Flow

A Programming Language for Kahn Process Networks

github.com/mgouzenko/flow-lang

Programming Languages and Translators
COMS W4115
Fall 2015

Adam Chelminski (apc2142)
Zachary Gleicher (zjg2012)
Mitchell Gouzenko (mag2272)
Hyonjee Joo (hj2339)

Table of Contents

Table of Contents
1Introduction
2 Lanqguage Tutorial
2.1num_gen
2.2 sum
2.3 main
3 Language Reference Manual
3.1 Lexical Conventions
3.1.1Identifiers
3.1.2 Key Words
3.1.3 Comments
3.1.4 Punctuation
3.1.5 Operators
3.1.6 Whitespace
3.2 Types
3.2.1 Primitive Types
3.2.1.1Integer Type
3.2.1.2 Double Type
3.2.1.3 Boolean Type
3.2.1.4 Char Type
3.2.1.5 Void Type
3.2.2 Non-Primitive Types
3.2.2.1 5tring Type
3.2.2.2 List Type
3.2.2.4 Process Type
3.2.2.5 Channel Type
3.3 Functions
3.4 Processes
3.5 Channels
3.5.1 Channel as Arguments
3.5.2 Writing to Channels
3.5.3 Poisoning Channels
3.5.2 Reading from Channels
3.6 Built-In Functions
3.7 Program Structure
3.7.1 Control Flow
3.7.1.1 Selection
3.7.1.2 While Loops
3.7.1.3 For Loops
3.7.1.4 Continue Statements
3.7.1.5 Break Statement
3.7.1.6 Return Statements

3.7.2 Scope

3.7.3 Creating a KPN
3.7.3.1 Processes as Nodes
3.7.3.2 Connecting Processes
3.7.3.3 Channel Binding

4 Project Plan
4.1The Plan

4.2 Testing
4.3 Style Guide
4.4 Software Development Environment
4.5 Timeline
4.6 Roles and Responsibilities
4.7 Project Log
5 Architectural Design
5.1 Diagram of Flow Compilation Process
5.2 Scanner
5.3 Parser
5.4 Semantic Analyzer
5.5 Compiler
5.6 The Runtime Environment
5.6.1 The pthread metadata list
5.6.2 Channels
5.6.2.1 Channel Reads and Writes - Enqueueing and Dequeueing
5.6.2.2 Channels in a Boolean Context
5.6.3 Lists
5.6.4 Dot Graph Feature
6 Test Plan
6.1 Test Suite
6.1.1testall.sh
6.1.2 Test Suite Output
6.2 Flow to C code Generation
6.2.1 sum.flow
6.2.2 sum.c (formatted with clang-format)
7 Lessons Learned
7.1 Adam
7.2 Zach
7.3 Mitchell

7.4 Hyonjee

8 Appendix
8.1 scanner.mll

8.2 ast.ml

8.3 parser.mly

8.4 sast.ml

8.5 semantic_analysis.ml
8.6 compile.ml

8.7 ¢ _runtime.c

8.8 flowc.ml

1 Introduction

Flow is a programming language based on the model of Kahn Process Networks (KPNs). KPNs are a
model of distributed computation characterized by parallel processes interconnected with one-way
FIFO communication channels. The rules governing KPNs cause them to execute in a deterministic
fashion, regardless of independent process scheduling. KPNs have applications in distributed
systems, signal processing, and statistical modeling where streams of data need to be transformed
and parallel processing is advantageous. The goal of Flow is to enable users to programmatically
generate KPNs.

2 Language Tutorial

Flow makes use of two fundamental abstractions: processes and channels. Processes are nodes in
the KPN. They perform work, and communicate with each other via channels. Channels are FIFO
structures that hold a series of tokens. Processes can pass tokens around by reading from and
writing to channels. A channel may have no more than one reading and writing process, respectively.
Processes may not check if a channel is empty, as this would ruin determinism. Channels are the one
and only means by which processes communicate.

Flow uses syntax that is generally similar to C, with added constructs for channels and processes.
The following example program shows how to declare, define, and connect processes to find the
running sum of a sequence of integers. In this section, we will examine the program piece-by-piece.

// numGen process generates stream of ints
proc num_gen(out int ochan){
list <int> nums = [1, 2, 3, 4, 5];
while(#nums > @) {
@nums -> ochan;
nums = ~nums;
}

poison ochan;

}

// sum process outputs running total for input stream
proc sum(in int chan) {
int sum = 0;
while(chan) {
sum = sum + @chan;
print_int(sum);
}
}

// main contains channel declarations & connects and launches processes
int main() {

channel<int> chan;

num_gen(chan);

sum(chan);

}

2.1 num_gen

num_gen is a process which generates and outputs a stream of integers. It is declared almost like a
c-style function, but it uses the proc keyword, indicating that it’s a process. It accepts a parameter
called “ochan”, which is declared as “out int ochan”. This signifies that ochan is a channel of
ints. Furthermore, ochan is an out channel, indicating that num_gen can only write tokens to it.

// numGen process generates stream of ints
proc num_gen(out int ochan){
list <int> nums = [1, 2, 3, 4, 5];
while(#nums > 0){
@nums -> ochan;
nums = ~nums;
}

poison ochan;

}

Looking at the process body, we see that there is an list of integers called nums, initialized to the
numbers 1 through 5. The while loop tests if #nums > 0. The unary operator # returns the length of
the list.

Inside the body of the while loop, the contents of nums are written to ochan in the statement @nums
-> ochan. In this statement, @nums gets the head of the list (which would be the integer 1 on the
first pass). The -> operator sends the head of the list to ochan. Finally, the statement nums =
~nums sets nums equal to its tail, effectively iterating through the list.

At the end of the process, we send a poison token to the output channel with the poi son keyword.
This is to signal to the process connected to ochan’ s read end that num gen will no longer write to
ochan. After poisoning ochan, num_gen terminates. Note that if a process terminates without
poisoning channels that it writes to, those channels will be poisoned automatically.

2.2 sum

// sum process outputs running total for input stream
proc sum(in int chan) {
int sum = 9;
while(chan) {
sum = sum + @chan;
print_int(sum);
}
}

The sum process calculates and prints to stdout a running sum of the integers it receives. Like
num_gen, sum takes an int channel argument. This argument - called chan - is declared with the
keyword in, meaning that that sum can only read from it.

Before reading from a channel, we need to check whether there are tokens to read. Channel used as
booleans within conditional clauses (i.e. while (chan)) block until there is a token to be read from
the channel. When there is a token to be read, the channel reference returns true. If the channel is
empty and has been poisoned (indicating that no additional tokens will be sent to the channel), the
channel reference returns false.

To retrieve the next token from an input channel, we use the @ operator. In the sum process, we add

the integer retrieved from the channel to a sum total and print out the current sum after each integer
observed. print int () is a built-in function in Flow.

2.3 main

// main contains channel declarations & connects and launches processes
int main() {

channel<int> chan;

num_gen(chan);

sum(chan);

}

The main method is where we declare the integer channel used to connect the num gen and sum
processes. Invoking the num gen and sum processes in the main method launches them on separate
threads. The main method will end when all processes terminate.

2.3 Running the program

To run the program, use the script run. sh with the name of the program file as the command line argument.
If you would like to generate the c code of a flow program, run make and then run . / £1owc with the name of
the program file as the command line argument.

3 Language Reference Manual

3.1 Lexical Conventions

3.1.1 Identifiers

An identifier is a name, consisting of ASCI| letters, digits, and '_' characters. The first character of the identifier
must be a letter. Identifiers are case-sensitive. Below is the parsing rule for an identifier:

IDENTIFIER :=
[!al_lzl ‘A'—'Z']['a'—'z‘ TAT—TgzY orQr_vQgr 0 l]-k

3.1.2 Key Words

Keywords are reserved; they have syntactic and semantic purposes and thus cannot be used as identifiers.
The keywords in Flow are:

int
double
char
bool
string
void
list
proc
channel
false

true

if

else

for
while
continue
break
return
poison
in

out

3.1.3 Comments

The characters ‘//' introduces a new comment. The rest of the line after ' / /' will be part of a comment.

3.1.4 Punctuation

The punctuators of our language are listed below along with examples.

Punctuator | Use Example
, list separator sample list = [0, 1, 2];
[] list delimiter sample list = [1];

conditional delimiter, function call, expression grouping

while (bool)

statement block

if (cond) { statements }

: statement end x = 0;
\ char literal delimiter c = ta’;
" string literal delimiter x = "hello";

3.1.5 Operators

Operator

Use

Associativity

@

Retrieve token from channel or value at head of list

Non-associative

Multiplication

Left

/ Division Left

% Modulo Left

+ Addition Left

- Subtraction Left

= Assignment Right

== Equal to Left

= Not equal to Left

< Less than Left

> Greater Than Left

<= Less than or equal to Left

>= Greater than or equal to Left

§&& short circuit logical AND Left

| short circuit logical OR Left

! negation Non-associative

-> Send item to channel Left
Concatenation to front of list Right

Get list length Non-associative

Return list tail

Non-associative

The operators are listed from greatest to least precedence:
. @

R W 0 J o U dbdx W DN

3.1.6 Whitespace

White spaces include blanks, tabs, and newline characters. Flow is not whitespace sensitive. Blocks of code
are delimited by curly braces, not indentation.

3.2 Types

3.2.1 Primitive Types

3.2.1.1 Integer Type

An integer is a signed 4 byte sequence of digits. An integer literal is a sequence of digits preceded by an
optional negative sign. A single zero cannot be preceded by a negative sign.

int x = 0;
inty = -1;
int z = 100;

3.2.1.2 Double Type

A double type is a signed 8 byte double-precision floating point data type consisting. A double literal contains
an optionally signed integer part, a decimal point and a fractional part. Either the integer part or the fractional
part can be missing, but not both.

double a = 0.1;
double b = -1.1;
double i = 1.;
double j = .2;

3.2.1.3 Boolean Type

A boolean literal is either the true keyword or the false keyword, and occupies 1 byte. A boolean is its own
type and cannot be compared to a non-boolean variable. Therefore, evaluating false == 0, would result in an
error.

bool x
bool y

true;
false;

3.2.1.4 Char Type

A char literal is a single character surrounded by single quotes.

char x = 'a’';

3.2.1.5 Void Type

The void type can be used to declare a function that does not return anything. It has no other use in the Flow
language.

3.2.2 Non-Primitive Types

In Flow there are 5 non-primitive types: strings, lists, channels, and processes.

3.2.2.1String Type

A string is a sequence of characters. A string literal is placed between double quotes. String literals are
sequences of ASCII characters, enclosed by double quotes. Strings are immutable. Declared strings are
automatically initialized to the empty string "";

string name = "Steven";

Strings support the following built-in print function:
e print string(string a)
o Prints the given string, no newline appended.

3.2.2.2 List Type

A list is immutable and contains elements of the same type. Supported list types include: integers, characters,
doubles, and directionless channels.

list <char> empty_list [1;

list <int> test_list = [1, 2, 3];
list <double> new_list = old_double_ list;

List concatenation can be done with the : : operator. The binary operator takes a list element as a left operand
and a list as a right operand and returns the new list head. List concatenation only allows for elements to be
added to the front of the list.

list <char> test_list = ['h', 'a', 't'];
test list = 'c'::test_list; // test_list is now ['c', 'h', 'a', 't']

list <int> growing_list;

growing list = 0::growing_list;

growing list 1::growing list;

growing list = 2::growing_list; // growing_list is now [2, 1, O]

The unary operators for lists are #, @, and . # returns the length of the list. @ returns the element at the head
of the list without modifying the list. ~ returns the tail of the list.

int length = #test_list; // length = 4
char first_char = @test_list; // first_char = 'c'
test_list = ~test_list; // test_list is now ['h', 'a', 't']

3.2.2.4 Process Type

In Flow, a process is an independent unit that performs work on tokens from zero or more channels. The
process type allows the programmer to define the work done at a node in the Kahn Process network.

A process may act as a sender for zero or more channels, as well as a receiver for zero or more channels. The
workflow for deploying a process consists of first defining the process and then invoking it with the necessary

arguments. In a compiled Flow program, each process runs on a separate thread.

Process declarations are further discussed in section 3.4.

3.2.2.5 Channel Type

Channels are FIFO structures that connect processes to other processes. At any time, a channel may contain
a buffer of zero or more tokens - elements that have been been sent to that channel but not removed from it.
The tokens that a channel holds must be of a uniform type that is determined by its declaration.

Channel declarations are of the following form:
channel<channel type> IDENTIFIER;

// int_channel is a channel for integer tokens
channel<int> int_channel;

A channel must be bound to exactly one sending process and one receiving process. Only the bound sending
process may send tokens to the channel, and only the bound receiving process may receive tokens from the
channel. The receiving process is guaranteed to receive tokens in the order in which they were sent.

Channels may not be queried for size, nor can the next item in a channel be read without removing it from the
channel. Once a channel is bound, it cannot be unbound.

Section 3.5 discusses specifics on how to use channels.

3.3 Functions

Functions can only be declared at the top level. Function declarations are as follows:
return type IDENTIFIER(arg declaration list) { stmt list }

Function arguments may be primitive flow types, strings, lists, and channels. The argument declaration list is
an optional list of comma separated expressions of the form: arg type arg name for all argument types
except for channels. Refer to section 3.5.1 for details on passing channels as arguments.

The return type of a function must be a primitive type, channel, or list. The keyword return can be used in the
function’s body to return control of the program to the calling function or process. The type of the expression

following the return keyword must match the return type in the function’s declaration.

Function calls can be made with the the () punctuator and list of appropriate arguments.

// Function declaration and definition
int sum(int x, int y) {
return x + y;

}

int i = sum(1, 2); # i == 3

3.4 Processes

Processes can be declared with a list of arguments but no return type. Like functions, processes may only be
declared at the top level. A process is declared with the proc keyword as follows:
proc IDENTIFIER(arg declaration list) { stmt list }

10

Processes do not have a return type, but the return statement can be invoked in the process body to terminate
the process. The return statement must not have a return value.

proc process_that_does_nothing(){
return; // this will terminate the process
return 0; // this will throw an error at compile time

As an example, here is the definition of a process that interleaves two input streams and produces one output
stream. This example uses the @ and -> operators and the poison keyword, which are discussed in Section
3.5.

proc interleaver(in int inchanl, in int inchan2, out int ochan){
while(inchanl || inchan2) {
if(inchanl) {@inchanl -> ochan;}
if(inchan2) {@inchan2 -> ochan;}

}

poison ochan;

Processes are invoked with the the () punctuator and list of appropriate arguments. As soon as a process is
invoked, it begins to run on a separate thread. Declaring the process defines the work it does, while invoking a
process turns it into an actual node in the Kahn Process Network. Processes may be invoked from anywhere
in the code, including from within the bodies of other processes.

int main() {
channel<int> chanil;
channel<int> chan2;
channel<int> chan3;

// invocation of the interleaver process
interleaver(chanl, chan2, chan3);

3.5 Channels

3.5.1 Channel as Arguments

Channels may be passed as arguments to both processes and functions. Channels without a direction (eg.
channel<int> chanl) can be passed into a function or process, but directionless channels cannot be
read from or written to. Alternatively, channels with a direction can be passed into a process or function,
following this pattern:

DIRECTION TYPE IDENTIFIER

where DIRECTION is either in or out, TYPE is the type of token the channel holds, and IDENTIFIER is
the channel’s identifier. If DIRECTION is in, the channel may only be used to read tokens. Conversely, if

11

DIRECTION is out, the channel may only be used to send tokens. To reiterate: this syntax is valid only in the
argument declaration list for functions and processes.

Inour interleaver example above (Section 3.4), the process takes three channels as arguments. The first
two, inchanl and inchan?2, are input channels declared with the in direction. The interleaver process
can only read items from these channels, and never write to them. The last argument, ochan, is an output
channel declared with the out direction. The interleaver can only write to this channel, and never read
items from it.

3.5.2 Writing to Channels

Reading from and writing to channels is done with the @ and —> operators.

The -> operator sends a token to a channel. This binary operator expects an expression as the left operand
and an out channel identifier as the right operand. The expression is evaluated and the result (the token) is
sent to the channel. The expression must evaluate to a value whose type matches the type of the channel
being written to.

3.5.3 Poisoning Channels

Some processes may not terminate and the channels that the process writes to may be left open indefinitely
until the program is forcefully terminated. However, in the case when a process terminates, it should send a

poison token to the out channels bound to it. A poison token can be thought of as an EOF (end-of-file) for
channels. This effectively closes the write end of the channels and indicates to processes that are waiting to
read from these channels that no more tokens will be sent. Flow will automatically poison all output channels
connected to a terminated process if the programmer does not explicitly do so.

3.5.2 Reading from Channels

The @ operator is a unary operator on channel identifiers which returns the next token in the channel.
Specifically, @ can only operate on channels with direction in. If the channel is empty an error will be thrown,
so it is the programmer’s responsibility to check the status of the channel in a conditional statement before
reading from it.

Checking the status of a channel can be done in a conditional statement. Consider the statement:

while(chan) { // Chan is an arbitrary channel

}

When channels are evaluated in conditional statements like the one above, there are three scenarios.
1. The channel is poisoned and empty: the conditional will evaluate to false, because the channel will
never possess another token.
2. The channel is nonempty: the conditional will evaluate to true, because there are tokens to be read
from the channel.
3. The channel is empty (but not poisoned): the evaluation of the conditional will block until either the
channel is poisoned, or the channel is written to.

12

Let us revisit the interleaver process, introduced in Section 3.4:

proc interleaver(in int inchanl, in int inchan2, out int ochan){
while(inchanl || inchan2) {
if(inchanl) {@inchanl -> ochan;}
if(inchan2) {@inchan2 -> ochan;}

}
poison ochan;
}
The expression inchanl || inchan2 in the while loop condition blocks if either of the input channels is

empty but not poisoned. If both input channels are poisoned and empty, then the expression will evaluate to
false and the while loop will terminate. But, if one channel is poisoned and empty, the statement will evaluate
to false only if the other channel is poisoned and empty as well.

Once inside the while loop, we need to check the status of the input channels to determine which channel(s)
can be read from. This is done by encapsulating the channel reads inside if statements. If ichanl can be read
from, the expression @inchanl -> ochan fetches a token from inchanl, and then sends it to ochan. If
inchan?2 can be read from, the expression @inchan2 -> ochan fetches atoken from inchan2, and then
sends it to ochan. When the interleaver process finishes interleaving its inputs, it poisons the output
channel with poison ochan. This is good programming practice in Flow. If the programmer does not
explicitly poison the output channels of a process before termination, Flow will automatically clean up and
poison such channels.

3.6 Built-In Functions

The built-in functions in Flow are described below:

print string(string x): prints a string x with no newline appended
print int (int x): prints an integer x with no newline appended
print char (char x): prints a character x with no newline appended
print double (double x): prints a double x with no newline appended
println () : prints a newline character

rand () : generates a random double between 0 and 1 inclusive

3.7 Program Structure

At the top level, a Flow program consists of global variable declarations, function declarations, and process
declarations.

program :=
decls EOF

decls :=
decls declaration stmt
| decls function declaration
| decls process declaration

13

The entry point into a flow program is the main function. The body of this function may call a series of
procedures, perform computations, and, most importantly, define channels and invoke processes with those
channels. Invoking processes with channels establishes concrete links between processes, creating the KPN.

