
PLTree

A tree programming language

Overview
Philosophy: Everything is a tree

All data structures are built on the tree

A primitive type is a tree with a single node at the root and no leaves

A string is a tree of characters

A function is a tree of statements

Goal: Make it easy to create and work with trees.

Language compiles to the C programming language.

Basics
●  Types: Integers, Doubles, Characters

●  Booleans are represented by Integers

●  Pseudo-types: String, Any

Declaration:

●  int a 5; a = 6;

●  char foo {‘a’} [42 17];

Control Flow:

if: 1 > 2 [return:foo;]
 else [return:2;]

while: a < b [
a = a + 1;
print:foo;]

Unique Operators:

●  Accessor: foo->0;

●  Width: int w #foo;

Functions:

bar : any arg [
 return:5;

]

Import: $filename$

File extension: .tree

Hello, World!
A simple “Hello, World!”

Code:

$stdio.tree$

string str “hello\n”;

print : str;

Output:

hello

Equivalent to:

Code:

$stdio.tree$

string str ['h' 'e' 'l' 'l' 'o' '\n'];

print : str;

Output:

hello

Generated code
int main(int argc, char **argv) {
;
;
 struct tree * str = void_treemake(
 char_treemake('h', NULL),
 char_treemake('e', NULL),
 char_treemake('l', NULL),
 char_treemake('l', NULL),
 char_treemake('o', NULL),
 char_treemake('\n', NULL),
 NULL); inc_refcount(str);;
 print(
 str);

 dec_refcount(str);
 return 0;
}

null

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\n’

The ‘print’ function
print: any data [
 int n #data;
 int i 0;

 put_t:data;

 i = 0;

 while: i < n [
 print:data->i;
 i = i + 1;
]

 return:data;
]

●  Recursive

●  Pre-Order Depth First Search

●  Uses c function put_t

Example
Code:

string b ["this" "is" "a" "test"];
string c ["a" "really" "cool" "test"];
string test [b c];

print : [test->0->0 test->0->1 test->1->0 test->1->1 test-
>1->3 test->1->3];

Output:

thisisareallytesttest

b

“this”

“is”

“a”

“test”

c

“a”

“really”

“cool”

“test”

test

Example
Code:

int test_tree {0} [1 2 3
[4 5 6]

7
[8

[9 10]
11]

12];

pretty_print:[0 test_tree];

Output:
0
 1
 2
 3

 4
 5
 6
 7

 8

 9
 10
 11
 12

C Backend
struct tree {
 data_type type;
 union data_u data;
 int width;
 int refcount;
 struct List *children;
};
struct tree *treemake(

data_type type,
union data_u data,
struct tree *child,
va_list args);

struct tree*
inc_refcount(struct tree *t);

struct tree*
dec_refcount(struct tree *t);

Root

Children Child Node Child

Child

Child

Child Node

Child Node

Compiler structure

Import
Preprocessor

Lexer

Parser

AST

Semantic
Checker

SAST

Translator

CAST
CAST
Pretty Printer .c File .tree File

PLTree C
Library

Import Preprocessor
Resolve all imports

$filename$ replaced with contents of
filename

Prevent double imports by
maintaining list of already imported
files

Input file

Lexer/Parser

Resolve
imports

Output file

Imports found

All imports resolved

Test Suite
Managed by a bash script

Tests a .tree program’s output to
ensure proper language behavior

Initially tested AST of a program

Input file

Test Suite

output
comparison

expected
output

Testing
$./tester.sh -c tests/programs
tests/programs/fact: SUCCESS
tests/programs/fibo: SUCCESS
tests/programs/func_test: SUCCESS
tests/programs/gcd: SUCCESS
tests/programs/hello: SUCCESS
tests/programs/pretty_tree: SUCCESS
tests/programs/printing: SUCCESS
tests/programs/stdio: SUCCESS

 Testing iterative gcd with 65 and 195

65
Testing recursive gcd with 14 and 21
7

Testing iterative gcd with 65 and 195
65
Testing recursive gcd with 14 and 21
7

Generated output of gcd.tree:

Expected output of gcd.tree:

