
PLTree 

A tree programming language 



Overview 
Philosophy: Everything is a tree 

All data structures are built on the tree 

A primitive type is a tree with a single node at the root and no leaves  

A string is a tree of characters 

A function is a tree of statements 

Goal: Make it easy to create and work with trees. 

Language compiles to the C programming language. 



Basics 
●  Types: Integers, Doubles, Characters 

●  Booleans are represented by Integers 

●  Pseudo-types: String, Any 

Declaration:  

●  int a 5; a = 6; 

●  char foo {‘a’} [ 42 17 ]; 

Control Flow:  

if: 1 > 2 [ return:foo; ]  
 else [ return:2; ] 

while: a < b [  
a = a + 1; 
print:foo; ] 

Unique Operators: 

●  Accessor: foo->0; 

●  Width: int w #foo; 

Functions: 

bar : any arg [ 
 return:5; 

] 
 
Import: $filename$ 

File extension: .tree 



Hello, World! 
A simple “Hello, World!” 

Code:  

$stdio.tree$ 

string str “hello\n”; 

print : str; 

Output:  

hello 

Equivalent to: 

Code:  

$stdio.tree$ 

string str ['h' 'e' 'l' 'l' 'o' '\n'];  

print : str; 

Output:  

hello 

 



Generated code 
int main(int argc, char **argv) { 
; 
; 
     struct tree * str = void_treemake( 
             char_treemake('h', NULL), 
             char_treemake('e', NULL), 
             char_treemake('l', NULL), 
             char_treemake('l', NULL), 
             char_treemake('o', NULL), 
             char_treemake('\n', NULL), 
             NULL); inc_refcount(str);; 
     print( 
             str); 

 dec_refcount(str); 
     return 0; 
} 
 

null 

‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\n’ 



The ‘print’ function 
print: any data [ 
     int n #data; 
     int i 0; 
 
     put_t:data; 
 
     i = 0; 
 
     while: i < n [ 
             print:data->i; 
             i = i + 1; 
     ]    
 
     return:data; 
] 

●  Recursive 

●  Pre-Order Depth First Search 

●  Uses c function put_t 



Example 
Code: 

string b ["this" "is" "a" "test"]; 
string c ["a" "really" "cool" "test"]; 
string test [b c]; 

 
print : [test->0->0 test->0->1 test->1->0 test->1->1 test-
>1->3 test->1->3]; 

 

Output: 

thisisareallytesttest 

 

b 

“this” 

“is” 

“a” 

“test” 

c 

“a” 

“really” 

“cool” 

“test” 

test 



Example 
Code: 

int test_tree {0} [1 2 3  
[4 5 6]  

7  
[8  

[9 10]  
11]  

12]; 
 
pretty_print:[0 test_tree]; 

Output: 
0 
        1 
        2 
        3 
 
                4 
                5 
                6 
        7 
 
                8 
 
                        9 
                        10 
                11 
        12 



C Backend 
struct tree { 
     data_type type; 
     union data_u data; 
     int width; 
     int refcount; 
     struct List *children; 
}; 
struct tree *treemake( 

data_type type,  
union data_u data,  
struct tree *child,  
va_list args); 

 
struct tree*  
inc_refcount(struct tree *t); 
 
struct tree*  
dec_refcount(struct tree *t); 
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Compiler structure 

Import 
Preprocessor 

Lexer 

Parser 

AST 

Semantic 
Checker 

SAST 

Translator 

CAST 
CAST  
Pretty Printer .c File .tree File 

PLTree C 
Library 



Import Preprocessor 
Resolve all imports 

$filename$ replaced with contents of 
filename 

Prevent double imports by 
maintaining list of already imported 
files 

Input file 

Lexer/Parser 

Resolve 
imports 

Output file 

Imports found 

All imports resolved 



Test Suite 
Managed by a bash script  

Tests a .tree program’s output to 
ensure proper language behavior 

Initially tested AST of a program 

 

Input file 

Test Suite 

output 
comparison 

expected 
output 



Testing 
$ ./tester.sh -c tests/programs 
tests/programs/fact: SUCCESS 
tests/programs/fibo: SUCCESS 
tests/programs/func_test: SUCCESS 
tests/programs/gcd: SUCCESS 
tests/programs/hello: SUCCESS 
tests/programs/pretty_tree: SUCCESS 
tests/programs/printing: SUCCESS 
tests/programs/stdio: SUCCESS 
 
 Testing iterative gcd with 65 and 195 

65 
Testing recursive gcd with 14 and 21 
7 

Testing iterative gcd with 65 and 195 
65 
Testing recursive gcd with 14 and 21 
7 

Generated output of gcd.tree: 

Expected output of gcd.tree: 