3.7.1 Control Flow

3.7.1.1 Selection

We use if-else statements to selectively execute blocks of code. An expression within an i f clause must
evaluate to a boolean. An i f statement does not need to be accompanied by an el se statement.

if (conditional_expression) {
print_string("This will print if the condition is true.");
}
// optional else clause
else {
print_string("This will print if the condition is not true");

}

3.7.1.2 While Loops

The while loop contains a condition that is a boolean expression and executes the list of statements in the
body of the loop if the expression evaluates to true. With each iteration, the condition is re-evaluated. If the
condition evaluates to false, the while statement terminates and the loop body is not executed.

3.7.1.3 For Loops

The for loop performs iterations of a block of code and is of the following form:

for (expr opt; expr opt; expr opt) { stmt block }
expr opt is an optional expression. The first expr opt is executed prior to entering and executing the
statement block. The second expr opt is the condition that needs to be met for the statement block to
execute. The third and final expr opt is executed at the end of every iteration.

Variables used in the optional expressions must be declared before the for loop.

for (55) {
print_string("This loop will not terminate.");

}

// 1 must be declared outside of the for loop
// loop prints: 123
int i;
for (1 =1; i< 4; 1i=1+1) {
print_int(i);

}

3.7.1.4 Continue Statements

The keyword continue can be added inawhile or for loop to prematurely finish an iteration of the loop.
The loop will continue on with the next iteration if the appropriate conditions are met.

14

3.7.1.5 Break Statement

The keyword break can be added in a while or for loop to prematurely terminate and exit the loop.

3.7.1.6 Return Statements

The keyword return can be used in functions and processes to return control of the program to the calling
function or process. If the function has a return type, an expression of that type must come after the return
keyword. Return statements in processes may not return a value. They are simply used to terminate the
process.

3.7.2 Scope

Scope in Flow follows the same semantics as C. There exist global scope and block scope. Globally scoped
variables can be accessed anywhere in a program but never reassigned to. Block scoped variables exists in
blocks (compound statements) such that variables declared within a block are accessible within the block and
any inner blocks. If a variable from an inner block declares the same name as a variable in an outer block, the
visibility of the outer variable within that block ends at the point of declaration of the inner variable.

3.7.3 Creating a KPN

3.7.3.1 Processes as Nodes

A process definition is a blueprint for a node in the Kahn Process Network. A process invocation creates and
starts a single node in the KPN. A process may be invoked an arbitrary number of times, producing a
corresponding number of nodes. Process invocations can occur in any block of code.

3.7.3.2 Connecting Processes

Connecting a process amounts to passing it the appropriate channel arguments in its invocation. The action of
connecting two processes with a channel results in two connected nodes in the KPN.

Suppose process foo takes a single out int channel argument and process bar takes a single in int
channel argument. Then, these two processes can be connected with interleaver to create the KPN
pictured on the right:

Foo
channel<int> a; \\1
channel<int> b; IJ\"*
channel<int> c; \x

. ‘\ c
foo(a); 1 Interleaver Bar
foo(b); J,f
interleaver(a, b, c); a A
bar(c); ,r"x
/
Foo

15

3.7.3.3 Channel Binding

As per the definition of Kahn Process Networks, channels must be connected to exactly one receiving process
and one sending process. This restriction is enforced at runtime. At runtime, the first process that writes to a
channel “binds” to that channel for writing. If a different process ever tries to write to that channel, a runtime
error occurs, and the program exits. Equivalent binding rules are enforced for reading.

4 Project Plan

41The Plan

At the beginning of the semester, our team set up regular meeting times twice a week -- Sundays were our
primary work days and Wednesdays were our meetings with Professor Edwards where we discussed the
design challenges of our language. The idea for our programming language was conceived in the first few
weeks of the semester. Our original goal was to create a language that would be helpful in solving problems
we had encountered -- specifically problems of processing streams of data and logging. This led to our
discovery of Kahn Process Networks from which the Flow programming language was conceived.

We worked steadily throughout the semester. The “Hello World” deadline and the regular meetings with
Professor Edwards helped keep us on track. We planned to have deliverables every week and were able to
make consistent progress. We first created a test framework and built a pipeline from the scanner, to the
parser, to the semantic analyzer, and finally to the compiler. Then, we were able to add features and expand
the capabilities of our language to support full Kahn Process Networks.

4.2 Testing

We set up a testing framework based off the MicroC example test suite. The test suite had to be updated so
that it not only supported tests that should succeed, but also supported tests that should intentionally fail. We
initially started to write tests for the parser but realized that it would be more productive to write end to end
tests. Upon making this realization, we strove to get the foundation of our compiler working as quickly as
possible. Working backwards by writing broken tests that should be working became a very effective workflow.
Originally we used github issues to monitor what needed to be done, but many of our issues were overly
broad, such as “clean code,” which had no foreseeable future of being completed. Group members would write
tests trying to break Flow, where other group members would fix the broken tests. Unlike github issues, which
could be ignored, these broken tests had to be fixed.

4.3 Style Guide

We used the following guidelines when developing our code:
e Each line of code should remain under 110 characters

Use block comments to annotate code

Write utility functions for frequently reused code

Use underscored names rather than camel case

Use consistent indentation

16

We made sure our code style was consistent by running our Ocaml code through Camip4 and our C runtime
environment code through clang-format.

4.4 Software Development Environment

The following are the specifications of our development environment:

OCaml 4.02.3 - for development of the scanner, parser, semantic analyzer, compiler
clang-700.1.81 - for compiling our C runtime code

graphviz 2.38.0 - we specifically used the dot tool to generate our Flow graphs
Github - for version control

We developed and tested our code on Mac OS X.

4.5 Timeline
The timeline below gives a general outline for the development of Flow.
Date Iltem Complete
9/30 Project proposal
10/26 Parser written
111 AST with conflict-free grammar
11/3 Pretty printer
11/3 Test framework set up
11/15 Interleaver (Hello World) working. Compiler without semantic analysis built
11/20 Semantic analysis integrated with compiler
12/16 Bitonic sort demo program complete

4.6 Roles and Responsibilities

We each took on a mix of roles and responsibilities for this project:

e Zach - Tester

e Hyonjee - Compiler backend, C runtime

e Adam - Language guru, bitonic sort master

e Mitchell - Compiler backend, C runtime, semantic analysis, dot translation
4.7 Project Log

The project log below shows 220+ commits beginning on September 13th.

commit 7a45fc134dfe6b7989590f2b6fff2e8c4bada2a2
Author: Mitchell Gouzenko <mgouzenko@gmail.com>

Date: Thu Dec 17 20:45:27 2015 -0500
fixed formatting

commit 2b47167372alf64bbbec6bb4ab19883b4bfdc8be
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Dec 17 16:30:09 2015 -0500

Added license

commit 97c3a41b793b7dec89605ed106F9687bbb04c19c
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Dec 17 16:09:19 2015 -0500

added dot printing, cleaned up auto-poisoning

commit 8dd7e7effdbofa3be5c71b98b18e8cbefef23d58
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 22:15:01 2015 -0500
refactored boilerplate.ml to c_runtime.c. boilerplate.ml is now generated by make.

commit eeel6b7c4a0e6e332598132338518f8a7769e3e4
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 18:27:20 2015 -0500
channels are automatically poisoned when their writing proc returns

commit 14e2031406e0f341343954df9828b18febc8acb5
Merge: 198all5 33a09fb
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 17:27:57 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit 198a11568272e5b79077613128a0529819d31461
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 17:27:53 2015 -0500
added names for runtime enforcement of single channel reading/writing

commit 33a0@9fbb9a382f7263664dca22bc8e5cb82c8e72
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 17:09:29 2015 -0500

fix some broken tests

commit 3fac3d7d3ce602394b215b5cb397161385847d26
Merge: 33fle70 ©a818c4
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 16 17:05:03 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit 33f1e703240763ff4a7d33323a6€299d005c6b7b
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 16 17:04:37 2015 -0500
Working bitonic sort for arbitrary input size 2~n for some n!!!

commit ©a818c47c708d44b40082c2c1124538c83fe2ec9
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 17:00:13 2015 -0500
fixed broken tests, added enforcement of single-channel binding

commit 2bb@8a940f25f35386296923ebe8eeb348786300
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 16:16:59 2015 -0500

fixed broken chan test

commit 379b279738eafc29da88e45ae44c8bald237ebob
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 15:51:39 2015 -0500

fix bug so that that test fails

commit b41bdc13fa990951528d9303b01f4bd1a9bob336
Author: Zachary Gleicher <zachgleicher@gmail.com>

18

Date: Wed Dec 16 15:48:32 2015 -0500
add tests for single input and ouput for channnel

commit 174bcbad@2a2ba98dal9025f5b8a8043cflcbfed
Merge: fe@2e@c 769871
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 13:48:11 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit fe@2e0c9186aefa7656b49ead7edc4f4ddd944c5
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 13:47:57 2015 -0500

Added capability to return within process

commit £76987116c34f2e321c4d2b37913054c601f27ee
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 13:27:37 2015 -0500
add test to check that channels of channels and lists are not supported. test that in chan cannot be
poisoned

commit 33e0606c584d86f4e4c7158d233ccbdb3alb7301
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 12:58:44 2015 -0500

add test for return in proc

commit 740626c8f364d702c6125579ec2c260c1992620
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 12:57:50 2015 -0500

cleaned up parser

commit f16a049fbcbf440dc52e2575fd7d4dd21a3cb9de
Merge: 5496a51 089404a
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 12:54:36 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit 5496a51e434b7d83c5248c82489e5a236a7e8688
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 12:54:30 2015 -0500
directionless channels as args are compiled properly

commit 089404abf2d4a96d62378e9d3afcfb949a6e89ad
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 12:51:01 2015 -0500
add test for passing directionless channel into function

commit dO5b@92ff49ed4e7171el4c9f161¥80fb7749079¢e6

Author: Mitchell Gouzenko <mgouzenko@gmail.com>

Date: Wed Dec 16 12:50:18 2015 -0500
directionless channels can be arguments

commit 8dadba2c1590f38252f1de2b15f1207a3ce02a04
Merge: a525ce9 369f3bc
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 12:46:34 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit a525ce9398c3e73941894ee2622c807e7468bffa
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 12:46:29 2015 -0500

fixed return semantics

commit 369f3bcl1fa62299690de0657e844db69620b661b
Merge: 270b532 9bc3639
Author: hjoo <hj2339@columbia.edu>
Date: Wed Dec 16 12:25:19 2015 -0500
merging scope tests

19

commit 270b532f209821a36f5b349308362250b8c6ca7c
Author: hjoo <hj2339@columbia.edu>
Date: Wed Dec 16 12:24:57 2015 -0500
removed len built-in function, we're using # operator for list length

commit 9bc363919748997e0448741413d2e6af810cav85
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 12:22:27 2015 -0500

add tests for scope

commit 88db94b977bdf3cb52994d9da430b8926603c329
Merge: e4feef5 dd56125
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 10:45:54 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit e4feef531d24e40f3ecl175468f765a5b33cabaff
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 10:45:09 2015 -0500

fixed failing channel return test

commit dd561251442ef91667320cd1c3c240a6909d71b4
Author: hjoo <hj2339@columbia.edu>
Date: Wed Dec 16 10:28:17 2015 -0500

removed structs from flow

commit 72e18ccb769a300a36a715db9dofa0dc4323b7b54
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 10:18:58 2015 -0500

remove bad tests

commit b31c7549e359c39c38287783835e89d11eaa@9d5
Merge: 2669933 cd4c95a
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 16 ©2:19:42 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit 2669933562e1b607271191c2092790754d28feb5
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 16 ©2:19:23 2015 -0500
Add working bitonic sort (no automatic mux/demux, occasional hardware fault)

commit cd4c95a766407c79c3b7edbf42d54270d3a3e724
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 16 ©1:04:59 2015 -0500

strange multithreading happening with test

commit 1c288504b5c49f6bf84be42d23939ee539d1ca24
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 16 ©00:16:53 2015 -0500

Added more tests

commit 7f1d56adb3675fc5ee9f656b8ca79b7499331eed
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Dec 15 22:40:59 2015 -0500

fixed bug that prevented no arg functions

commit 19592caa8c557865¥3889c027942a5b8a245a952
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Dec 15 22:24:04 2015 -0500
we can now return lists. Also fixed reinitialization of lists

commit 55601b6892335118b7605a987acf026bb187e164
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Dec 15 21:06:58 2015 -0500

fixed scoping problems and global variables

20

commit ffbOce29878f569d2c7bel76a9c704e4e557187a
Author: hjoo <hj2339@columbia.edu>
Date: Tue Dec 15 19:22:13 2015 -0500
removed bit shifting tokens and change concat to right associative

commit 1cfdbfc3a4a57ff738e10bb778362e34f9ef7adc
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 15 14:56:37 2015 -0500
add failing tests for functions that returns lists and channels

commit fablfc2d59d3501208d4790aa0cd40a7fcf34136
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 15 12:36:27 2015 -0500

add tests for scope

commit e7c9059f07ea241d6bBab702126a17a92b184a47
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 15 12:13:44 2015 -0500

failed test for initializing a list

commit 3c89a6b584bf2bc94e0a70470cc3bd7392026189
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 15 12:07:08 2015 -0500
add test for accessing head and tail of empty list. Add test for tail of one element list

commit d563029dc6c30f58866d2d785252c8629e92c23f
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sun Dec 13 19:53:59 2015 -0500

took away assertions

commit 07969b6b3014030147b3bf50blac498bla209a3e
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Dec 13 19:33:48 2015 -0500

add initial bitonic

commit 87c7487fefed7bf86429f15e188a35cfldabe2f6
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sun Dec 13 19:10:43 2015 -0500
mission abort on reference counting. It currently causes a deadlock

commit 25a8944682c493e102b4f3fcd729d83816d7beasd
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sun Dec 13 18:53:34 2015 -0500
fixed concurrency problems with lists. added tests for channel lists.

commit 7e510f0070d8f483cdade23e5467b6cl32eald24
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Sun Dec 13 16:31:32 2015 -0500
add test to ensure failure if tyring to read from poisioned channel

commit cf283757712d43b3aebcc57d87b9156c7felllf2
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Sun Dec 13 16:29:17 2015 -0500

refactor test suite so that it does not check outupt of programs that should fail. Add check to see if

fails at runtime. delete fail.out files

commit 542c2574f06365cce5706Fc9a98678caffo43b64
Author: hjoo <hj2339@columbia.edu>
Date: Sun Dec 13 16:19:55 2015 -0500
added running sum test. using this example as hello world for langauge tutorial.

commit 9877499bc95elb104b6c116f7e8cb5daf8f7f734
Author: hjoo <hj2339@columbia.edu>
Date: Sun Dec 13 15:33:11 2015 -0500

flush stdout after each call to print function

21

commit 58fdd25015e5f36edcecbl46bb76dcfaebc3130d
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Dec 12 14:39:40 2015 -0500

got lists of int channels working

commit 8ed8f6e041800a3955fe7da55e807dd222b65083
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Dec 12 02:51:44 2015 -0500
cleaned up thread list. It is now a simple list that grows from the tail

commit a5e15498a65058306e336decbe@3ff97c732be77
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Dec 12 01:52:06 2015 -0500

removed structs from parsing. All tests pass

commit 03al19fa5eb098a1364f6f2d91a3451f9332b0ofas
Merge: b90el79 9e3ecbo
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Dec 12 01:45:05 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit b90e179940ec945218a10a65180247e379124ccd
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Dec 12 01:44:43 2015 -0500

debugged absurd race condition

commit 9e3ecb@f@45fel6750ecal3751114b1357c33811e
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Fri Dec 11 18:53:29 2015 -0500
add tests for bad declration, char lists, double lists, and string declaration

commit d55319ec6c12f2f33deb380bflefel872842a5dd
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Fri Dec 11 18:10:58 2015 -0500

add test to init with empty list

commit S5cdf7d4cclfeaebb4c567e96042db6f9adb25a7c
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Fri Dec 11 18:05:37 2015 -0500

fixed order of function args - all tests pass

commit 25839cda55b28c9caf5f9ae828b513d14ab75f84

Author: Mitchell Gouzenko <mgouzenko@gmail.com>

Date: Fri Dec 11 16:27:11 2015 -0500
proc-in-proc works

commit 7405cf440f246blbefefa96270613cle3cc33b06
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Fri Dec 11 ©0:46:00 2015 -0500

fixed list assignment to make it stop segfaulting

commit a744023aea99f3c70cd1246431a05b2a021dc2c7
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Thu Dec 10 00:05:50 2015 -0500
add a bunch of tests for lists. Fix bug with list initialization

commit 28ae457c27d3d72d666b0c9c31bdb8cc82b19796
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 9 13:32:25 2015 -0500
add test to check that channel can be passed into function. Currently failing

commit 263b5981239ca3bbe52al1636be5eac2629d6d29f
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 9 13:27:23 2015 -0500
add test to call process in a process. Currently failing

commit a27a5905aa6ce7399843ef3b17b13906d7aee938

22

Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Dec 3 02:05:39 2015 -0500
added reference counting for reassignment of lists

commit 4049db54e2aea0910c802f3e8d5d0a38adcd35d4
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 9 11:05:09 2015 -0500
bug fix in boilerplate so that make enqueue returns

commit 3485e4a18dfbd7d073298c5e54e865380d364cb7
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 9 10:51:17 2015 -0500
write test to check that list can be passed to function

commit 9885e15572a870129de952e3f2cfdd015cb46276
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 9 10:47:23 2015 -0500
add test to check that list declared in correct order

commit 0626ed19cab3977213cl1536edalaccb6ecd4@bf6obb
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:57:21 2015 -0500
modify test script so deletes intermediate error message files

commit 876da5ce36led14dof18bd5897f6e09ae8251dfa
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:54:33 2015 -0500

add annotations for failures

commit 433363e9fdfabace87dec801bb93aa4lbf38df53
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:53:36 2015 -0500
add test to ensure that you cannot writ wrong type to channel

commit 1f@8fedcc6c35887072b21f0d54d42f795edf5795
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:44:32 2015 -0500
write test to check that you cannot write to an in chan

commit cfl5adcecfd6cac6fa680d3cd40073badbc72b50
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:40:12 2015 -0500
add test to ensure that you cannot read from out chan

commit d19dc841639236b51c5ea2e058227047714395ec
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:34:11 2015 -0500

add a test for recurion

commit 8bf@6409fealdf@3baf7bd18ce8622cc81a71652
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 18:18:47 2015 -0500

add test for undeclared function

commit 4b19d7053add80850fc9f64327deb262595a4302
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Dec 7 12:10:24 2015 -0500

fix sum test

commit 503422c17dOb5b6b8135eedf9f5781609571c6ab
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Sun Dec 6 19:01:33 2015 -0500

add sum test

commit 313eeef2b88f5f75e6ece817d98dde3033ea9b47
Merge: 44deddc 226b189
Author: hjoo <hj2339@columbia.edu>

23

Date: Sun Dec 6 18:50:40 2015 -0500
committing new pulled files

commit 44de4dc48fd83734e5249elfdfdd21fee9ad407ac
Author: hjoo <hj2339@columbia.edu>
Date: Sun Dec 6 18:50:02 2015 -0500
basic animal farm demo program worksgit status! new issues filed for bugs discovered - i.e. global
variable decleration

commit 226b189815fba5470787dd20d64e7f6c36414d53
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Sun Dec 6 17:56:40 2015 -0500

add random number gen

commit 323af1529e36c8cfb93985e9cf7e0906bb4as184
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 2 15:19:37 2015 -0500

Fix write_channel precedence

commit 76f1a80a7672ca9882742646a22073d215b418c5
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 2 15:08:14 2015 -0500

