PLTree

A tree programming language

Overview

Philosophy: Everything is a tree
All data structures are built on the tree
A primitive type is a tree with a single node at the root and no leaves
A string is a tree of characters
A function is a tree of statements
Goal: Make it easy to create and work with trees.

Language compiles to the C programming language.

Basics

e Types: Integers, Doubles, Characters
e Booleans are represented by Integers
e Pseudo-types: String, Any
Declaration:
e inta5;a=06;
e charfoo{a}[4217];
Control Flow:

if: 1 > 2 [return:foo;]
else [return:2; |

Unique Operators:
e Accessor: foo->0;
e Width: int w #foo;
Functions:

bar : any arg [
return:5;

]
Import: $filename$

File extension: .tree

Hello, World!

A simple “Hello, World!”
Code:

$stdio.tree$

string str “hello\n”;

print : str;

Output:

hello

_»

Equivalent to:

Code:

$stdio.tree$

string str['n''e"'I' 'I' '0' "\n';
print : str;

Output:

hello

Generated code

int main(int argc, char **argv) {

struct tree * str = void_treemake(
char_treemake('h', NULL),
char_treemake('e', NULL),
char_treemake('l', NULL),
char_treemake('l'y NULL),
char_treemake('o', NULL),
char_treemake("\n', NULL),
NULL); inc_refcount(str);;
print(

str);

dec_refcount(str);

return O;

—

The ‘print’ function

e Recursive
e Pre-Order Depth First Search

e Uses c function put t

print: any data [
int n #data;
intiO;
put_t:data;
i =0;
while:i<n |
print:data->i;
i=i+1,;

]

return:data;

Example

Code:

string b ["this" "is" "a" "test"];
string c ["a" "really" "cool" "test"];
string test [b c];

print : [test->0->0 test->0->1 test->1->0 test->1->1 test-

“this”

“test”

test

>1->3 test->1->3];

Output:

thisisareallytesttest

“really”

“COOI”

“test”

Example

Code:
int test_tree {0} [12 3
[4 5 6]
7
[8
[9 10]
11]
12];

pretty print:[O test_tree];

(¢}

Output:
0

1

2

3

7

12

11

C Backend

struct tree {
data_type type;
union data_u data;
int width;
int refcount;
struct List *children;
If
struct tree *treemake(
data_type type,
union data_u data,
struct tree *child,
va_list args);

struct tree*
inc_refcount(struct tree *t);

struct tree*
dec_refcount(struct tree *t);

Root
v
Children Child Node —» Child
Child Node — Child
Child Node —» Child

Compiler structure

tree File

Import
Preprocessor

v

Lexer

Semantic
Checker

AST

Parser

v

PLTree C
Library

v

SAST

CAST

_>

v

Translator

CAST
Pretty Printer

.c File

Import Preprocessor ooeie e

'

. _ ‘ Lexer/Parser
$filename$ replaced with contents o Imports found

filename

Resolve all imports

Prevent double imports by
maintaining list of already imported

files

Resolve
imports

All imports resolved
Output file

Test Suite

Managed by a bash script

Tests a .tree program’s output to
ensure proper language behavior

Initially tested AST of a program

\

Input file

'

Test Suite

expected
output

i

output
comparison

Testing

$./tester.sh -c tests/programs
tests/programs/fact: SUCCESS
tests/programs/fibo: SUCCESS
tests/programs/func_test: SUCCESS
tests/programs/gcd: SUCCESS
tests/programs/hello: SUCCESS
tests/programs/pretty _tree: SUCCESS
tests/programs/printing: SUCCESS
tests/programs/stdio: SUCCESS

Expected output of gcd.tree:

Testing iterative gcd with 65 and 195
65

Testing recursive gcd with 14 and 21
7

Generated output of gcd.tree:

Testing iterative gcd with 65 and 195
65

Testing recursive gcd with 14 and 21
7

