->
342 (* check expr, then get its type *)
343 let tuple1 = check_expression env func error_locus val_expr in
344 let updated_env = fst tuple1 in
345 (* check id, then get its type *)
346 let tuple2 = check_id_usage updated_env expr error_locus id in
347 (* check that the types are the same *)
348 let type1 = snd tuple1 in
349 let type2 = snd tuple2 in
350
351 let str1 = rtype_to_str type1 in
352 let str2 = rtype_to_str type2 in
353
354 if String.compare str1 str2 == 0 then
355 (fst tuple2, type1)
356 else

40

357 (* it’s this order because type TWO comes from the id *)
358 let error_type = AssignmentError(type2, type1) in
359 let new_error = (error_locus, error_type) in
360 let updated_env = { env with errors = new_error :: env.

errors } in
361 (updated_env, type1)
362
363
364
365
366
367 | Access(id, expr) -> (env, Void) (*of identifier * expr (*

array access *) *)
368 | Id(id) ->
369 check_id_usage env expr error_locus id
370 | _ -> (env, Void)
371
372
373 (* checks a given statement. returns env with possible errors *)
374 let rec check_statement env func error_locus statement = match

statement with
375 (* Nothing happens if it’s an empty block *)
376 | Block ([]) -> env
377
378 (* Handle head, then handle the tail *)
379 | Block (hd :: tl) ->
380 let head_env = check_statement env func error_locus hd in
381 let the_rest = Block(tl) in
382 check_statement head_env func error_locus the_rest
383
384 (* we do not care about the type *)
385 | Expr (e) ->
386 let out_tuple = check_expression env func error_locus e in
387 fst out_tuple
388
389 (* We care that return matches up with the func declaration *)
390 | Return (e) ->
391
392 env
393
394 (* We care that e is a boolean, and then check statements *)
395 | If (e, stmt1, stmt2) ->
396 let tuple = check_expression env func error_locus e in
397 let environment = match (snd tuple) with
398 | Void ->
399 let new_error = (error_locus,
400 StatementTypeMismatch(ActingType(Bool),
401 Void, "a if statement")) in
402 { env with errors = new_error :: env.errors }
403 | ActingType t -> match t with
404 | Bool-> env
405 | _ ->
406 let actualtype = ActingType(t) in
407 let new_error = (error_locus,
408 StatementTypeMismatch(ActingType(Bool),
409 actualtype, "a if statement")) in

41

410 { env with errors = new_error :: env.
errors } in

411 let env2 = check_statement environment func error_locus
stmt1 in

412 check_statement env2 func error_locus stmt2
413
414
415 | For (exp1, exp2, exp3, s) ->
416 (* For for loops, we honestly couldn’t care about the
417 expression types, they can do stupid things in it like C

permits you to *)
418 let e1 = fst (check_expression env func error_locus exp1) in
419 let e2 = fst (check_expression e1 func error_locus exp2) in
420 let e3 = fst (check_expression e2 func error_locus exp3) in
421 check_statement e3 func error_locus s
422 | While (e, s) ->
423 (* again, caring that our expression is a boolean *)
424 let tuple = check_expression env func error_locus e in
425 let environment = match (snd tuple) with
426 | Void ->
427 let new_error = (error_locus,
428 StatementTypeMismatch(ActingType(Bool),
429 Void, "a while statement")) in
430 { env with errors = new_error :: env.errors }
431 | ActingType t -> match t with
432 | Bool-> env
433 | _ ->
434 let actualtype = ActingType(t) in
435 let new_error = (error_locus,
436 StatementTypeMismatch(ActingType(Bool),
437 actualtype, "a while statement"))

in
438 { env with errors = new_error :: env.

errors }
439 in check_statement environment func error_locus s
440 | _ -> env
441
442 (* checks a function, updates environment *)
443 let check_function env possible_error_locus func =
444
445 (* A variable adde and error-maker *)
446 let f env current_vdecl =
447 add_var_decl env possible_error_locus current_vdecl in
448
449 (* 0: add formals BEFORE the variables, so that variables come

into
450 conflict with these formals already declared! *)
451 (* note: sweet, I could completely reuse the above function *)
452 let env = List.fold_left f env func.formals in
453
454 (* 1. add variables *)
455 let env = List.fold_left f env func.locals in
456
457 (* 2. go through each statement, checking the types *)
458 let f env current_statement =
459 check_statement env func possible_error_locus

current_statement in

42

460
461 List.fold_left f env func.body
462
463
464
465
466
467
468
469 let main_checker ast_head =
470
471
472 let basic_env = make_basic_env in
473
474 (*

//

475 first, verify that no entities have been duplicated *)
476 let verified_duplicate_entities =
477 let f env e =
478 (* Add entity to our environment, check for duplicates *)
479 let name = e.ename in
480 let entities = env.entities in
481 let found = StringMap.mem name entities in
482 if found then
483 (* error message, because there shouldn’t be another

with same name *)
484 let new_error = (
485 Global,
486 EntityRepeatDecl(e))
487 in
488 { env with errors = new_error :: env.errors }
489 else
490 let updated_entities = StringMap.add name e entities

in
491 { env with entities = updated_entities; } in
492 List.fold_left f basic_env ast_head
493 in
494 (*