Add fibonacci test

commit 31ce8ee2c30d2308ef56e14090805cb3b9cc6bOa
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Dec 2 14:57:51 2015 -0500

list initialization passes

commit cd8d7351950697eca3c91f8b9d77865ad0849180
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 2 14:11:59 2015 -0500
Add fibonacci test and lower precedence of channel write operator

commit 63ee7fcc5f0004d674519f70dd4aeb6ba2e1788b9
Merge: d374c19 a649d86
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 2 12:12:23 2015 -0500
Merge branch 'master' of https://github.com/mgouzenko/flow-lang

commit d374c194b5b600e6349cb2ef243c4804c319929F
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Dec 2 12:11:37 2015 -0500

Add a string comparison TODOw

commit a649d86leccec8e2463eatc726e80902d27452fc
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Dec 2 00:03:39 2015 -0500
add ability to test for semantic analyis error messages

commit 99a2fa9bc545fe9adfcef240c40el53af95dcbae
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Tue Dec 1 23:30:01 2015 -0500
Add a list length operator (#) and change comments to begin with //

commit a7099998deb4004f63e6dfeba5bdbadf06975e25
Merge: 9819df9 48cfe3b
Author: zgleicher <zjg2102@columbia.edu>
Date: Tue Dec 1 22:37:38 2015 -0500
Merge pull request #27 from mgouzenko/print

Revert back to separate print types.

commit 48cfe3bc4a@c9b942d48eedf39bf2a8aeddd2a2l
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 1 22:35:23 2015 -0500

remove len function

24

commit 730f50ae70c667a83a16e88f11b9af75cefa®ad9
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 1 22:34:51 2015 -0500

remove special check for built in types

commit c4f544c0cb9b8df355905b8541725468d6681992
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 1 22:28:29 2015 -0500

Fix print so that it does not use variadics

commit 05157160a842dbee58e2ba0c4281310044cd9700

Author: Zachary Gleicher <zachgleicher@gmail.com>

Date: Tue Dec 1 22:10:41 2015 -0500
Revert "add print and println function so that any type can be called”
This reverts commit 392d4b3a6a02279eefd58ad4866ce68f8eddef8d.

commit 9bblalfe89f6ddf683f5e72651544c5800963082
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Dec 1 22:10:06 2015 -0500
Revert "remove old print functions”
This reverts commit 9819df9ccfbbc95a2b00c3787365c0df71553916.

commit 9819df9ccfbbc95a2b00c3787365c0df71553916
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Nov 30 19:13:00 2015 -0500

remove old print functions

commit 392d4b3a6a02279eefd58ad4866ce68f8eddef8d
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Nov 30 19:00:46 2015 -0500
add print and println function so that any type can be called

commit 9131e041087719239841fb955326c340e9ce81f5
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Sun Nov 29 17:09:01 2015 -0800

add test for function call

commit 8defc78dc@44f2c837f155a5dc49ac6fcf8841fa
Author: hjoo <hj2339@columbia.edu>
Date: Mon Nov 30 17:38:22 2015 -0500

length works with lists of different types

commit 6cf8b65d815ba61173bale7027fb418a095aea43
Author: hjoo <hj2339@columbia.edu>
Date: Mon Nov 30 16:27:13 2015 -0500

added built in len() function for integer lists.

commit 241fcbe9de8493704e8ec375f4be295ba29cfdf4
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 29 18:42:37 2015 -0500
list add front test is passing. had to fix the _get method to account for wrap around.

commit 23c66b486328ffcc42f21efav60c4b0414fcbfad
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 29 18:31:30 2015 -0500
add front not working for lists longer than 4. added tests to test add front.

commit ddc@a2935262b596696dd5600e785f5a80308ead
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 29 18:28:26 2015 -0500

working on list initialization

commit b7df08894202c94dbfa851e838f794d36d991317
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 29 17:16:14 2015 -0500

forgot list tests from last commit.

25

commit 7467da59971e0865b09987f4f7e34a767188ccaa
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 29 17:14:34 2015 -0500

fixed boilerplate code for lists so that lists of length longer than 4 work.

tests list initialization. list initialization still needs to be implemented.

commit d8b42e3aa989lac5414fffc84f186a52024086fd
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Nov 28 01:08:06 2015 -0500

removed lgc flag so that the tests pass

commit e25e0fc44c48f83febc4113b71f169fedd3d26¢ce
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sat Nov 28 00:58:28 2015 -0500

All tests pass. Basic lists work.

commit ©2a238ale7dfc8el7f32el655c5a7cdca809a870
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Fri Nov 27 23:03:39 2015 -0500
Double channels work. Arrays are gone. Lists parse and translate

commit c627e4100c76243262821d89d5c647d5ad@a36be

Author: Mitchell Gouzenko <mgouzenko@gmail.com>

Date: Fri Nov 27 ©2:29:02 2015 -0500
refactored all duplicate code into macros

commit 45ec6f9dee840abc75181304fc6df71cdef21723
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Nov 26 22:37:42 2015 -0500

fully generalized dequeue and enqueue to macros

commit d4d52f5b6cPable30@9ecefldd2a2a521df8b2eb4s
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Nov 26 17:32:53 2015 -0500
cleaned up compile, refactored boilerplate code with macros

commit 76dbdd@43503b1772a127bd997f2a27b2c71cboe
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Nov 26 14:52:07 2015 -0500
fixed a few bugs, commented the sh-t out of semantic analysis

commit 93dfb8369d4419c273b0f160109274c4480eff59
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Nov 26 ©2:11:08 2015 -0500
Added some comments in semantic analysis, removed list.rev

commit 8383137a53c4cead@5aa7f3583fda3ele83bdb20
Merge: fff1869 f39f85b
Author: hjoo <hj2339@columbia.edu>
Date: Tue Nov 24 18:48:48 2015 -0500
merge char tests

commit fff1869cd6b9ff24cadec745223c1701e511f6b9
Author: hjoo <hj2339@columbia.edu>
Date: Tue Nov 24 18:48:19 2015 -0500

separate out boilerplate c into it's own file

commit 39f85b44d264d663860322d1a3a08b43e84488c
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 18:30:17 2015 -0500

make char interleaver slightly more compliated

commit 88b6fc8945b4bld6aabb80aab40718d48e10896b
Merge: 14e6261 cfb3b33

Author: zgleicher <zjg2102@columbia.edu>

Date: Tue Nov 24 18:13:46 2015 -0500

added test-1list2 which

26

Merge pull request #16 from mgouzenko/char

commit cfb3b3306022492cda®d6c0794e6daab9a9+38b2
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 18:13:12 2015 -0500

add test for char interleaver

commit ©25780542766b402071b0dcabd78f9fbf2al5e26
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 18:10:46 2015 -0500

char interleaver works

commit 516f7276d315b191b30ee5c691061197125Fd85
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 17:56:39 2015 -0500
add channel type so that it is not hard coded in translate_vdecl

commit dbee83f7b563e2b511690ed5b3c4e7ab440c507F
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 17:42:47 2015 -0500

ensure that proper type is enqueued on channel

commit a2d@ac93al6flabadlbbbf5465b38b2a96714cea
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 17:35:21 2015 -0500

make deque channel use correct type

commit 43680de779fadf461619d8a10082c20c28a8c316
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 17:21:29 2015 -0500
small bug fix where so that type of expression in a being poisoned should be a channel

commit 3a3e01e084b197b263e85bc9b9b5c6443a4bb083
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 17:16:23 2015 -0500
update wait_for_more and poison so it can handle correct channel type

commit 14e6261071e6d102c277487fbal2c6fa35725894
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 24 16:35:11 2015 -0500

add c source code for simple char interleaver

commit dd26fedecd2f97fed2f2f675fff40afcb7da54fc
Merge: 9f45655 562d5bl
Author: zgleicher <zjg2102@columbia.edu>
Date: Mon Nov 23 20:12:01 2015 -0500
Merge pull request #15 from mgouzenko/semantic_analysis

commit 562d5b1felal9f8fb84b820eble@c7045c798850
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Nov 23 20:11:14 2015 -0500
program decl and args struct for process call needed to be reversed

commit 9fe2fd2ea5ffa5700d19d76d701c6cl25baealbsd
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Nov 23 18:46:32 2015 -0500
remove ~ token so that semantic analysis can resolve if a channel called in a conditional and add
_wait_for_more if necessary

commit 1c5bcd961d285a86c06fbf8cl3deeeb2269a1183
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Nov 23 16:06:38 2015 -0500

check if channel being called in conditional

commit 9f456554f8d9af542ec8df9abe226bd2dcoOb6led
Merge: a66981d 8e501fe
Author: hjoo <hjoo@users.noreply.github.com>

27

Date: Sun Nov 22 17:46:03 2015 -0500
Merge pull request #13 from mgouzenko/semantic_analysis

commit 8e501fe@ec7bdPel685173a8db6113110958ef43
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 22 17:44:28 2015 -0500
fixed process call parameter checking, removed ~ symbol, fixed function calls with multiple
parameters, changed tests to use new flow print statements

commit d322d4f632a9dObee3d2eel5574bd74c5130caf9
Merge: 737ea@5 a66981d
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 22 16:08:18 2015 -0500
print tests added

commit 737ea05c92d5633a5838b4fbf288d2861fa82744
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 22 16:06:27 2015 -0500
removed Float type, added different built in print functions for newline

commit 266981d49f2a2021f6db1e9906e4bclc4bOc7d57
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Sun Nov 22 16:02:54 2015 -0500

add tests for printing

commit e6f@bcalfd5a94aadb077c27c40668487f8bo4bf
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 22 15:35:09 2015 -0500
printf in flow translates to printf in c, removed Float type in flow_types

commit 1233a68416260e511340a6517aa384cebed4dcde
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Fri Nov 20 15:38:09 2015 -0500

integrate semantic analysis with compiler

commit 5e2ad85fff950a6b39122a64e€98539274953640d
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Fri Nov 20 14:36:04 2015 -0500
adding sast pretty printer which i forgot to add in the last commit. Probably not going to focus to
much on the pretty printer

commit 3elc4eef59bc762dfb3d6ebddbfac67a789ccbasb
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Nov 18 13:16:30 2015 -0500
pretty printer for sast almost works. Can check for semantically correct programs, but not sure how to
print the type of a wildcard for the tree

commit a@d2ebde6c9948feacfa90c21cd376b924118423
Author: hjoo <hj2339@columbia.edu>
Date: Wed Nov 18 11:56:04 2015 -0500
set up printer for sast. No code written yet for sast printer.

commit 8a@4995a559dadbOf4a0ebed3e82abd41336ecl?
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Nov 18 ©2:03:17 2015 -0500

add sast for function call

commit 83450211f849dc5b07d0061019ae36412dc84e7a
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 17 23:06:57 2015 -0500

add unary op checking

commit ©099a3e3bc5250b4b70b473af6fbdad2da25883b3
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Nov 17 20:12:30 2015 -0500

Basic groundwork for semantic analysis done

28

commit 516d3d6ccl3cd3240cd1d78de5c2053d5e3604ba
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Nov 17 ©02:21:19 2015 -0500
Added semantic checking for statements. None of this shit is tested

commit 1c0771d59ab4d309c615872611deb@2b2fba9dad
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Nov 17 01:32:36 2015 -0500

added function declaration checking

commit 23089e345bceda51fd034059cfeca2818ef6944f
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Nov 17 00:29:01 2015 -0500

finished variable declaration

commit dd1c9bbfcb9383dc74fabdfae69a7d7b6aada2fl
Merge: 2f57a44 4c35bé6d
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 15 18:58:34 2015 -0500
merging with master

commit 2f57a44a33702b2ddeef4233b257722c2c570cf7
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 15 18:57:43 2015 -0500
tweaked some array code and working on binop check of semantic analyzer

commit 4c35b6dada9edb3dc69b865d27731f798c74ca932
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 18:03:06 2015 -0500

Add simple interleaver to test suite

commit 6c97b50f8abf5036ff6820bb7b9428ef8386d432
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 18:00:23 2015 -0500
Getting simple interleaver hello world to work (AWFUL code though)

commit 3b0@c549ala8cc21faPed90f8c525ccl7c4526c3f
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 15 15:59:01 2015 -0500

cleaned up some small errors in compiling

commit a8099848f167e1348955ef451d1cb4f8dbedla8a
Merge: 8d8f5be 886dfb2
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 15:32:48 2015 -0500

Merge pull request #4 from mgouzenko/boilerplate

commit 886dfb27d02cad9fbda5425f7da@c970c8b856492
Merge: ©e056f1 c56ee48
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 15:32:01 2015 -0500
Merge branch 'boilerplate' of https://github.com/mgouzenko/flow-lang into boilerplate

commit @e@56f1d@cbob4ed8055ble34f7b6ba3f6bfl6c3
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 15:21:47 2015 -0500
Update the boilerplate globals to lead with underscores, and add Travis slack integration

commit 7fdd147e44f202897cabllbdeada36f7ffdll3ac
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 21:48:08 2015 -0500

add boilerplate code

commit c56ee48e7898a308eeb3b8ed8f4145c1203bb7el
Merge: ©f59ee4 4cl4cbo

Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 15:23:47 2015 -0500

29

Merge branch 'boilerplate' of https://github.com/mgouzenko/flow-lang into boilerplate

commit @f59ee48c20352d5a5f69549286cafl7eed2bel6b
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 15:21:47 2015 -0500
Update the boilerplate globals to lead with underscores, and add Travis slack integration

commit c15278764fe7c4clcf6dae8cf6bf45f42d02ecbe
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 21:48:08 2015 -0500

add boilerplate code

commit 8d8f5bel@ff28ceb96ab8396e28925f5e1d8007d
Merge: 728fd5f 303739d
Author: hjoo <hjoo@users.noreply.github.com>
Date: Sun Nov 15 15:22:17 2015 -0500

Merge pull request #3 from mgouzenko/expr

commit 4cl4cb@c754576dbaaftadf7204f9c9419b061153
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 15 15:21:47 2015 -0500
Update the boilerplate globals to lead with underscores, and add Travis slack integration

commit 303739d0615010929c397d173502a43e3dcb9cOe
Author: hjoo <hj2339@columbia.edu>
Date: Sat Nov 14 14:05:21 2015 -0500
started semantic analysis and fixed minor malloc bug in compile

commit 749d9a70d65b@c5afb01486d7187795bd865e742
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Thu Nov 12 11:27:20 2015 -0500

fixed array

commit 5a1e86819d3fbBelc9c719b1f529b1542a2d9bo1
Author: hjoo <hj2339@columbia.edu>
Date: Thu Nov 12 10:02:18 2015 -0500

matched array var names in test-arrayl.flow

commit c34a87447felc999f9e84049917a0baabaa30932
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Thu Nov 12 00:51:58 2015 -0500

trying to compile array. Error with identifier

commit 9f1518b54f80c5be5act7814b4b7+8c30d5388b3
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Thu Nov 12 00:04:19 2015 -0500

compile arrays

commit 728fd5f6e8flbadadaf15032979c9callee20d29
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 11 12:52:35 2015 -0500
Add poison, array element access, and array initializers to the grammar and AST printer

commit 89c3da762ffa3d6425abbe3609c196c733087235
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 22:34:58 2015 -0500

add tests and fix boolean bug

commit 357f782255cb4211d60865994a39e31676abb8e2
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 21:48:08 2015 -0500

add boilerplate code

commit 87d56516724efaf34e4b78f6be95d2e4del23a42
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 19:56:28 2015 -0500

set up regression tests for c complilation

30

commit 3@edccedf909a24bad5a80e0a3562c6fa5315cf5
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 19:14:46 2015 -0500

fix stmt list so comma is not at end

commit 773ab@a684535199a5023f1deca53cd8067e825e
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 18:00:44 2015 -0500

update regression testing framework

commit 87d1059d4dd82fb585407a4083c36e6844584edc
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 17:22:39 2015 -0500

function expression compilation

commit 2f270dceea21853d62c643b1f8ec6fd1096bd65d
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 01:58:32 2015 -0500

simplify unary operator for c compilation

commit 3bb56121a3c¢59ddca87f127363c2dd4367244fab
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 01:52:39 2015 -0500

update send to channel for c compilation

commit 9e3e43e8b68ac4439c139469222c070490a2759¢
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 01:01:53 2015 -0©500

fix retreive so that function is called

commit 9e0908b7bb1560f69802fa0a358b8+80ad3b752c¢
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Nov 9 23:57:39 2015 -0500
Started work on compiling expressions. Still need to do FunctionCall and StructInitializer

commit 72a5d0@ae81f05076c0Obcd714918a90eaelallon
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Tue Nov 10 00:11:17 2015 -0500

added statements

commit 198b945bb632384a8c35fb103f908ce205e32f5F
Merge: 9al168f1l 72875cf
Author: zgleicher <zjg2102@columbia.edu>
Date: Tue Nov 10 00:05:37 2015 -0500
Merge pull request #2 from mgouzenko/star

commit 72875cf2ca4393fc3a6123145387903598f1f938
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 10 00:04:04 2015 -0500
add ~ token which is a placeholder for wait_for_more. It will be removed after we have done semantic
analysis

commit 9a168f122e6eecl1275a08e1661d9321e771b51d6

Author: Mitchell Gouzenko <mgouzenko@gmail.com>

Date: Mon Nov 9 18:59:48 2015 -0500
Added translation of variable declaration.
Also added unpacking of process arguments inside the body of
the process.

commit 3f1118f12d025237c3b3adbbcl12af925e194124
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Mon Nov 9 14:44:34 2015 -0500

Added the beginnings of the actual compiler

commit 25fdbl12b5ff9ef4f56694cc421cdbbe9f203adob
Author: Mitchell Gouzenko <mgouzenko@gmail.com>

31

Date: Mon Nov 9 00:27:21 2015 -0500
Added global threadlist. Refactored flowc.ml.
Threadlist keeps track of threads in c version of
interleaver. printer was factored out of flowc, and
compile.ml was introduced.

commit 106297d0ae96b51495735e875f0cc8e028247522
Author: hjoo <hj2339@columbia.edu>
Date: Sun Nov 8 18:55:24 2015 -0500
int interleaver in c worksgit add int_channel.c int_interleaver.c ! some things are hardcoded though.
i.e. joining threads and size for tokenizing arrays

commit 73371367007710ab4871648cf7978698788074al
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 4 16:56:43 2015 -0500
Add lists and arrays to grammar, AST, and pretty printer, and add a test

commit 6040c5d6786b30592147fef87e965d0dc9d6af66
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Wed Nov 4 12:55:05 2015 -0500

added int channel

commit 9362561df1429e7d4e80294818dd141a93735b40
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 4 12:52:17 2015 -0500

Update Travis status

commit f5815d44a3a190ce98535bcb22575246fedd8c6d
Merge: a38da7b 6130770
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 4 12:49:48 2015 -0500

Merge pull request #1 from mgouzenko/flow-parser

commit a38da7beadcd8e90a212561096a29481edc5ede8
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 4 12:46:57 2015 -0500

Add Travis status to master README

commit 6f3077087e51a25da42dca43d469f06bbc958523
Author: hjoo <hj2339@columbia.edu>
Date: Wed Nov 4 12:45:05 2015 -0500

no printf in flow hello world

commit c9c89b28aee80e4cela801621798b609a528d6d7
Author: hjoo <hj2339@columbia.edu>
Date: Wed Nov 4 12:43:17 2015 -0500

hello world vl in flow and c

commit 6ea5a25951728e799609c4c3d50f8al190ef14f13
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Wed Nov 4 11:30:50 2015 -0500

Identifier cannot start with a underscore

commit 3dlec6d32flfee56020f2dabble563527cf42853
Merge: 5042d9f 5e3a2da
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 4 10:53:13 2015 -0500
Merge branch 'flow-parser' of https://github.com/mgouzenko/flow-lang into flow-parser

commit 5042d9f98901d441815189469c6aa5eb1350c70d
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Nov 4 10:53:02 2015 -0500