//

495 next go entity by entity to 1. check repeat function decls
496 and 2. handle each function *)
497
498 let do_each_entity env entity =
499
500 (* now for each entity... *)
501
502 (* The part that sees if we have duplicate functions *)
503 let verify_entity_functions env function_list =
504 let map = StringMap.empty in
505 let aux result f_decl =
506 (* we’re passing a tuple around with both the

updated environment
507 and a map that acts as a set for whether we have

a function already *)
508 let e = fst result and m = snd result in

43

509 let search =
510 try (function a -> true) (StringMap.find f_decl

.fname m)
511 with Not_found -> false in
512 if search then
513 (* error message, because there shouldn’t be

another with same name *)
514 let new_error = (
515 Entity(entity.ename),
516 FunctionRepeatDecl(f_decl))
517 in
518 ({ e with errors = new_error :: e.errors }, m)
519 else
520 (e, (StringMap.add f_decl.fname f_decl m)) in
521 let out = List.fold_left aux (env, map)

function_list in
522 fst out in
523
524 let env_after_verifying_functions = verify_entity_functions

env entity.methods in
525
526
527 (* The part that sees if we have duplicate variables *)
528 let verify_entity_variables env locals =
529 let error_locus = Entity(entity.ename) in
530 let cleaned_env = clear_variable_scope env 0 in
531 let f env current_vdecl =
532 (* let add_var_decl env possible_error_locus

var_decl *)
533 add_var_decl env error_locus current_vdecl in
534 List.fold_left f env locals in
535
536 (* NOTE: at this point, we also have the variables

registered
537 in the scope 0 of the environment!! *)
538 let env_verified_vars = verify_entity_variables

env_after_verifying_functions entity.fields in
539
540 (* Finally, delve into each function and check things over

*)
541
542 let check_function_aux curr_env curr_fdecl =
543
544 (* Do not forget - the contents are all SCOPE #1 *)
545 let revised_env =
546 (* use our aux, but set current_scope manually!! *)
547 let cleared = clear_variable_scope curr_env 1 in
548 { cleared with current_scope = 1; } in
549
550 (* Locus depends on entity and function so... *)
551 let possible_error_locus = EntitysFunction(entity.ename,

curr_fdecl.fname) in
552
553 (* Now we check functions *)
554 check_function revised_env possible_error_locus

curr_fdecl in
555

44

556 List.fold_left check_function_aux env_verified_vars entity.
methods in

557
558 (* Right this is where we apply that massive aux function to
559 every entity there is *)
560 List.fold_left do_each_entity verified_duplicate_entities

ast_head
561
562
563 let semantic_check unchecked_program =
564 (* check if checking_environment says there are any errors *)
565 let checked_environment = main_checker unchecked_program in
566
567
568 (* Spits out all the errors *)
569 let handler list_so_far next_error =
570 let error_string = String.concat " " (describe_error

next_error) in
571 let with_nl = String.concat "" [error_string; "\n";] in
572 list_so_far @ [with_nl;]
573 in
574
575 (* we list.rev the errors because errors are always appended

left,
576 thus they are backwards compared to the order in which they

came *)
577 let my_errors = List.fold_left handler [] (List.rev

checked_environment.errors) in
578 let result = String.concat "" my_errors in
579
580 if List.length checked_environment.errors == 0 then
581 ""
582 else
583 result (* We return a string from semantic; if empty, no

errors *)

1 (* Signed off: Akira *)
2 let stubs_ctor = ["start"; "stop"]
3 let stubs_action = ["step"; "render"]
4 let stubs_helper = ["spawn"; "destroy"]
5
6 let gen_spawn ename =
7 ename ˆ "* " ˆ ename ˆ "_spawn(){\n " ˆ
8 ename ˆ " *data = malloc(sizeof(" ˆ ename ˆ "));
9 entity_node *node = malloc(sizeof(entity_node));

10 if(!data || !node) _seam_fatal(\"Allocation error!\");
11
12 node->step = &" ˆ ename ˆ "_step;
13 node->render = &" ˆ ename ˆ "_render;
14 node->data = data;
15 node->next = NULL;
16
17 entity_node *curr = ehead;
18 while(curr && curr->next) curr = curr->next;
19
20 if(curr)
21 curr->next = node;
22 else

45

23 ehead = node;
24
25 " ˆ ename ˆ "_start(data);
26 return data;
27 }"
28
29 let gen_destroy ename =
30 "void " ˆ ename ˆ "_destroy(" ˆ ename ˆ " *this){\n " ˆ
31 ename ˆ "_stop(this);
32
33 entity_node *curr = ehead;
34 entity_node *prev = NULL;
35 while(curr) {
36 if(curr->data == this) break;
37 prev = curr;
38 curr = curr->next;
39 }
40
41 if(prev)
42 prev->next = curr->next;
43 else
44 ehead = curr->next;
45
46 free(this);
47 free(curr);
48 }"

46

	Introduction
	Motivation
	Overview

	Quick-Start Tutorial
	Prerequisites
	Getting Started
	Basic Structure of a SEAMscript Program
	Entities
	Variables
	Functions
	Control Flow
	if/else
	Loops

	Comments

	Language Reference Manual
	Introduction
	Fundamental Types
	Comments
	Literals
	Variables
	Names
	Declaration
	Access
	Assignment

	Operators
	Statements and Blocks
	Control Flow
	If/Else Statement
	While Loop

	Entities
	Built-In Entities
	screen
	keyboard
	loader

	Built-In Functions
	Layout
	File Structure
	Function Definitions

	Project Outline
	Architectural Design
	Testing Strategy
	Lessons Learned
	Sean (si2281)
	Edmund (ejq2106)
	Akira (akb2158)
	Maclyn (mgb2163)

	Appendix