Allow function declaration without definition

commit 5e3a2da@22763363a8b913e39ffd2232627eecaee
Merge: df2d423 4e01c9d
Author: hjoo <hj2339@columbia.edu>

32

Date: Wed Nov 4 10:29:55 2015 -0500
removing mc tests

commit df2d4231ab742c04a8045c54c91bd5d8187fdd4b
Author: hjoo <hj2339@columbia.edu>
Date: Wed Nov 4 10:28:59 2015 -0500

getting rid of mc tests

commit 4e01c9dc54e268f8ae@3cbce7930e505e8710ffd
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Tue Nov 3 23:33:24 2015 -0500

Write a test program

commit e4f23eab9c666e6a027df56af06e7babac@dfadc
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 3 21:54:20 2015 -0500

travis fixed

commit 407d256f77ed5fd52580f465a864311bf23a6429
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 3 21:50:48 2015 -0500

travis bug fix

commit 675c6d2499fdaed75fbfed41d8e562c6af501ccac
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 3 19:27:29 2015 -0500

add travis ci

commit 5cd57b6434f9a40240e3896a6750103e4dcb1351
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 3 18:51:14 2015 -0500

testing framework for grammar set up

commit 764e4be630f821f06c429f499d3e7ef3d36a3a34a
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Tue Nov 3 13:58:03 2015 -0500

delete bit operators

commit cee@7c8de5824f9ee58af2f29c313f5a0d6b3c25

Author: Mitchell Gouzenko <mgouzenko@gmail.com>

Date: Tue Nov 3 01:22:33 2015 -0500
Finished the pretty printer.
Pretty printing is done in flowc.ml. The flowc executable will
now produce two files: out.dot and out.png. The former is the
AST encoded in a form that graphviz's dot will understand. The
latter is a picture of the ast.
To install dot, run:

brew install graphviz

commit 3501a67c6b821c57880ea93a29607ef7946438b0
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Mon Nov 2 17:38:21 2015 -0500

made the beginnings of pretty printer

commit 5b36001e99e54320bc33e83e58fe745403a6cd6d
Merge: 6f30e96 3105f24
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Mon Nov 2 14:02:06 2015 -0500
Merge branch 'flow-parser' of https://github.com/mgouzenko/flow-lang into flow-parser

commit 3105f24da88e751e7000747a3cb45d9e654c5d03
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 1 17:13:51 2015 -0500

Allow empty compound statements

commit 6f30e96d6cl6cfcba5aft4132ele20d6ec3d4020b
Author: Mitchell Gouzenko <mgouzenko@gmail.com>

33

Date: Sun Nov 1 17:10:36 2015 -0500
added to interleaver test

commit 66labbdeebbe7ccaaaa8e0194cee9b2bd@9df68c
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Nov 1 17:09:38 2015 -0500
Fixed shift/reduce and reduce/reduce conflicts in grammar

commit 86e41dac182ffe2fe®5d327071bc65d86444dbll
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sun Nov 1 17:01:23 2015 -0500

AST nearly done

commit 9d2al1762821e1b0@3ccf50e884e07fe2481a7dc60
Merge: ac8lale 89c8da5
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Mon Oct 26 23:48:19 2015 -0400
Merge branch 'flow-parser' of https://github.com/mgouzenko/flow-lang into flow-parser

commit ac8lale915a8cba2c7bb706cabeld85141621704
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Mon Oct 26 23:48:07 2015 -0400

Fix grammar issues

commit 89c8da535c1c191fa92ac8564430054106cd0a92
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Oct 26 23:38:09 2015 -0400

add char and string parsing

commit 9bc523a73d6ab0241eaf97e616b3302b74c331fa
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Mon Oct 26 22:58:31 2015 -0400

No-conflict parser

commit 62d7eb72a8812f8d9486488399d0d89fb9c413c8
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Oct 26 20:48:45 2015 -0400

starting grammar

commit 211lef7f3532ebe3303531750e2899dac5bd62fb
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Oct 26 20:28:50 2015 -0400

add precedence

commit 6c78da5b4d650d802903024f17207c5b540a5a5f
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Oct 26 20:06:24 2015 -0400

add tokens

commit cc1677d3825831d995d7ee76d225a40edc3ff76f
Author: Zachary Gleicher <zachgleicher@gmail.com>
Date: Mon Oct 26 18:21:11 2015 -0400

add new tokens

commit 832584b3f8020240fd6+591752b3f3257bdaf58f
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Oct 25 18:59:51 2015 -0400
Add success message if program is scanned and parsed successfully

commit 1b8cc34377e6a3f8566aa7beaf35109d80142188
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Oct 25 18:57:26 2015 -0400

Implement single-line comments per the LRM

commit 42e@b295c2ed@30bc293e5bf291ef6056d5feaed
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Sun Oct 25 18:48:47 2015 -0400

34

Build a skeleton parser for flow-lang

commit eec84db53ac279f0f2edf4c6c713858e8a7ffalf
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Oct 21 17:22:49 2015 -0400
Rename the microc program to flowc for "flow compiler"

commit a721734a2e3cae67708leccPa533e652c417e0e9
Author: Adam Chelminski <chelminski.adam@gmail.com>
Date: Wed Oct 21 17:11:13 2015 -0400

Add microc compiler code as skeleton code

commit 7ae3a6713af9b891f53b8b5b43a322ccf2cel9ae
Author: Mitchell Gouzenko <mgouzenko@gmail.com>
Date: Sun Sep 13 16:17:59 2015 -0400

Initial commit

5 Architectural Design

5.1 Diagram of Flow Compilation Process

Parser

AST

Source Code Scanner
Compiler < Semantic
g Analyzer
C Runtime
Environment
Setup Code
Y
Flow Target

5.2 Scanner

Relevant source code (in Appendix): scanner.mll

The scanner uses ocamllex to translate the Flow source code into a stream of tokens.

5.3 Parser

Relevant source code (in Appendix): parser.mly, ast.ml

35

The parser uses ocamlyacc to build an abstract syntax tree from the stream of tokens generated by the
scanner. The rules for the abstract syntax tree are defined in ast .m1. Source code that makes it through the
parser and successfully transformed into an abstract syntax tree is syntactically valid.

5.4 Semantic Analyzer

Relevant source code (in Appendix): semantic analysis.ml, sast.ml

In semantic analysis, we take the abstract syntax tree and annotate it, producing a semantically checked
abstract syntax tree (SAST). There is more or less a one-to-one mapping between components of the AST and
SAST. The primary difference is that the SAST only contains expressions whose types have been checked.
Semantic analysis performs quite a few checks that are unique to Flow. The most important ones include:
Enforcing the rule that global variables cannot be assigned to

Ensuring that only in channels are read from and out channels are written to

Checking types in read/write operations on channels

Ensuring that only out channels are ever poisoned

Ensuring that channels can be used in a boolean context

5.5 Compiler
Relevant source code (in Appendix): compile.ml
The compiler converts the semantically checked abstract syntax tree (sast) that results from semantic analysis

into C code. The C code generation is done by translating each component of the sast into the appropriate C
constructs. The generated C code relies heavily on the C runtime environment described below.

5.6 The Runtime Environment

pthread metadata list Threads
grows from tail — —/i=\>\
| E Main Kahn Channels
T - Processes
joins threads from head /'l__Tl_/

pthread metadata node %
« thread id

* hame of running proc [HHHHHHFe Ch | Struct
- used for printing read/write annel struc i) " o
violations (i.e. two processes HHT OH1- : fvr:z;rzlofr?s q{gﬁ gfti‘;g:ged for reading, writing, and poisoning
interacting with the same end of ; *
a channel) Lists + read-ready and write-ready condition variables
« list of channels claimed for writing * Immutable - so processes « thread ids of reading/writing threads, used to enforce runtime
- channels are poisoned if cannot Gl them to checks that each channel is used by no more than one thread on
communicate. each end.

process exits without explicitly

: » Grow from head only
doing so.

» Linked list; O(1) to add

Relevant source code (in Appendix): ¢ runtime.c

36

5.6.1 The pthread metadata List (implemented by Mitchell)

The c runtime environment’s job is to manage the interactions between processes and channels. All processes
are started on separate threads, and those threads are joined in main. There’s a global join list - henceforth
termed the “pthread metadata list” - that contains the ids of all pthreads that are running. The pthread metadata
list is protected by a global lock, and implemented as a linked list of struct pthread node.

When main invokes processes, it adds their ids to this list. Then, after the body of main has finished executing,
the function wait for finish is called. This function attempts to join all threads starting from the head of
the list. If a process invokes another process, it adds that process’s entry to the end of the list and adjusts the

tail. That way, the main thread will never overlook processes that are added to the list.

To see why, consider a hypothetical process A, which tries to start process B. The main thread may be waiting
on process A to halt. Before A halts though, it adds B’s entry to the thread list. By the time the main thread
joins A, the entry for B will already be in the list. Thus, as the main thread advances through the thread list, it's
guaranteed to see B’s entry, even if A had previously been the last unjoined thread.

A process’s entry in the thread metadata list also contains a linked list of channels that the process has written
to. When the process exits, if those channels have not been poisoned, the runtime poisons them automatically
in the function exit thread.

5.6.2 Channels (implemented by Mitchell and Hyonjee)

There are several types of channels in the flow environment. In fact, there are channel structures associated
with each supported token type. These structures all share common members defined by the macro
BASIC CHANNEL MEMBERS.

Member Function

pthread mutex t lock; Lock that must be acquired to modify channel
int size; Current size of the channel

bool poisoned; Whether or not the channel has been poisoned

pthread cond t write ready; | Condition variable signifying that the channel has space in it for
more tokens to be written

pthread cond t read ready; Condition variable signifying that the channel has tokens to read

int front; The index of the front of the queue

int back; The index of the back of the queue

bool claimed for writing; Whether or not a process has written to the channel and claimed it
for writing

bool claimed for reading; Whether or not a process has read from the channel and claimed it
for reading

pthread t writing thread; The thread id of the single process allowed to write to this channel

pthread t reading thread; The thread id of the single process allowed to read this channel

37

Each channel is implemented as a producer consumer wrap-around queue with a fixed size of 100 elements.
For each channel structure, there are functions to enqueue and dequeue tokens. Because the enqueue and
dequeue operations are similar for all channels, these functions are generated by the macros

MAKE ENQUEUE FUNC (type) and MAKE DEQUEUE FUNC (type).

5.6.2.1 Channel Reads and Writes - Enqueueing and Dequeueing

When a process attempts to issue a read or write on a channel, its identity must first be established. If a
process is attempting to read from a channel, its thread id is checked against that channel’s
reading thread member. If the two don’t match, a runtime error occurs.

If a channel has never been read from, its claimed for reading flag is initially false. When the channel is
read from for the first time, this flag is set to true, and reading thread is set to the thread'’s id.

The same procedure is used for writing to channels. In addition, when a process writes to a channel for the first
time, the channel is added to that process’s node in the thread metadata list.

5.6.2.2 Channels in a Boolean Context

As previously discussed, Flow allows the programmer to query the status of a channel by putting that channel
in a conditional statement. This behavior is implemented by the function wait for more (struct
_channel *channel).

5.6.3 Lists (implemented by Mitchell and Hyonjee)

Flow lists are immutable and implemented as linked lists. Lists are only allowed to grow from the head. When a
new element is added to a list, it's putina struct cell and setto point at the old list head. The pointer to
the new cell is then returned. Immutability of lists means that multiple lists can share the same tail.

5.6.4 Dot Graph Feature (implemented by Mitchell)

When the flow compiler is invoked with the “-d” option, it compiles to ¢ code that generates a dot graph when it
is run. This dot graph is output through stderr, and can be collected and compiled into a visual representation
of the KPN made by the program.

6 Test Plan

The shell script testall.sh runs our automated test suite which has a total of 80 tests. Test names that begin
with “fail-” should check for both compile time and runtime errors. We found it important to check for runtime
errors since our runtime has assertions that prevent actions such as writing to a poisoned channel. Originally,
we had our “fail-” tests check that the error message matched a corresponding out file, but found this
unproductive since we regularly improved our error messages, which meant that all the out files would have to
be updated. Test names that begin with “test-” should check that the output successfully matches the
corresponding .out file. In this scenario, tests are required to print to stdout. We found this to be the better than
matching the compiler output to C code since making changes in the compiler would require a rewrite of all the
tests. Both sets of tests print the test name and “OK” when passing, and print large failure messages when a
test is failing. Tests that should match an output should will show the comparison and the lines that differ.
Running the test script with the flag -k will keep all intermediate files such as the generated C code.

38

Tests were developed with a couple different mindsets and strategies. The first strategy was to write tests as
the compiler evolved, ensuring that key components were working as they were being implemented. The
second strategy, which took place later in the project evolution, was to think deviously, intentionally writing
tests that would break the Flow language.

Included among the tests are two implementations of a bitonic sorter (a parallel sorting network). One is a
manually built one that can sort inputs of size 4, and one is a recursively defined one that can sort inputs of

size 2" for some arbitrary natural number N. These tests are named test-bitonic-manual and
test-bitonic-recursive, respectively.

6.1 Test Suite

6.1.1 testall.sh (implemented by Zach)

#!/bin/sh
FLOWC=""./flowc"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0
Usage() {
echo "Usage: testall.sh [options] [.flow files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1
}

SignalError() {
if [$error -eq ©] ; then
echo "FAILED"
error=1
fi
echo " $1"
}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {
generatedfiles="¢$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {
SignalError "$1 differs”
echo "FAILED $1 differs from $2" 1>&2
}
}

Run <args>
Report the command, run it, and report any errors

Run() {
echo $* 1>&2
eval $* || {

39

}

SignalError "$1 failed on $*"
return 1

}

RunFail() {

echo $* 1>&2

eval $* || {
return 1
}
}
Check() {
error=0
basename="echo $1 | sed 's/.*\\///
s/.flow//""
reffile="echo $1 | sed 's/.flow$//'"
basedir=""echo $1 | sed 's/\/[*\/1*$//'"/."
echo -n "$basename..."
echo 1>&2
echo "#i#H## Testing $basename" 1>&2
generatedfiles=""
generatedfiles="¢$generatedfiles ${basename}.c" &&
Run "$FLOWC" "-c" $1 ">" ${basename}.c &&
gcc ${basename}.c &&
./a.out > ${basename}.c.out
Compare ${basename}.c.out ${reffile}.out ${basename}.c.diff
Report the status and clean up the generated files
if [$error -eq ©] ; then
if [$keep -eq ©] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "#i##### SUCCESS" 1>&2
else
echo "#i#t#### FAILED" 1>&2
globalerror=$error
fi
}

CheckFail() {

error=0

basename="echo $1 | sed 's/.*\\///
s/.flow//""

reffile="echo $1 | sed 's/.flow$//"'"

basedir=""echo $1 | sed 's/\/[~\/]1*$//'"/."

echo -n "$basename..."

echo 1>&2
echo "###### Testing $basename" 1>&2

generatedfiles=

if generatedfiles="$generatedfiles ${basename}.c" && RunFail "$FLOWC" "-c" $1 "&" ${basename}.c; then

error=1

Check for runtime error
generatedfiles="¢$generatedfiles ${basename}.c" &&
Run "$FLOWC" "-c" $1 ">" ${basename}.c &&

gcc ${basename}.c &&

40

if ./a.out;then
error=1;

else
error=0;

fi

fi
Report the status and clean up the generated files
if [$error -eq ©] ; then
if [$keep -eq ©] ; then
rm -f $generatedfiles
fi
echo "OK"
echo "#i#t#### SUCCESS" 1>&2
else
echo "#Ht##H#H#HHHHHHE FATILED HHHHHEHEHHH "
echo "###### FAILED" 1>&2
globalerror=$error
fi

}
make >> $globallog

while getopts kdpsh c; do
case $c in
k) # Keep intermediate files
keep=1

h) # Help
Usage
esac
done

shift “expr $OPTIND - 1°

if [$# -ge 1]
then
files=%@
else
files="tests/fail-*.flow tests/test-*.flow"
fi

for file in $files
do
case $file in
test-)
Check $file 2>> $globallog

fail-)
CheckFail $file 2>> $globallog
*) I
echo "unknown file type $file"
globalerror=1
esac
done

if [$keep -eq @] ; then
make clean >> $globallog
fi

exit $globalerror

41

6.1.2 Test Suite Output

-n fail-access-empty-list1...

OK

-n fail-access-empty-list2...
OK

-n fail-arith1...

OK

-n fail-bad-type-to-chan...
OK

-n fail-break...

OK

-n fail-chan-of-chan...

OK

-n fail-chan-of-lists...

OK

-n fail-continue...

OK

-n fail-decl1...

OK

-n fail-func-decl-without-init...
OK

-n fail-func-undecl...

OK

-n fail-immutable-global...
OK

-n fail-list-init1...

OK

-n fail-list-init2...

OK

-n fail-list-init3...

OK

-n fail-list-init4...

OK

-n fail-no-return...

OK

-n fail-poison...

OK

-n fail-poison2...

OK

-n fail-read-from-out-chan...
OK

-n fail-single-in-for-chan...
OK

-n fail-single-out-for-chan...
OK

-n fail-write-to-in-chan...
OK

-n fail-write-to-nodir-chan...
OK

-n test-arith1...

OK

-n test-arith2...

OK

-n test-assoc-concat...
OK

-n test-assoc-equal...

OK

-n test-assoc-negate...
OK

-n test-assoc-tail...

OK

-n test-bitonic-manual...
OK

42

-n test-bitonic-recursive...
OK

-n test-break...

OK

-n test-chan-return...
OK

-n test-chan-return2...
OK

-n test-continue...

OK

-n test-empty-func-decl...
OK

-n test-fib...

OK

-n test-for1...

OK

-n test-func-no-args...
OK

-n test-func-no-body...
OK

-n test-func-with-chan...
OK

-n test-func-with-chan2...
OK

-n test-func1...

OK

-n test-if1...

OK

-n test-if2...

OK

-n test-list-add-front...
OK

-n test-list-channel...
OK

-n test-list-char...

OK

-n test-list-double...

OK

-n test-list-empty-init...
OK

-n test-list-empty-tail...
OK

-n test-list-immutable...
OK

-n test-list-init...

OK

-n test-list-init2...

OK

-n test-list-init3...

OK

-n test-list-length...

OK

-n test-list-return...

OK

-n test-list-return2...

OK

-n test-mutable...

OK

-n test-pass-list-to-function...
OK

-n test-pass-list-to-function2...
OK

-n test-print...

OK

-n test-proc-in-proc...
OK

-n test-proc-no-poison...

OK

-n test-rand...

OK

-n test-recursion...

OK

-n test-return-process...
OK

-n test-running-sum...
OK

-n test-scope1...

OK

-n test-scope2...

OK

-n test-scope3...

OK

-n test-scope4...

OK

-n test-scopeb...

OK

-n test-simple-interleaver-char...
OK

-n test-simple-interleaver-double...
OK

-n test-simple-interleaver...
OK

-n test-string1...

OK

-n test-sum...

OK

-n test-while1...

OK

6.2 Flow to C code Generation

6.2.1 sum.flow

proc numGen(out int ochan){
list <int> test = [1, 2, 3, 4, 5];

while(#test > 0) {
@test -> ochan;
test = ~test;

}

poison ochan;

}

proc sum(in int chan) {
int sum = 0;
while(chan) {
sum = sum + @chan;
}
print_int(sum);

}

int main() {
channel<int> chan;
numGen(chan);
sum(chan);

}

44

6.2.2 sum.c (formatted with clang-format)

#include <assert.h>
#include <pthread.h>
#tinclude <stdio.h>

#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <time.h>

/****************************** channel Structs ******************************/

#tdefine BASIC_CHANNEL_MEMBERS
pthread_mutex_t lock;
int size;
bool poisoned;
pthread_cond_t write_ready;
pthread_cond_t read_ready;
int front;
int back;

int MAX_SIZE;

int claimed_for_writing;
int claimed_for_reading;
pthread_t writing_thread;
pthread_t reading_thread;

struct _channel {
BASIC_CHANNEL_MEMBERS

1

struct _int_channel {
BASIC_CHANNEL_MEMBERS
int queue[100];

¥

struct _char_channel {
BASIC_CHANNEL_MEMBERS
char queue[100];

s

struct _double_channel {
BASIC_CHANNEL_MEMBERS
double queue[100];

¥

#define MALLOC_CHANNEL (type)
= (struct _##type#t#t channel *)malloc(sizeof(struct _#ftype#t# channel));

int _init_channel(struct _channel *channel) {
if (pthread_mutex_init(&channel->lock, NULL) != @) {
printf("Mutex init failed");
return 1;

}

if (pthread_cond_init(&channel->write_ready, NULL) +
pthread_cond_init(&channel->read_ready, NULL) !=

9) {
printf("“Cond init failed");
return 1;

}
channel->claimed_for_reading = 0;
channel->claimed_for_writing

1}
()
e

P i

45

channel->MAX_SIZE = 100;
channel->front = 0;
channel->back = 9;
channel->poisoned = false;
return 9;

}

/************************* Global Thr\ead Metadata **************************/

/* Node for linked list of channel names. Keeps track of channels that
* threads can write to. */

struct _channel_list_node {
struct _channel *chan;
struct _channel_list_node *next;

1

/* Defines a node of the global thread metadata list. */
struct _pthread_node {

pthread_t thread;

struct _pthread_node *next;

char *proc_name;

struct _channel_list_node *writing_channels;

1

/* The global thread metadata list */
struct _pthread_node *_head = NULL;
struct _pthread_node *_tail = NULL;

/* Lock for the thread metadata list */
pthread_mutex_t _thread_list_lock;
pthread_mutex_t _ref_counting_lock;

/* Finds a thread in the global threadlist given its id */
struct _pthread_node *_get_thread(pthread_t thread_id) {
pthread_mutex_lock(& thread_list lock);
struct _pthread_node *curr = _head;
while (curr) {
if (curr->thread == thread_id) {
break;
}
curr = curr->next;
}
pthread_mutex_unlock(&_thread_list_lock);
return curr;

}

/* Gets the name of the process running on a thread,
* given the thread id */

char *_get_thread_name(pthread_t thread_id) {
if (_head == NULL)

return "";
pthread_mutex_lock(&_ thread_list_lock);
char *name = "";
struct _pthread_node *curr = _head;

while (curr) {
if (curr->thread == thread_id) {
name = curr->proc_name;
break;
}
curr = curr->next;
}
pthread_mutex_unlock(&_thread_list_lock);
return name;

}

void _print_dot_node(struct _channel *chan) {
fprintf(stderr, "{%d[label=%s]}->{%d[label=%s]}\n", (int)chan->writing_thread,

46

_get_thread_name(chan->writing_thread), (int)chan->reading_thread,
_get_thread_name(chan->reading_thread));

}

/************************* Enqueue/DeqUeUe Macros *****************************/

/* Given a token type, this macro generates an enqueue function
* for the associated channel. */
#tdefine MAKE_ENQUEUE_FUNC(type)
type _enqueue_##ttype(type element, struct _#i#type## channel *channel,
bool dot_print) {
pthread_mutex_lock(&channel->lock);
pthread_t this_thread = pthread_self();
if (!channel->claimed_for_writing) {
channel->claimed_for_writing = 1;
channel->writing_thread = this_thread;
struct _pthread_node *this_thread_node = _get_thread(this_thread);
struct _channel_list _node *new writing chan =
malloc(sizeof(struct _channel_list_node));
new_writing_chan->next = this_thread_node->writing_channels;
new_writing_chan->chan = (struct _channel *)channel;
this_thread_node->writing_channels = new_writing_chan;
if (channel->claimed_for_reading && dot_print)
_print_dot_node((struct _channel *)channel);
} else if (channel->writing_thread != this_thread) {
fprintf(stderr, "Runtime error: proc %s (thread 0x%x) is trying to
"write to a channel belonging to %s (thread Ox%x)\n",
_get_thread_name(this_thread), (int)this_thread,
_get_thread_name(channel->writing_thread),
(int)channel->writing_thread);
exit(1l);
¥
while (channel->size >= channel->MAX_SIZE)
pthread_cond_wait(&channel->write_ready, &channel->lock);
assert(channel->size < channel->MAX_SIZE);
if (channel->poisoned) {
fprintf(stderr,
"Attempting to read from a channel that is empty and poisoned");
exit(1l);
¥
channel->queue[channel->back] = element;
channel->back = (channel->back + 1) % channel->MAX_SIZE;
channel->size++;
pthread_cond_signal(&channel->read_ready);
pthread_mutex_unlock(&channel->1lock);
return element;

P i i g A P A AP i A G P G P A e

}

/* Create enqueue functions for ints, chars, and doubles */
MAKE_ENQUEUE_FUNC (int)

MAKE_ENQUEUE_FUNC(char)

MAKE_ENQUEUE_FUNC (double)

/* This macro calls the appropriate dequeue function */
#tdefine CALL_ENQUEUE_FUNC(e, c, t, dot) _enqueue_##t(e, c, dot)

/* Given a token type, this macro generates a dequeue function
* for the associated channel. */
#define MAKE_DEQUEUE_FUNC(type)
type _dequeue_ ##ttype(struct _#i#ttype## channel *channel, bool dot_print) {
pthread_mutex_lock(&channel->lock);
pthread_t this_thread = pthread_self();
if (!channel->claimed_for_reading) {
channel->claimed_for_reading = 1;
channel->reading_thread = this_thread;
if (channel->claimed_for_writing && dot_print)

P

47

_print_dot_node((struct _channel *)channel);
} else if (channel->reading_thread != this_thread) {
fprintf(stderr, "Runtime error: proc %s (thread ©x%x) is trying to
"read from a channel belonging to %s (thread @x%x)\n",
_get_thread_name(this_thread), (int)this_thread,
_get_thread_name(channel->reading_thread),
(int)channel->reading_thread);
exit(1);

if (channel->size == 0) {
fprintf(stderr, "Attempting to read from empty channel");
exit(1);
}
type result = channel->queue[channel->front];
channel->front = (channel->front + 1) % channel->MAX_SIZE;
channel->size--;
pthread_cond_signal(&channel->write_ready);
pthread_mutex_unlock(&channel->1lock);
return result;

}

/* Make dequeue functions for int, char, and double channels */
MAKE_DEQUEUE_FUNC (int)

MAKE_DEQUEUE_FUNC (char)

MAKE_DEQUEUE_FUNC (double)

/* This macro calls the appropriate dequeue function */
#tdefine CALL_DEQUEUE_FUNC(c, t, dot) _dequeue_##t(c, dot)

/* Poison the channel, indicating that it won't be written to in the future */
void _poison(struct _channel *channel) {
pthread_mutex_lock(&channel->lock);
channel->poisoned = true;
pthread_cond_signal(&channel->read_ready);
pthread_mutex_unlock(&channel->1lock);

}

/* This function is called whenever a channel is used in a boolean context.
* Three cases:

* 1) Channel is poisoned and empty -> return false
* 2) Channel is nonempty -> return true
* 3) Channel is empty but not poisoned -> block

*/

bool _wait_for_more(struct _channel *channel) {
pthread_mutex_lock(&channel->lock);
while (channel->size == 0) {
if (channel->poisoned) {
pthread_mutex_unlock(&channel->lock);
return false;
} else {
pthread_cond_wait(&channel->read_ready, &channel->lock);
}
}

pthread_mutex_unlock(&channel->1lock);
return true;

}

/************************* Miscellaneous **************************/

/* Initializes global locks */
void _initialize_runtime(bool print_dot) {
pthread_mutex_init(& thread_list_lock, NULL);
pthread_mutex_init(&_ref_counting_lock, NULL);
srand(time(NULL));
if (print_dot)
fprintf(stderr, "digraph G{\n");

P i i G O i

48

/* Create a pthread node and enqueue it on the list. Return the address of
* its id for pthread_create */
pthread_t * _make_pthread_t(char *proc_name) {
pthread_mutex_lock(&_ thread_list_lock);
struct _pthread_node *new_pthread =
(struct _pthread_node *)malloc(sizeof(struct _pthread_node));
new_pthread->next = NULL;
new_pthread->proc_name = proc_name;
new_pthread->writing_channels = NULL;
if (_head == NULL) {
_head = _tail = new_pthread;
} else {
_tail->next = new_pthread;
_tail = new_pthread;
}
pthread_mutex_unlock(&_thread_list_lock);
return &(new_pthread->thread);

/* Invoked when return is reached from a process.
* This function will cause the returning thread to poison all of
* its outgoing channels if it hasn't done so yet. */
void _exit_thread() {
struct _pthread_node *this_thread = _get_thread(pthread_self());
struct _channel_list_node *curr_chan = this_thread->writing_channels;
while (curr_chan) {
if (!curr_chan->chan->poisoned)
_poison(curr_chan->chan);
curr_chan = curr_chan->next;

pthread_exit(NULL);
}

/* Called from within main to wait for processes to finish */
void _wait_for_finish(bool print_dot) {
struct _pthread_node *curr = _head;
while (curr) {
pthread_join(curr->thread, NULL);
curr = curr->next;

if (print_dot)
fprintf(stderr, "}");

/******************************** Lists *********************************/

union _payload {
int _int;
double _double;
char _char;
void *_cell;
struct _int_channel *_int_channel;

1

struct _cell {
struct _cell *next;
union _payload data;
int references;
int length;

¥

struct _cell *_add_front(union _payload element, struct _cell *tail) {
struct _cell *new_cell = malloc(sizeof(struct _cell));
new_cell->references = 1;
new_cell->data = element;
new_cell->next = tail;

49

if (!tail)
new_cell->length

else {
new_cell->length = tail->length + 1;
tail->references++;

1;

}

return new_cell;

struct _cell * get tail(struct _cell *head) {
if (!head) {
fprintf(stderr, "Runtime error: cannot get tail of empty list");
exit(1);
}

return head->next;

}

void __decrease_refs(struct _cell *head, int lock) {
if (lock)
pthread_mutex_lock(& ref_counting_lock);

if ('head) {

if (lock)
pthread_mutex_unlock(&_ref_counting_lock);

return;

} else if (head->references > 1)
head->references--;

else {
__decrease_refs(head->next, 9);
free(head);

}

if (lock)
pthread_mutex_unlock(&_ref_counting_lock);

void _decrease_refs(struct _cell *head) {
//__decrease_refs(head, 1);

}

void _increase_refs(struct _cell *head) {
pthread_mutex_lock(& ref_counting_lock);
if (head)
head->references++;
pthread_mutex_unlock(&_ref_counting lock);

}
union _payload _get_front(struct _cell *head) {
if ('head) {
fprintf(stderr, "Runtime error: cannot get head of empty list");
exit(1);
}
return head->data;
}
int _get_length(struct _cell *head) {
if (!head)
return 0;
return head->length;
}

struct _numGen_args {
struct _int_channel *ochan;
¥
void *numGen(void *_args) {
struct _int_channel *ochan = ((struct _numGen_args *)_args)->ochan;

50

struct _cell *temp;
struct _cell *test = NULL;
test = _add_front((union _payload)5, test);
test = _add_front((union _payload)4, test);
test = _add_front((union _payload)3, test);
test = _add_front((union _payload)2, test);
test = _add_front((union _payload)l, test);
while (_get_length(test) > 0) {
CALL_ENQUEUE_FUNC(_get_front(test)._int, ochan, int, false);
temp = test;
test = _get_tail(test);
_increase_refs(test);
_decrease_refs(temp);
}
_poison((struct _channel *)ochan);
_exit_thread();
}
struct _sum_args {
struct _int_channel *chan;
¥
void *sum(void *_args) {
struct _int_channel *chan = ((struct _sum_args *)_args)->chan;
struct _cell *temp;
int sum = 9;
while (_wait_for_more((struct _channel *)chan)) {
sum = sum + CALL_DEQUEUE_FUNC(chan, int, false);
}

printf("%d", sum);
fflush(stdout);
_exit_thread();
}
int main() {
_initialize_runtime(false);
struct _cell *temp;
struct _int_channel *chan MALLOC_CHANNEL(int);
_init_channel((struct _channel *)chan);

{
pthread_t *_t = _make_pthread_t("numGen");
struct _numGen_args *_margs = malloc(sizeof(struct _numGen_args));
struct _numGen_args _args = {chan};
memcpy((void *)_margs, (void *)&_ args, sizeof(typeof(_args)));
pthread_create(_t, NULL, numGen, (void *)_margs);

¥

{

pthread_t *_t = _make_pthread_t("sum");
struct _sum_args *_margs = malloc(sizeof(struct _sum_args));
struct _sum_args _args = {chan};
memcpy((void *)_margs, (void *)& args, sizeof(typeof(_args)));
pthread_create(_t, NULL, sum, (void *)_margs);

¥

_wait_for_finish(false);

}

6.2.3 int_interleaver.flow

proc tokenGen(out int ochan, int token) {
token -> ochan;
poison ochan;

}

proc printer(in int chan) {
while(chan) {
print_int(@chan);
println();

51

}
¥

proc interleaver(in int chanl, in int chan2, out int ochan) {
while(chanl || chan2){
if(chanl) {@chanl -> ochan;}
if(chan2) {@chan2 -> ochan;}
}

poison ochan;

}

int main() {
channel<int> chanil;
channel<int> chan2;
channel<int> chan3;
int intl = 1;
int int2 = 2;
tokenGen(chanl, intl);
tokenGen(chan2, int2);
interleaver(chanl, chan2, chan3);
printer(chan3);

6.2.4 int_interleaver.c

/* c_runtime.c */
#tinclude <assert.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#tinclude <stdbool.h>
#include <string.h>
#include <time.h>

/****************************** Channel Structs ******************************/

int MAX_SIZE;

int claimed_for_writing;
int claimed_for_reading;
pthread_t writing_thread;
pthread_t reading_thread;

#define BASIC_CHANNEL_MEMBERS \
pthread _mutex_t lock; \
int size; \
bool poisoned; \
pthread_cond_t write_ready; \
pthread_cond_t read_ready; \
int front; \
int back; \

\
\
\
\

struct _channel {
BASIC_CHANNEL_MEMBERS

1

struct _int_channel {
BASIC_CHANNEL_MEMBERS
int queue[100];

s

struct _char_channel {
BASIC_CHANNEL_MEMBERS
char queue[100];

¥

52

struct _double_channel {
BASIC_CHANNEL_MEMBERS
double queue[100];

s

#tdefine MALLOC_CHANNEL (type)
= (struct _##type##_channel *)malloc(sizeof(struct _#i#type## channel));

int _init_channel(struct _channel *channel) {
if (pthread_mutex_init(&channel->lock, NULL) != 0) {
printf("Mutex init failed");
return 1;

}

if (pthread_cond_init(&channel->write_ready, NULL) +
pthread_cond_init(&channel->read_ready, NULL) !=

9) {
printf("Cond init failed");
return 1;
channel->claimed_for_reading = 0;
channel->claimed_for_writing = 0;

channel->MAX_SIZE = 100;
channel->front = 9;
channel->back = 9;
channel->poisoned = false;
return 0;

JRREE R kR Rk kR kR kR Rk G1lobal Thread Metadata *F#kkksssksokskorkskkkkokkkokkoxk /

/* Node for linked list of channel names. Keeps track of channels that
* threads can write to. */
struct _channel_list node {

struct _channel *chan;

struct _channel_list_node *next;

1

/* Defines a node of the global thread metadata list. */
struct _pthread_node {

pthread_t thread;

struct _pthread_node *next;

char *proc_name;

struct _channel_list_node *writing_channels;

1

/* The global thread metadata list */
struct _pthread_node *_head = NULL;
struct _pthread_node *_tail = NULL;

/* Lock for the thread metadata list */
pthread_mutex_t _thread_list_lock;
pthread_mutex_t _ref_counting_lock;

/* Finds a thread in the global threadlist given its id */
struct _pthread_node *_get_ thread(pthread_t thread_id) {
pthread_mutex_lock(& thread_list lock);
struct _pthread_node *curr = _head;
while (curr) {
if (curr->thread == thread_id) {
break;
}

curr = curr->next;

}
pthread_mutex_unlock(&_thread_list_lock);

53

}

/* Gets the name of the process running on a thread,

C

}

return curr;

* given the thread id */
har *_get_thread_name(pthread_t thread_id) {
if (_head == NULL)
return "";
pthread_mutex_lock(&_ thread_list_lock);
char *name = "";
struct _pthread_node *curr = _head;
while (curr) {
if (curr->thread == thread_id) {
name = curr->proc_name;
break;
}

curr = curr->next;

}
pthread_mutex_unlock(&_thread_list_lock);

return name;

void _print_dot_node(struct _channel *chan) {
fprintf(stderr, "{%d[label=%s]}->{%d[label=%s]}\n", (int)chan->writing_thread,

_get_thread_name(chan->writing_thread), (int)chan->reading_thread,

_get_thread_name(chan->reading_thread));

JFEEE Rk R . Enquete/Dequeue Macros kkkok okttt ok ksl ek ok /

/* Given a token type, this macro generates an enqueue function

* for the associated channel. */

#define MAKE_ENQUEUE_FUNC(type)

type _enqueue_##ttype(type element, struct _#i#type## channel *channel,

bool dot_print) {
pthread_mutex_lock(&channel->lock);
pthread_t this_thread = pthread_self();
if (!channel->claimed_for_writing) {
channel->claimed_for_writing = 1;
channel->writing_thread = this_thread;

struct _pthread_node *this_thread_node = _get_thread(this_thread);

struct _channel_list _node *new writing chan =

malloc(sizeof(struct _channel_list_node));

new_writing_chan->next = this_thread_node->writing_channels;
new_writing_chan->chan = (struct _channel *)channel;
this_thread_node->writing_channels = new_writing_chan;

if (channel->claimed_for_reading && dot_print)
_print_dot_node((struct _channel *)channel);
else if (channel->writing_thread != this_thread) {

fprintf(stderr, "Runtime error: proc %s (thread 0x%x) is trying to
"write to a channel belonging to %s (thread o@x%x)\n",
_get_thread_name(this_thread), (int)this_thread,

_get_thread_name(channel->writing_thread),

(int)channel->writing_thread);
exit(1l);
}

while (channel->size >= channel->MAX_SIZE)

pthread_cond_wait(&channel->write_ready, &channel->lock);

assert(channel->size < channel->MAX_SIZE);
if (channel->poisoned) {
fprintf(stderr,

"Attempting to read from a channel that is empty and poisoned");

exit(1l);

}

channel->queue[channel->back] = element;

channel->back = (channel->back + 1) % channel->MAX_SIZE;

channel->size++;

P i g G P i i P P i g P A A S

54

pthread_cond_signal(&channel->read_ready);
pthread_mutex_unlock(&channel->1lock);
return element;

}

/* Create enqueue functions for ints, chars, and doubles */
MAKE_ENQUEUE_FUNC (int)

MAKE_ENQUEUE_FUNC (char)

MAKE_ENQUEUE_FUNC (double)

/* This macro calls the appropriate dequeue function */
#tdefine CALL_ENQUEUE_FUNC(e, c, t, dot) _enqueue_##t(e, c, dot)

/* Given a token type, this macro generates a dequeue function
* for the associated channel. */
#define MAKE_DEQUEUE_FUNC(type)
type _dequeue_#i#type(struct _##type##_channel *channel, bool dot_print) {
pthread_mutex_lock(&channel->lock);
pthread_t this_thread = pthread_self();
if (!channel->claimed_for_reading) {
channel->claimed_for_reading = 1;
channel->reading _thread = this_thread;
if (channel->claimed_for_writing && dot_print)
_print_dot_node((struct _channel *)channel);
} else if (channel->reading_thread != this_thread) {
fprintf(stderr, "Runtime error: proc %s (thread 0x%x) is trying to
"read from a channel belonging to %s (thread @x%x)\n",
_get_thread_name(this_thread), (int)this_thread,
_get_thread_name(channel->reading_thread),
(int)channel->reading_thread);

exit(1l);

}

if (channel->size == 0) {
fprintf(stderr, "Attempting to read from empty channel");
exit(1l);

}

type result = channel->queue[channel->front];
channel->front = (channel->front + 1) % channel->MAX_SIZE;
channel->size--;
pthread_cond_signal(&channel->write_ready);
pthread_mutex_unlock(&channel->1lock);

return result;

}

/* Make dequeue functions for int, char, and double channels */
MAKE_DEQUEUE_FUNC (int)

MAKE_DEQUEUE_FUNC(char)

MAKE_DEQUEUE_FUNC (double)

/* This macro calls the appropriate dequeue function */
#tdefine CALL_DEQUEUE_FUNC(c, t, dot) _dequeue_##t(c, dot)

/* Poison the channel, indicating that it won't be written to in the future */
void _poison(struct _channel *channel) {
pthread_mutex_lock(&channel->lock);
channel->poisoned = true;
pthread_cond_signal(&channel->read_ready);
pthread_mutex_unlock(&channel->1lock);

}

/* This function is called whenever a channel is used in a boolean context.
* Three cases:

* 1) Channel is poisoned and empty -> return false
* 2) Channel is nonempty -> return true
* 3) Channel is empty but not poisoned -> block

*/

~ - =

P P i G A i i A

55

bool _wait_for_more(struct _channel *channel) {
pthread_mutex_lock(&channel->lock);
while (channel->size == 0) {
if (channel->poisoned) {
pthread_mutex_unlock(&channel->lock);
return false;
} else {
pthread_cond_wait(&channel->read_ready, &channel->lock);
}
}

pthread_mutex_unlock(&channel->1lock);
return true;

}

JFREF R AR KRR KRR R Migcellaneous KRR ERIKREKRRKRRkoRKRk kKoK

/* Initializes global locks */

void _initialize_runtime(bool print_dot) {
pthread_mutex_init(& thread_list lock, NULL);
pthread_mutex_init(&_ ref_counting lock, NULL);
srand(time(NULL));
if (print_dot)

fprintf(stderr, "digraph G{\n");
}

/* Create a pthread node and enqueue it on the list. Return the address of
* its id for pthread_create */
pthread_t * _make_pthread_t(char *proc_name) {
pthread_mutex_lock(&_ thread_list_lock);
struct _pthread_node *new_pthread =
(struct _pthread_node *)malloc(sizeof(struct _pthread_node));
new_pthread->next = NULL;
new_pthread->proc_name = proc_name;
new_pthread->writing_channels = NULL;
if (_head == NULL) {
_head = _tail = new_pthread;
} else {
_tail->next = new_pthread;
_tail = new_pthread;
}
pthread_mutex_unlock(&_thread_list_lock);
return &(new_pthread->thread);

}

/* Invoked when return is reached from a process.
* This function will cause the returning thread to poison all of
* its outgoing channels if it hasn't done so yet. */
void _exit_thread() {
struct _pthread_node *this_thread = _get_thread(pthread_self());
struct _channel_list_node *curr_chan = this_thread->writing_channels;
while (curr_chan) {
if (!curr_chan->chan->poisoned)
_poison(curr_chan->chan);
curr_chan = curr_chan->next;

pthread_exit(NULL);
}

/* Called from within main to wait for processes to finish */
void _wait_for_finish(bool print_dot) {
struct _pthread_node *curr = _head;
while (curr) {
pthread_join(curr->thread, NULL);
curr = curr->next;
}
if (print_dot)
fprintf(stderr, "}");

56

/******************************** Lists *********************************/

union _payload {
int _int;
double _double;
char _char;
void *_cell;
struct _int_channel *_int_channel;

1

struct _cell {
struct _cell *next;
union _payload data;
int references;
int length;

s

struct _cell *_add_front(union _payload element, struct _cell *tail) {

struct _cell *new_cell = malloc(sizeof(struct _cell));

new_cell->references = 1;

new_cell->data = element;

new_cell->next = tail;

if (!tail)
new_cell->length

else {
new_cell->length = tail->length + 1;
tail->references++;

}

return new_cell;

1;

}
struct _cell *_get_tail(struct _cell *head) {
if ('head) {
fprintf(stderr, "Runtime error: cannot get tail of empty list");
exit(1);
}
return head->next;
}
void __ decrease_refs(struct _cell *head, int lock) {
if (lock)
pthread_mutex_lock(& ref_counting_lock);
if ('head) {
if (lock)
pthread_mutex_unlock(&_ref_counting_lock);
return;
} else if (head->references > 1)
head->references--;
else {
__decrease_refs(head->next, 0);
free(head);
}
if (lock)
pthread_mutex_unlock(&_ref_counting lock);
}

void _decrease_refs(struct _cell *head) {
//__decrease_refs(head, 1);

}

void _increase_refs(struct _cell *head) {
pthread_mutex_lock(&_ref_counting lock);
if (head)

57

head->references++;
pthread_mutex_unlock(&_ref_counting_lock);

}
union _payload _get_front(struct _cell *head) {
if ('head) {
fprintf(stderr, "Runtime error: cannot get head of empty list");
exit(1);
}
return head->data;
}
int _get_length(struct _cell *head) {
if ('head)
return 0;
return head->length;
}

struct _tokenGen_args {
struct _int_channel *ochan;
int token;
1
void *tokenGen(void *_args) {
struct _int_channel *ochan = ((struct _tokenGen_args *)_args)->ochan;
int token = ((struct _tokenGen_args *)_args)->token;
struct _cell *temp;
CALL_ENQUEUE_FUNC (token, ochan, int, false);
_poison((struct _channel *)ochan);
_exit_thread();
3
struct _printer_args {
struct _int_channel *chan;
3
void *printer(void *_args) {
struct _int_channel *chan = ((struct _printer_args *)_args)->chan;
struct _cell *temp;
while (_wait_for_more((struct _channel *)chan)) {
printf("%d", CALL_DEQUEUE_FUNC(chan, int, false));
fflush(stdout);
printf("\n");
fflush(stdout);

}
_exit_thread();

}
struct _interleaver_args {
struct _int_channel *chanil;
struct _int_channel *chan2;
struct _int_channel *ochan;
¥
void *interleaver(void *_args) {
struct _int_channel *chanl = ((struct _interleaver_args *)_args)->chani;
struct _int_channel *chan2 = ((struct _interleaver_args *)_args)->chan2;
struct _int_channel *ochan = ((struct _interleaver_args *)_args)->ochan;
struct _cell *temp;
while (_wait_for_more((struct _channel *)chanl) ||
_wait_for_more((struct _channel *)chan2)) {
if (_wait_for_more((struct _channel *)chanl)) {
CALL_ENQUEUE_FUNC(CALL_DEQUEUE_FUNC(chanl, int, false), ochan, int,
false);

}
else
if (_wait_for_more((struct _channel *)chan2)) {

CALL_ENQUEUE_FUNC(CALL_DEQUEUE_FUNC(chan2, int, false), ochan, int,
false);

58

else
5

}

_poison((struct _channel *)ochan);
_exit_thread();

}

int main() {
_initialize_runtime(false);
struct _cell *temp;
struct _int_channel *chanl MALLOC_CHANNEL (int);
_init_channel((struct _channel *)chanl);
struct _int_channel *chan2 MALLOC_CHANNEL(int);
_init_channel((struct _channel *)chan2);
struct _int_channel *chan3 MALLOC_CHANNEL (int);
_init_channel((struct _channel *)chan3);
int intl1 = 1;
int int2 = 2;

{
pthread_t *_t = _make_pthread_t("tokenGen");
struct _tokenGen_args *_margs = malloc(sizeof(struct _tokenGen_args));
struct _tokenGen_args _args = {chanl, intl};
memcpy ((void *)_margs, (void *)& args, sizeof(typeof(_args)));
pthread_create(_t, NULL, tokenGen, (void *)_margs);

s

{
pthread_t *_t = _make_pthread_t("tokenGen");
struct _tokenGen_args *_margs = malloc(sizeof(struct _tokenGen_args));
struct _tokenGen_args _args = {chan2, int2};
memcpy ((void *)_margs, (void *)&_ args, sizeof(typeof(_args)));
pthread_create(_t, NULL, tokenGen, (void *)_margs);

s

{
pthread_t *_t = _make_pthread_t("interleaver");
struct _interleaver_args *_margs = malloc(sizeof(struct _interleaver_args));
struct _interleaver_args _args = {chanl, chan2, chan3};
memcpy((void *)_margs, (void *)&_ args, sizeof(typeof(_args)));
pthread_create(_t, NULL, interleaver, (void *)_margs);

s

{

pthread_t *_t = _make_pthread_t("printer");
struct _printer_args *_margs = malloc(sizeof(struct _printer_args));
struct _printer_args _args = {chan3};
memcpy((void *)_margs, (void *)& args, sizeof(typeof(_args)));
pthread_create(_t, NULL, printer, (void *)_margs);

¥

_wait_for_finish(false);

}

/ Lessons Learned

7.1 Adam

When in doubt, restart your computer. When dealing with software that creates a lot of threads, you can run
into strange resource limit issues that are easily resolved by starting with a clean system. Draw and hand
simulate algorithms you don’t understand. Bitonic sort seemed very alien to me until | started drawing it out.
When programming in a different paradigm (object-oriented, functional, dataflow), it seems hard at first, but you
just have to think about problems in an entirely different way. Bitonic sort and the fibonacci program
demonstrate this.

59

7.2 Zach

Overly broad github issues such as “clean code” will never be closed. Writing tests that break the program is a
much better way to prioritize things that need to be fixed. If your team has a designated time to meet, make
sure the group meets. Saying “let’s just work individually” can be interpreted as “I have other work | need to
do.” If one or two group members cannot make a meeting, still meet, and do not cancel. Doing a little each
week keeps momentum going and is much more effective than pushing back work for another week. Make
sure everyone has something to work on. No one should be waiting on another group member.

7.3 Mitchell

Much of our time seemed at first to be unproductive: we spent 80% of it talking, planning, and brainstorming.
20% of our time together was spent on programming. But, | came to realize that communication is VERY
important. Everyone needs to be on the same page. Discussion often exposes potential pitfalls, thereby
lessening the group’s chances of succumbing to them.

In addition, | realized that writing a compiler is an emergent phenomenon. One second, you have a bunch of
crazy disconnected parts that don’t run, and in the next, they somehow work together to become a compiler.
There’s no reason to get discouraged if the task seems daunting; a tiny step every day will bring all of the
moving parts together eventually. The most important thing is the test suite. It holds everything together like
glue.

7.4 Hyonjee

Setting up two regular weekly meeting times at the beginning of the semester really helped our group make
consistent progress throughout the duration of the project. It was also very helpful to discuss design and come
up with a general implementation plan before writing the corresponding code. This ensured that our group was
on the same page and allowed us to develop parts of the system simultaneously. Lastly, we would not have
been successful without a solid test framework. With multiple people contributing code, a thorough test suite
was the most effective way to make sure we didn’t break things in the system. Tests also gave us tangible
goals and direction as we neared the end of our project.

8 Appendix

Table of Contents & Authorship
8.1 scanner.mll

e Primary contributor(s): Zach and Adam

e Secondary contributor(s): Mitchell and Hyonjee
8.2 ast.ml

e Primary contributor(s): Mitchell
8.3 parser.mly

e Primary contributor(s): Adam and Mitchell

e Secondary Contributor(s): Zach and Hyonjee
8.4 sast.ml

e Primary contributor(s): Mitchell
8.5 semantic_analysis.ml

e Primary contributor(s): Mitchell

60

e Secondary contributor(s): Zach, and Hyonjee
8.6 compile.ml

e Primary Contributor(s): Mitchell

e Secondary contributor(s): Hyonjee and Zach
8.7 c_runtime.c

e Primary Contributors: Mitchell and Hyonjee
8.8 flowc.ml

e Primary Contributor(s): Adam

e Secondary Contributor(s): Mitchell

Omitted from Appendix
bitonic sort
e Primary Contributor(s): Adam
tests
e Primary Contributor(s): Zach
e Secondary Contributors(s): Mitchell, Hyonjee, Adam

8.1 scanner.mll

1 { open Parser

(* Definitions

digit+))

61

RETURN }
{ POISON }
INT }

B DD
O O J o

(€}

(&}
O W N P C

)NTINUE }
STRING }
LIST }

IN }

[G2BNE,

o O

[C,0NE)]
g o

(€}

"void" C

"true" 3 LITERAL (true) }

"false" 30(LITERAL (false) }

digit+ as 1lxm { NT LITERAL(int of string lxm) }

double as 1lxm { DOUBLE LITERAL(float of string 1lxm)}

\"'" ([*'\"']* as 1lxm) '\"' { STRING LITERAL(lxm) }

"\''O([' '-'s&" "('-'['" '"]'-'~'] as lxm) '\'' { CHAR LITERAL(lxm) }
[fa'='z" "A'"=-'Z"]['a'=-"z" '"A'="'Z"'" '0'-'9" ' '"]1* as lxm { DENTIFIER(1xm) }
eof { EOF }

_ as char { raise (Failure("illegal character A Char.escaped char)) }

O @

oy O oY U1
S w N PO

o O O

ul

and comment = parse
'\n' { token lexbuf }
| { comment lexbuf }

(* ast.ml *)
type bin op =

Plus

w

> 00 J O

g s W N

o

~J

type unary op
type direction = |

(* All
type flow type =

Cha ~]1 of flow type * direction
List of flow type

type dot initializer =
{ dot initializer id : string; dot initializer val
}
and expr =
IntLiteral of int
: of string
of bool
> of char
bleLiteral of float
istInitializer of expr list
Id of string
BinOp of expr * bin op * expr
UnaryOp of unary op * expr
Fur onCall of string * expr list
expr

(G2 NG ¢

type variable declaration =
{ declaration type : flow type; declaration id
declaration initializer : expr

(&}
g s W N

o O

[C,0NE)]
o

~J

type stmt =
xpr of expr
"k of stmt list
of expr
aration of variable declaration
of expr * stmt * stmt
'or of expr * expr * expr * stmt
While of expr * stmt

(€}
O @

o oy U
=}

o O
S W N C

o O)
ul

nue

[e)}

of expr

type function declaration =
{ return type : flow type; function name : string;
arguments : variable declaration list; has definition : bool;
body : stmt list

type declaration =
FuncDecl of function declaration

type program = declaration list

ET LBR
stoken P M E D E IGN
$token WR CHANN 2 > CHANNEL IN
stoken
$token
$token ()
$token DOUB “HAR O INT STRING LIST
stoken
$token
$token LIST LENGTH LIS
$token <int> INT LITERAL
$token
$token <char>
$token <bool> B
$token <string> STRING LITERAL
stoken <string> IDENTIFIER
$token EOF

$nonassoc NOELSE /* dummy variable for lowest precedence */
$nonassoc ELSE
CHANNEL

NN N
w N -

NN
~J oy U1 W

O

MODULO

$nonassoc UNARY OP /* dummy variable for highest precedence */

) W W W W NN
w N~ o

start program
stype <Ast.program> program

program:
declarations EOF {List.rev $1}

declarations:
/* nothing */ { [] }
| declarations var declaration SEM
| declarations function declaration

function declaration:
flow type IDENTIFIER LPAREN arg decl list RPAREN LBRACE stmt list RBRACE
{

return type
function ne
arguments

has definition

o U1 C
o~

n
o

body = $7;

]

o U

o1
(o]

PAREN arg decl list RPAREN LBRACE RBRACE

[¢

o O

w N P O W

return type

function name

arguments =

has definition = false;
body = []-

Yy O)Y O)Y O

o)
~J Oy U1 W

o O

o O
O

arg decl list:
/* nothing */ {[]}
| arg decl {[S1]}
| arg decl COMMA arg decl list {$1::53}

1 J
w N = C

i

arg decl:

simple var declaration {$1}

O 0 1 o U

® 0 © -~
w N P O

(€2

flow type GT
LT flow type G
type

UT flow type

© O O o

o 0o

declaration:
simple var declaration

N P O W o

O O O

| init var declaration

(e}
w

simple var declaration:
flow type IDENTIFIER {{declaration type
declaration id
declaration initializ

©
S

o

O
~J

©
(o]

init var declaration:

> O

| flow type IDENTIFIER AS SN expr {{declaration_ type

Q

declaration id 2§
declaration initializer = $4}}

> O O O
w NP O W

stmt list:
stmt {[$S1]1}
| stmt stmt list {$1::52}

o O o
~J oy U1 W

=)

o
O

stmt:
expr stmt {S$1}
compound stmt {$1}
selection stmt {s1}

Q

iteration stmt {s1}

=B e
w N =

var declaration SEMI {Declaration
jump stmt {$1}
poison stmt {s1}

i
J oy U1

expr stmt:

exp gEM: {Expr(s1)}

compound stmt:
stmt list RBRACE {Block($2)}
RBRACE {Block([])}

selection stmt:

IF LPAREN expr RPAREN stmt %$prec NOELSE {If($3, $5, Expr (Noexpr))}
LPAREN expr RPAREN stmt ELSE stmt {If(S3, S $7)}

iteration stmt:
WHILE LPAREN expr RPAREN stmt {While($3, $5)}
| FOR LPAREN expr opt SEMI expr opt SEMI expr opt

jump_stmt:
RETURN expr SEMI {Return($2)}
RETURN SEMI {Ret expr) }
CONTINUE SEMI {Continue}
EMI {Break}

IDENTIFIER SEMI {Pc 1 (Id($2))}

expr_opt:
/* nothing */ {Noexpr}
| expr {$1)

expr list:
expr {[$1]}
| expr COMMA expr list {$1::$3}

INT LITERAL {IntLiteral($1)}
)0 R bleLiteral($1)
STRING LITERAL {StringLiteral(S$1)
CHAR LITERAL {CharLiteral($1)}
BOOL LITERAL {B teral ($1)}
IDENTIFIER {Id($1)}
LBRACKET expl"ilist RBRACKET {ListInitializer($2)}
CKET RBRACKET {ListInitializer([])}
{Unary
V NEL IDENTIFIER

function call {s$1}

AT expr {BinOp($1l, Conc

expr {BinO

expr {

expr TIMES expr {BinOp

}
}

expr DIVIDE expr {BinOp($1l, Divide,
expr MODULO expr {BinOp($1, M
expr EQ expr {BinOp($1l, Ec $3

o U

expr NEQ expr {BinOp

expr LT expr {BinOp

expr GT expr {Bin

expr expr {BinOp

expr G expr {BinC

expr AND expr {Bir

expr OR expr {BinOp($1,
IDENTIFIER GN expr {Bi
LPAREN expr REN {$2}
NOT expr (O

W NP O W oo

MINUS expr y
LIST LENGTH expr %prec UNARY
LIST TAIL expr S%prec UNARY OP {

function call:

) ,PAREN RPAREN {FunctionCall($l, [1)}
| IDENTIFIER LPAREN expr list RPAREN {FunctionCall($1l, $3)}

(* sa

open

type s dot initializer =
{ s_dot initializer id : string; s dot initializer val

}

1
2
3
4
5
6

(* typed expre ion *)
and expr details =
TIntLiteral of int
Literal of string
teral of bool
cral of char
elLiteral of float
1itializer of typed expr list
of string

g s W N E O w o

=
J O

of typed expr * bin op * typed expr
)p of unary op * typed expr
ionCall of string * typed expr list

N N 4
= O W ©

typed expr = (expr details * flow type)

type s variable declaration =
{ s declaration type : flow type; s declaration id : string;
_declaration initializer : typed expr

o U W N

DN NN NN
o J

USINN}
o

of typed expr
k of s stmt list
urn of typed expr
SDeclaration of s variable declaration

(0%
=

n W
Sw N

SIf of typed expr * s stmt * s stmt
SFor of typed expr * typed expr * typed expr * s stmt
hile of typed expr * s stmt
inue

Bw W w w w w
O W © -1 o Ul

S
=

type s function declaration =
{ s_return type : flow type; s function name : string;
s _arguments : s variable declaration list; s has definition : bool;
s body : s stmt list

type s declaration =
| SvarDecl of s variable declaration | SFuncDecl of s function declarati

type s program = s declaration list

8.5 semantic_analysis.ml

(* semantic analysis.ml - take an ast and produces an

open Sast

g w N

type symtab =
{ parent : symtab option; variables : variable declaration list

}

J

type function entry =
{ name : string; param types : flow type list; ret type : flow type
}

type environment =
{ return type : flow type option; symbol table : symtab;
funcs : function entry list; in loop : bool

let check progam (prog : program) : s program =
let rec find variable decl (symbol table : symtab) (name : string)
variable declaration =
try
List.find (fun var decl -> var decl.declaration id = name)
symbol table.variables
with
| Not found ->
(match symbol table.parent with
| Some parent -> find variable decl parent name
| _ -> raise Not found) in
let find variable type (symbol table : symtab) (name : string)
flow type =
let vdecl = find variable decl symbol table name
in vdecl.declaration type in
let is logical (expr : typed expr) : bool =
match expr with
(_, Bool) | (_,
el (t, dir)) -> true
_ —> false in
let is arithmetic (expr : typec
match expr with | (_, Int) |
let string of binop =
function

-> "xn
> n/m
-> ngmn

->
nd => "->"
=-> "g&"
-> g
ncat ->
agn =->
let string of unop =
function
1\‘17“ I \VAS _> ”"\S”
_> n_mn

[¢

o oy
) = O

)

(9}
o

o)

Lis gth =-> "#"
| ListTai => """ in

let rec string of type
function

Int => "int"

Jouble =-> "double"

o
o O B W

©

"y "

1 O OO0 O OY O

-> "string"
(t, Nodir) -> "channel<" * ((string of type t) %~ ">")
> (t, In) -> "in A (string of type t)
Chanr (t, Out) -> "out " ~ (string of type t)
List t -> "list<" # ((string of type t) # ">") in
(* Helper function to check if a variable is a previously declared global ¥*)
let rec is declared global var (name: string) (symbol table: symtab) : bool =
if (List.exists (fun var decl -> var decl.declaration id = name) symbol table.variables)
then (match symbol table.parent with
| Some parent -> fa
| _ => true)
else (match symbol table.parent with
| Some parent -> is declared global var name parent
| -> false)

o O

~J
~J

|

|

|

|

| Ve \

| P c
|

|

|

|

[e¢]

J J

@
oUW N O W

© 0 @

@ o

[e0}
J

in
let check binop (el : typed expr) (e2 : typed expr) (op : bin op) (env: environment)
typed expr =
let (expr detailsl, tl) = el
and (expr details2, t2) = e2
in
match op with
| Plus | Minus | Times | Divide | Modulo | t | Leg
if (is_arithmetic el) && (is_arithmetic e2)
then
(let final t
if (tl = Double Jouble) then Double else Int
in ((TBinOp > D) e2)), final type))
else
raise
(Invalic
("ope

@
O o

O W W Y
DSw N

O ¢
n

O O O W W W
P O W 0 J o U

inop op) 4
atible with " #

A

o O
o U b W N

((string of type tl)
(" and " * (string of type t2)))))))

)

=}
©

[«

1 | Or | Eqg
if (is logical el) && (is_logical e2)
then ((TBinOp (el, op, e2)), Bool)
else
raise
(Invalic
("Atte a 1 C: operation” # "on invalid
ssign =->
(match expr detailsl with
| TId name ->
if tl = t2
then (if (is_declared global var name env.symbol table)
then (raise (Failure "Global variables are immutable"))
else((TBinOp (el, op, e2)), tl))
else
raise

[l 5
P P P O C
N P O

Iden
| _ -> raise (Inva
Send ->
(match t2 with
| C el (t, Out) when t tl 3in0Op (el, op, e2)), tl)
| _ -> raise (Invalid argument] write to channel"))
Concat ->
(match (tl, t2) with
I (L, List t) ->
if t = tl
then ((TBinOp (el, op, e2)), t2)
else raise (Failure m
| (_, _) -> raise (Failure >
let check unop (e : typed expr) (op : unary op)
let (_, t) = e
in
match op with
| Retrieve =->
(match t with
In channels can be operated on by @ operator. *)
: (t, n) => ((TUnaryOp (op, €)), t)
| List list type -> ((TUnaryOp (op, e)), list type)
| _ =>
raise
(Invalid argument
("operator " 4
((string of unop op) *
(" not compatible with " % (string of type t))))))

[l el
(GG N
Sw N

Negate =->
(match t with
| Int | Double => ((TUnaryOp (op, €)), t)

(€3}

w1

Ul
o O

b t
o U1 C
o J

oy U

((string of unop op)
not patible with of type t))))))

ListLength ->
(match t with
| List _ => ((TUnaryOp (op, e)),

o U W N O W

o) O)Y O O O)Y O

J

argument
perator " 4
((string of unop op) *
(" not compatible wi (string of type t))))))
ListTail ->
(match t with
| List _ -> ((TUnaryOp (op, e)), t)
| _ ->
raise
(Invalid
("ope
((string of unop op) *
(" not compatible wi (string of type t))))))
Not =->
(* Channels and such can be operated on by the negation operator *)
if is logical e
then ((TUnaryOp (op, €)), Bool)
else
raise
(Invalic
("operator
((string of unop op)
(" not tible with " # (string of type t))))) in
let string of type list type list =
List.fold left (fun acc elm -> acc * (", " %~ (string of type elm)))
(string of type (List.hd type list)) (List.tl type list) in
let string of actual list actual list =

@ O C
o U1 B W

@

A

© o @
O © ® I

O ¢

©

o
Sw N

List.fold left (fun acc elm -> acc * (", " %~ (string of type (snd elm))))
(string of type (snd (List.hd actual 1list))) (List.tl actual list) in

F
o ©

w

N H 5 t
> O O W W W W
o -J o

C

(@}

o U W N O W

o o

3

NDNDDNDDNDDNDDNDDNDDNDDNDDNDDNDDNDN
PP PP OO
w NP O w

>N
—
SIS

(* Should get consolidated *)
let built in funcs =
[{ name = "print string"; param types = String]; ret type
{ name "print int"; param types = [In ; ret type = Void;

"

name = "print char"; param types = [Char 2 3 _type

name "print double"; param types [Double ; ret
name = "println"; param types = []; ret type d
{ name = "rand"; param types = []; ret type = Double;
let check function call (name : string) (actual list : typed expr list)
(env : environment) : typed expr =
try
(* Attempt to find the function in the current environment *)
let f entry = List.find (fun f -> f.name = name) env.funcs in
(* Get rid of channel directions, for the purpose of
* parameter matching *)
let no dir param types =
List.map
(fun p type ->
match p type with
| Channel (ft, dir) -> Channel (ft, Nodir)
| _ -> p_type)
f entry.param types in
(* If not a built in function, it should be one to one match.*)
let actual param types =
List.map (fun texp -> let (e, t) = texp in t) actual list
in
if
(no dir param types <> actual param types) &é&
(f entry.param types <> actual param types)
then
raise

A

list £ entry.param types)
(". actual tyrg : oA
(string of actual list actual 1list)))))))
else ((TFunctionCall (name, actual list)), (f entry.ret type))

with | Not found -> raise (Failure ("Undeclared fur on " * name)) in

(* Expressions never return a new environment since the can't mutate the

environments *)
let rec check expr (env : environment) > P : typed expr =
match e with
IntLiteral i -> ((TIntLiterec i), Int)
s => ((TStr iteral s), St
b -> ((TBoolL al b), Bool
eral c -> ((TCharL al c),
iteral d -> ((TDoubleLiteral d), Double)
(* Try to find the variable in the symbol table *)
let t =
(try find variable type env.symbol table s
with | Not found -> raise (Failure ("Undec
in ((TId s), t)
BinOp (el, op, e2) ->
let checked el = check expr env el
and checked e2 = check expr env e2
in check binop checked el checked e2 op env

ListInitializer expr list =->
if (List.length expr list) == 0
then (TNoexpr, Void)
else
(let checked expr list =
List.map (fun exp -> check expr env exp) expr list in
list type = snd (List.hd checked expr list) in
let of same type =
t.for all
(fun e -> if (snd e) = list type then true else false)
checked expr list
in
if of same type

then ((TListInitializer checked expr list), is ist type))

>N NN

N
@

DN DNDDNDDNDDN

N

N

w NN DN

o W WO

3
3
3

w W

o O
o U b W N

w w w

o

w W W

W W w ww

w W W

w W
S S N e e e e e = =)

w w w

w W W

W W w w w

w W W

DN DNDDNDDNDDN

J J

DN DNDDNDDNDDN

w W

o o
o O

J J

~ J

J

Sw N

] 3 3
o O

~J

[e¢]

© O O 0 O
J o U1 W NP O W

@
O o

O W W Y
DSw N

O
n

o
~ o C

©

o

o
= O

o

o

S wWw NP O w oo

~ o U

[e¢]

o U W N O W

o

W W W NN NDNDDNDDNDDN
O U ~J

DSw N

(€2}

~J o

"List must be initialized
UnaryOp (unary op, e) —->
let checked expr = check expr env e
in check unop checked expr unary op
nctionCall (name, actual list) ->
check function call name
(List.map (fun exp -> check expr env exp) actual list) env
| Noexpr =-> (TNoexpr, Void) in
let check variable declaration (env : environment)
(decl : variable declaration) =
let (expr details, t) = check expr env decl.declaration initializer
in
(* Either the expression needs to match the declaration's type, or it
* can be Noexpr (which is wvoid) *)
if (t = decl.declaration type) ||
then
(try
let _ =
(* Try to find the a local variable of the same name. If found, it
List.find
(fun vdecl -> vdecl.declaration id decl.declaration_id)
env.symbol table.variables
in
raise
(Failure
("Variable " #
(decl.declaration id
" alread clared in 1lo e")))
with

| (* If not found, add the declaration to the symbol table and return the new environment

Not found =->
let new symbol table =
{
(env.symbol table)
with
variables = decl :: env.symbol table.variables;
in
new_env = { (env) with symbol table = new symbol table; }
s _var decl =

declaration type = decl.declaration type;
s declaration id = decl.declaration id;
declaration initializer = (expr details, t);

in (new_env, s var decl))
else
raise
(Failure
(decl.declaration id #
ot match expr
nitialize " #
((string of type decl.declaration type) *
(" with " ~ (string of type t))))))) in
let check arg declaration (env : environment) (decl : variable declaration)

match decl.declaration initializer with
> Xpr -=>
check variable declaration env decl
->
raise
(Failure
("Error in argument declaration for
(decl.declaration id #
": Cannot have default values in function dec
let rec check stmt (env : environment) (stmt : stmt)
(environment * s stmt) =
match stmt with
| (* Expressions cannot mutate the environment, so the current env is
* returned ¥*)

Expr e -> (env, (SExpr (check expr env e)))
(* Blocks have their ov scope, so the environment must be the
* after the block has been semantically analyzed. Hence, as
* Expr, we return the current env. *
Block stmt list ->
let new symbol table =
{ parent = Some env.symbol table; variables = []; } in
let (_, checked stmts) =
check stmt list { (env) with symbol table = new_symbol table; }
stmt list false
in (env, (SBlock checked stmts))
(* A return statement must have the same return type as the
one we're expecting. Recall that the return type is set before
* entering a function. *)
Return e ->
let (expr details, t) = check expr env e
in
(match env.return type with
Proc =->
if t = Void
then (env,
else raise (Fai
| Some rtype ->
if t = rtype
then (env, (SReturn
else raise (Fail
I -> raise (Failure et stateme
(* Declarations WILL mutate the environment,

W W W
y U1 01 U1 C
© J o Ul

oUW N O W

w W
oy

w w w
o O O)Y O

w W W
o O

o)
J

* return the new environment. *)
eclaration vdecl =->
let (new env, vdecl) = check variable declaration env vdecl

D W
J O O
O o

in (new_env, (S claration wvdecl))

w w W C

(* The restriction on expression in an if statement is that
* it must be logical (truey or fal *)
If (e, sl, s2) ->
let checked expr = check expr env e
and (_, checked stmtl) = check_stmt env sl
and (_, checked stmt2) = check stmt env s2

3
3
3

w W

~ J

in

3
© © -

if is logical checked expr
then (env, (SIf (checked expr, checked stmtl, checked stmt2)))
else raise (Failure "I lid exg sion in \"if\" s ent")
(* Similar restrictions as for if statments. However, we must additionally
* make sure to set the environment's in loop variable before checking

W wWwwwww
W 0 0 I
= O

[e0}

* the statements (in case the statements include a break or continue *)
For (el, e2, e3, s)
let checked exprl = L
and checked expr2 = check env e2
and checked expr3 heck expr env e3
and (_, checked_stmt check stmt { (env) with in loop = true; } s
in
if
(is_logical checked exprl) &&
((is logical checked expr2) && (is logical checked expr3))
then
(env,
(SFor (checked exprl, checked expr2, checked expr3,

D W
@
o U b W N

env el

pn W W
© O O C

HNoW W W W C
O O WYV W ©
S wWw NP O w oo

n W W
O W

o O

checked stmt)))
else raise (Failure "Invalid e sion ir for statement")
While (e, s) ->
let checked expr = check expr env e
and (_, checked stmt) = check stmt { (env) with in loop

© o
~J

[e¢]

w W W C

o

o

in

o

if is logical checked expr
then (env, (SWhile (checked expr,
else raise (Fai "€ nvalid exrg in \"v e statement")
(* Continue and brea don't make se outside of a loop *)
bd
if env.in loop
then (env,
else raise (F
k =>

(@}

oUW N O W

o o

3

[S T N T T R ST S SN e SN AN
R P O OCcC
o W @

= o

if env.in loop = true
then (env, SB:)
else raise (Failure "Not in a loop")

| (* Only "out" channels can be poisoned from inside a process. *)
son e —->
let (expr details, t) = check expr env e

in
(match t with
nel (t, ->
(env, (S son (expr details, (Channel (t, Out))
Channel (t, _) -> raise (Failure "Can only poison
| _ -> raise (Failure "Attempting poison a non-chanr
and check stmt list (env : environment) (stmt list : stmt list)
(must return : bool) : (environment * (s stmt list)) =
(* The environments have to be folded through the stmt list.
* Each statement takes the updated environment generated from
* the last one. acc (the accumulator) is bair of env, checked
* statements. The statements must
* backwards in a list. *)
let =
if must return
then
(try
ignore
(List.find
-> match s with | Return _ rue _ —> false)

with
| Not found -> raise (Failure "Non-void) 11 not return"))
else () in
let (new env, checked stmts)
List.fold left
(fun acc stmt ->
let (env', stmt node)
in (env', (stmt node
(env, []) stmt list
in (new env, (List.rev checked stmts)) in
let check function declaration (env : environment)
(fdecl : function declaration) =
(* Get the /pes f the function's parameters *)
let p types
Li .map (fun vdecl -> vdecl.declaration type) fdecl.arguments
(* Make a function entry for the current function *)
let f entry =
{
name = fdecl.function name;
param types = p types;
ret type = fdecl.return type;
} in
let new funcs = f entry :: env.funcs in
(* Make a new symbol table for the function scope
let new symbol table =

O C

{ parent = me env.symbol table; variables = []; } in
(* Add the function currently being checked to the environment. This

o U1 W W

* needed in the case of recursion (ie encountering a function call
* referencing this function in the body). Furthermore, set the return

o O O O

* type and symbol table with now-empty local scope
let new env =

{

o

J J

(env)
with
func

~ J

F N N T S ST T S N
o
O o J

J

‘b—l\ﬁ\'\)\)[\)}_‘

return type g e fdecl.return type;
symbol table = new_symbol table;
} in

B D
~J J —
~ o U

Get the arguments into the scope by folding the environment

o

* over the parameter list ¥*)
let (env _with args, arg decl list) =
List.fold left
(fun acc arg decl ->

(IS
0 ~J -
[@2aNe]

let (env', arg node) = check arg declaration (fst acc) arg decl
in (env', (arg node :: (snd acc))))

©

(new _env, []) fdecl.arguments in
(* Check the function body. Discard the environment. We won't need it

@ o
o U1 W

* outside the scope of the function body. *)
let must return =

[e0}
J

@
O o

cl.return type = Voic
decl.return type >roc) || (fdecl.function name = "main"))

in

> © W O

_, func_body) =
ck stmt list env with args fdecl.body must return in

o
DSw N

O ¢
n

o
~ o C

func body =
if (!'=) fdecl.return type Proc
then func body
else func body @ [SExitProc] in
(* Create the function node to return *)
let func node =

{

s return type = fdecl.return type;

[I B S Y S N N T S T S SN SNt S e S)
O O VW W W
P O W ©

o

o1 U1

s function name = fdecl.function name;

s_arguments = List.rev arg decl list;(* We collected list in re
s has d

n ool
o o
o U b W N

inition = true;

(G20,

s _body = func body;
}

in

[G2BNE,
o

C S NNG)]
P O o
iy

(* Return the original environment, with the current function appended *)
({ (env) with funcs = new funcs; }, func node) in
(* Check declaration returns a new environment, which is populated with the

O © ® J

* newly declared symbol *)
let check declaration (env : environment) (decl : declaration)
(environment * s declaration) =
match decl with
| VarDecl vdecl ->
let (new env, checked vdecl) = check variable declaration env vdecl
in (new env, (SVarDecl checked vdecl))
| FuncDecl fdecl ->
let (new _env, checked fdecl) = check function declaration
in (new env, (SFunc 1 checked fdecl)) in
(* Here, we set up the initial environment. The return type is None, meaning
* that we have yet to descend into semantically analyzing functions. The
* symbol table is at the top level and has no parent. The functions in the
* current scope are only the built in ones. *)
let env =
{
return type = None;
symbol table = { parent None; variables = []; };
funcs = built in funcs;
in loop = false;
} in
(* acc is the accumulator it's a tuple of env, decl list.
* the fold left builds the accumulator, threading the environment
* through the list of declarations. When the fold finishes, decl list
* should be a built list of s declarations ¥*)
let (_, decl 1list) =
List.fold left
(fun acc decl ->
let (new_env, snode) = check declaration (fst acc) decl
in (new _env, (snode :: (snd acc))))
(env, []) prog
in decl list

8.6 compile.ml|

1 (* Compile.ml -

35
36
37
38
39
40
41
42
43

a1

(60N

ul

o

(&)}

o U1
O © ® I C

Y O

oY OV O O O OV O
<o 0s WN P

o)
[e¢]

~J -

J J
w NP O W

supported channels =

let compile

(*

let print

(*

let rec translate
match ftype

[Int;

Int; Char; (Int,

upported lists = [

(program : s program) (dot bool) string =

resulting ¢ program should print a

then "true" else "

Toggle whether the

dot = if dot false" in

to

*
flow

Translate flow type
type

type

(ftype type) =

with

Int => "int"
oubl => "double"

el
(try
let _
in "struct
with Not
List t
(try
let = Li
in

ist.find (fun e -> t = e)
" A ((translate type t) _char
-> raise (Fai "

A " 11\%;

found lure Channe not

st.find (fun e -> t = e) supported 1i

"struct
ist not

dot graph

supported channels

(* Wrap channels used in a logical context in wait for more *)

let wait for more (exp:

string) (t: flow type) string

match t with

(*

let rec translate expr (expr
let translate bin op

Channel (_, _) re ((struct

_ —> exp in

->

channe

ion *)
typed expr)
typed expr)

typed expr) =

Translate a flow express
string =
(typed expl (bin op
(typed exp2

snd typed expl
snd typed exp2
trans typed expl
translate expr typed exp2

tl =
t2 =
expl =

let
and
and
and
in
match bin op with
Plus -> expl *
inus -> expl
-> expl *
-> expl
-> expl

ate expr
exp2 =

(G
A (H7n A

exp2)

exp2)

exp2)
exp2)
exp?2)

(H,<'V A
& (mym o
A (H " A
-> expl * ("==" ~*

-> expl *
-> expl *
-> expl *
q -> expl

-> expl *

=

wailt for more expl

("&&" 2

exp2)
exp?2)
exp2)
exp2)
A ("<=" A exp2)
("> exp2)

(1=
(< A

(">" A

—_n A

t1)
(wait for more exp2 t2))
->
(wait for more expl tl)
(G
Send =->
"CALL ENQUEUE FUNC (" A
(expl »
(H’ " A
(exp2 #

(2

A

(wait for more exp2 t2))

bin op)

*)

((translate type tl) #~ (", " * (print dot *~ ")")))))))
sign =>
(match (tl, (fst typed exp2)) with
| (List t, TListInitializer _) ->
let temp list name = "
let temp vdecl =
{

s_declaration type = List t;

temp " * expl in

s _declaration id = temp list name;
s _declaration initializer = typed exp2;
}
in
(translate vdecl temp vdecl false
(";\n" A (expl 4 ("=" A (temp_list_name * ";\n"))))
=-> expl * ("=" * exp2))
->
add front((union payload) " * (expl ~ (", A (exp2 ~ ")"))) in

O 0 0 @ @ C
© ®

O O
= O

o
o U b W N

(* Translate a flow unary operation *)

(e}

let translate unary op (unary op : unary op) (typed expr : typed expr) : string =
let exp = translate expr typed expr
in

©

match unary op with
=> "I" A exp
=> "-" %~ exp
>trieve -=->
(mat

> © W O

o
O © ® J

ch snd typed expr with
Channel (t, dir) ->
CALL DEQUEUE FUNC (" A
(exp *

SETIPN
(S

((translate type t) * (", " * (print dot * ")")))))

> O O O
Sw N

D> C
o O

| List t =->
let type to union element =
(function
Int -> ”7
Double -> o}
-> " char"

Channel (Int, _) " int channel"

> O O C
o J

e}

in
" get front (" % (exp * (")." * (type to union element t)))
| _ -> raise (Failure "Invalid type"))
| ListLength -> " ge ength (" * (exp ~ ")")

| ListTail -> " g ail ("™ » (exp ~ ")") in
let translate bool b = match b with | true -> "1" alse "0"™ in87

(* Translate a comma separated list of expre
let rec translate expr list (expr list : typed expr list) : string =
let translated exprs =
List.rev
(List.fold left (fun acc elm -> (translate expr elm) :: acc) []
expr list)
in String.concat

" "
’

translated exprs in
(* Translate flow type functions, including built-ins, to ¢ function calls *)
let translate function call (id : string) (expr list : typed expr list)

string =

match id with

| "print string" ->

"printf (\"%s\", " 4
((translate expr list expr list)

print int" ->

"printf (\"sd\", " 4

((translate expr list expr list) ; \n "fflush (stdout
print char" =>
"printf (\"%c\", " *
((translate expr list expr list)
nt double" ->
"printf (\"%G\", " 4
((translate expr list

orintln” => "printf (\"\\n\");\n" ~ "fflush(stdout)"
"rand" -> " (double)rand() / (double)RAND | b
_ =>dd ~ ("(" ~ ((translate expr list expr list) # ")")) in
(* Translate flow process invocations to c pthread create's ¥*)
let translate proce i : string) (expr list : typed expr list) : string =
let pthread decl
"pthread t* = make pthread t(\"" * (id ~ "\");\n") in
let malloced args =
"struct " 4
(id »
(" args

* margs =

)]
o

ul

(* Collect the args into
let args struct =
"struct " #
(id »
(" args

o O O

DSw N

o O

((transla

e
n

(* Copy the struct over
let copy ruct =

"

[l el
o)
~ o C

y ((void*) margs, void? & args,

J O O O

o

(* Create the pthread for this process *)
let pthread creation =

"pthread create(t, NULL, " ~ (id ~ ",
in

" A

{\n"
(pthread decl 4
(malloced args %

(args_struct * (copy struct * (pthread creation % "\n}")))))

J J

O © © I C

match expr with

o J

| -> string of int i

I _) => M\ " A (C, A H\\HH)

| _) —-> translate bool b

| Char tera _) > "\'" ~ ((String.make 1 c) ~ "\'")
| ;
|
|

[e0}

1
82
83

4

_) -> string_of float d

0 O C

(o4}
o O

N0p TOXprl, bin op, expr2), _) ->
translate bin op exprl bin op expr2

@ o
o J

(TUnaryOp (unary op, expr), _) -> translate unary op unary oOp expr
(TFunctionCall (id, expr list),

translate process call id expr 1i
(TFunctionCall (id, expr list), _) -> translate function call id expr list
(TListInitializer expr list,) —>

H{H A

[e0}

o U W N O W

o

©

((translate expr list expr list) "}
(TNoexpr, _) -> ""

o W

© o

(* Translate flow variable declaration to ¢ variable declaration *)

J

(e}

and translate vdecl (vdecl : s variable declaration) (is arg : bool) =
let translated type = translate type vdecl.s declaration type in

©

[l el
o o
o W @

translated type *
(ll " A

>

A

(vdecl.s declaration id
(n " ~ b

C

o

(* This portion deals with initializing variables. ¥*)
(match vdecl.s declaration type with
(* If the declaration is a channel, we need to perform a malloc

DSw N

o o

(€2}

NN NN NN

* and also initialize the struct associated with the channel *)
“hannel (t, Nodir) ->
(* If channel being translated arg, no malloc needed *)
if is arg then ""
else
(match fst vdecl.s declaration initializer with
| TNoexpr =>
(* Perform the malloc with the pro struct.
* This is taken care of by the runtime with the
* MALLOC CHANNEL macro ¥*)
”lfl,‘,LJi"»('ifl NEL (" #
((translate type t)

A

(");\n" *
This will initializes the locks,
init channel((struct channel *)
(vdecl.s declaration id #~ ")"))))

(* Scenario where a channel is dequeued from a
* or returned from a function *)
: | TFunctio

(translate expr
vdecl.s declaration initializer)
_ -> nu)

| List t ->
(* If the list is an arg, it need not be initialized *)
if is arg then ""
else
(let list initialization statements =
(* Lists can be initialized in a number of ways, ranging
* from intialization lists to function calls, to assignment. *)
match fst vdecl.s declaration initializer with
| ListInitializer expr list =->
List.map
(* Call add front on every expression in the initializer ¥*)
(fun expr ->
vdecl.s declaration id 4
(" = add front((unior payload)" 4
((translate expr expr) *
(H’" A
(vdecl.s declaration id * ")")))))
(List.rev expr list)
| TUnaryOp (ListTail, _) =->
[vdecl.s declaration_id %
(" " A

N
w
N

(translate expr
vdecl.s declaration initializer))]
id name ->
declaration id * ("=" ~ id name);
s(" * (id name *~ ")") 1]
| TFunctic L (.,) ->
[vdecl.s declaration_ id
(" " A

(&)}

25

N
U U1
o U1 W W

[¢

w1

o U1
o © ©® I

A

(translate expr
vdecl.s declaration initializer))]
Noexpr => ["" 1]
| _ -> raise (Failure "Invalid list initializer ")

in "= NULL; " # (String.concat ";\n" list initialization statements))

D>NNNNDDN NN
(&)}

N
[e 2R
Sw N

->

(match vdecl.s declaration initializer with
| (TNoes:) > nn
|

) O)Y O O O)Y O
o J oy U

DN DNDDNDDNDDN

o)

n_mn

N

(translate expr vdecl.s declaration initializer)))))) in

~ J

(* Translates specifically those expressions that are used in
* boolean context. This is necessary to chec i f channel used
* boolean. *)
let translate boolean expr (typed expr : typed expr) : string =
let t = snd typed expr
in
match t with
| Channel (_, _) ->
" wait for more((struct channel*) " %

J J

J

J
Y O D W NP O W

J J
J

DN NN NN

((translate expr typed expr) * ")")
| _ -> translate expr typed expr in
(* Check the type of the poison token *)
let translate poison expr (typed expr : typed expr) : string =
let t = snd typed expr
in
match t with
| Channel (_,

n A

(e}
=

poison ((struct
((translate expr typed expr) * ");")
_ -> translate expr typed expr in

O O
=

N
O
o U b W N

>N NN

(* Translate a flow statement to a C statement *)
let rec translate stmt (stmt : s stmt) : string =
match stmt with
| SExpr e ->
let translated expr = (translate expr e)
in
(match fst e with
| (* This absurd match finds all list signments for ref counting *)
TBinOp (el, op, e€2) when (op = As) &&
(match snd el with | List _ -> true | _ -> false) ->
let list name = translate expr el in
let store temp = "t = (list _name * ";\n") in
let dec stmt = d o > refs (temp) ; \n"
and inc_ stmt _incr > refs(" * (list name *
(* First decrease the references to the list, in

©

O W

A

O © ® J

o

w w N DD DNDDN

o o o

D W
o
Sw N

>

A

C

o O

w w W C

o o
~J

USROS ON
o o
[e¢]

* prep for re t. Then, do the reassignment.
* Then, incre 1e referen 5 to the list, which
* now points to a new cell after reassignment *)
(inc_stmt # dec stmt))

w W W

A A

store temp
| _ -> translated_expr)
ck stmt list ->

"noA

(translated expr

w w w

\n
((String.concat "" (List.map translate stmt stmt list)) *~ "}
" A ((translate expr e) ~ ";")
ration vdecl -> (translate vdecl vdecl false) #
SIf (el, sl, s2) =->
"if (" A
((translate boolean expr el)
(")\n" ~
((translate stmt sl)
SFor (el, e2, e3, s) ->
"for (" #
((String.concat "; " (List.map translate expr [el; e2; e3 1))
(")\n" ~ (translate stmt s)))
e, s) —->
~ ((translate boolean expr e) * (")" * (translate stmt s)))

oUW N O W

w W W

J

n

=turn e return

a

w W
O o

[I e O = T = S S G SR I

A

w w w

A ("\nelse\n" #* (translate stmt s2)))))

DSw N

w W W

~ o C

w W

2
2
2
2
21:
2
2
2

o

e ("

w w w
w N
= O

-> "continue;
"break;"

-> translate
>

w W W

w W

(* unpacks the arguments to a process from void * args *)
let unpack process args (process : s function declaration) : string =

m\n" A

o U b W N

w w w

((String.concat ";
(List.map
(fun vdecl ->
(translate vdecl vdecl true)
(ll " A
(" ((struct "oa
(process.s function name
(" args¥) args)->" #
process.s_arguments))

A mo\pM)

O © ® I

w W W

A

N

D W
[T N S I S OV]
Sw N

N
o O

vdecl.s declaration id)))))

w W w

o J

w W W

[G2INTSNEEN N o

(* Translate flow function declaration to c¢ function]
let translate fdecl (fdecl : s function declaration) : string

w W

ul

(* Opening and closing statments are required to in main to initialize

w w w
I3

a1

(€31
o WNE O W

* and clean up the environment, respectively *)
let (opening stmts, closing stmts) =
if fdecl
then
((" _initialize runtime (" * (print dot #~ ");\n")),
(" wait fo 11ist A (print dot ~ ");\n")))
else ("", "")

w

I

.s function name = "main"

w W W

(&)}
J

D W
(60N
O o

w W
[©) W)
-

o)
)}

(* temp is a helper variable present in every funct
juggle around temporary lis during list reassignment for the

DSw N

* purpose of refere e} =)

USROS ON
o O O

ol

and temp list decl struct e 1* temp;\n" in

D W
N O
J o

(* Translate the function's argument c larations *)
let arg decl string list =

w C
» O)Y O
O © -

List.map (fun arg -> translate vdecl arg true) fdecl.s arguments

o)
J
o

D 00 1 O U & W N K C

in

~J

(* Procs have their args bundled into a struct. So,

* declaration of proc, that proc's argument struct must
(match fdecl.s return type with
| Proc ->

W @ie 57 -

w W w w w
~ J 3

J

(fdecl.s function name *
(" args{\n\t" #
((String.concat ";\n\t" arg decl string list) ~ ";
_-> ot
(* This is the actual c¢ function declaration *)
((translate type fdecl.s return type) %
(ll " A

w

(fdecl.s function name *

((match fdecl.s return type with
| Proc -> "(void * args)\n{" # (unpack process args fdecl)
>

w(n A

1 oy U1

0

arg decl string list) ~ ")\n{")) *

@

e}

(opening stmts
(temp list decl #
((String.concat ""
(List.map translate stmt fdecl.s body))
A (closing stmts * "\n}"))))))))

g W N o

(* Translate the flow program to a ¢ program *)
boilerplate header # (* The base ¢ runtime environment *)
((String.concat " translates all level function and variable decls. *)
(List.map
(fun decl
with
1 vdecl -> (translate vdecl vdecl false)
cDecl fdecl -> translate fdecl fdecl)
(List.rev program)))

S S\

[RKAKKK KK AR AR KA KA A Rk Ak Ak xkxx* Channel STrUCLS *HF * K &k &k kK kk k ok kk &k xkx k& kX kxkxx /

#define BASIC CHANNEL MEMBERS

d mutex t lock;

nd t write re
pthread cond t r _ready;
int front;
int back;
int VM SIZE;

pthread t re

struct channel {
BASIC CHANNEL MEMBERS
}i

struct int channel {
BASIC CHANNEL MEMBERS
int queue[l g

}i

struct char channel {
BASIC_ CHANNEL MEMBERS
char queue[1l(g

}i

struct double channel ({
BASIC CHANNEL MEMBERS
double queue[100];
}i

#define MALLOC C NEL (type)
hannel *)malloc (sizeof (struct ##type## channel));

int init channel (struct channel *channel) {
if (pthread mutex init (&channel->lock, NULL)
printf ("Mutex init failed");
return 1;

if (pthread cond init (&channel->write ready, NULL) +
pthread cond init (&channel->read ready, NULL) !=
0) |
printf ("Cond init failed");
return 1;
}
channel->claimed for reading
channel->claimed for writing
channel->MAX SIZE 100;
channel->front =
channel->back = 0;
channel->poisoned = fals

n

return 0;

JHRIKFI KKK KK Xk Kk kkkxkkxxk*xx* Global Thread Metadata ****xFxkkkkkxkkrkkkkxkkkxkkxx /

/* Node for inked list of channel names. Keeps track of channels that
* threads can write to. */

struct channel list node
struct channel *chan;
struct channel list node *next;

}i

o O

~J
~J

/* Defines a node of the global thread metadata list. */
struct pthread node {

pthread t thread;

struct pthread node *next;

char *proc name;

struct channel list node *writing channels;

}i -

[e¢]

J J

@
oUW N O W

© 00 @

/* The global thread metadata list */

struct pthread node * head = NUI

@ o

[e0}
J

L;
struct pthread node * tail = NULL;

@
O o

/* Lock for the thread metadata list
pthread mutex t thread list lock;
pthread mutex t ref counting lock;

0
=

> ©

o
DSw N

/* Finds a thread in the global threadlist given its id */
struct pthread node * get thread(pthread t thread id) {
pthread mutex lock (& thread list lock);
struct pthread node *curr = head;
while (curr) {
if (curr->thread == thread id) {
break;

O W W W W W
O 0 J o »n

o

curr->next;

o O
=

o
o U b W N

}

pthread mutex unlock (& thread list lock);

return curr;

o o

)

=}
©

[«

/* Gets the name of the process running on a thread,
* given the thread id */
char * get thread name (pthread t thread id) {
if (head == NULL)
return "";
pthread mutex lock (& thread list lock);
char *name = "";
struct pthread node *curr = head;
while (curr) {
if (curr->thread == thread id) {
name curr->proc_name;
break;

o
e

curr = curr->next;
}
pthread mutex unlock (& thread list lock);

return name;

void print dot node (struct channel *chan) {

fprintf (s rr, "{%d[label 1}->{%d[label=%s]}\n", (int)chan->writing thread,
_get thread name (chan->writing thread), (int)chan->reading thread,

get thread name (chan->reading thread)) ;

) N ~ ~ /
VAEEEEEEEREE R R EEEE R R R h:lqu-rzuo/bczquou) Macros ***xkkkkkkkkkkkkkhkkkkkkkxkk*k*x*x*

Given a token type, this macro generates an engqueue function
for the associated channel. */
#define MAKE ENQUEUE FUNC (type)
type enqueue ##type (type element, struct ##type## channel *c
bool dot print) {
ead mutex lock (&channel->lock) ;
pthread t this thread pthread
if (!channel->claimed
channel->claimed for
channel- iting t
struct pthread node
struct channel list
malloc (sizeof (struct channel
iting chan->next = this tt
(struct

e ((struct

iting thread
"Runtime error: proc % (thre 0x%$x) is trying .
"

"write a X onging to %s (thread 0x%x)\n
ad), (int)this
1 n > (channe iting thread),

Ul
o O

channel->w

[C2RN G2 G2 I
o J

(&)}

w NP O W

(o))

[l el

) Oy O

fprintf (stderr,
"Attempting to read from a channel that is empty and poisoned
exit (1) ;

channel->queue [channel->bac element;
channel—->} k = (channel-> ck > channel->MAX SIZE;

gnal (&channe
x_unlock (&channe
return element;

/* Create enqueue functions for ints, chars, and doubles */
MAKE ENQUEUE FUNC (int)

MAKE ENQUEUE FUNC (char)

MAKEiﬁNQU?UﬁiPUNC(double)

/* This macro calls the i e 1 function */
#define CALL ENQUEUE FUNC (e, c, dot enqueue ##t (e, c, dot)

Given a token type, this macro generates a dequeue function

for the associated channel. */

fine MAKE DEQUEUE FUNC (type)

ype _dequeue ##type (struct ##type## channel *channel, bool dot print) {
pthread mutex lock(&channel->1

pthread t thi

t
© 0 © C

O © © I C

5
©O

(e}

claimed for

is thread;

©

d for writing && do
> ((struct channel *)c
,>readihg7thr I= this

[l el
o
Sw N

F
O W

o O

Runtime err

5 t
© O
~J

N H
o
[e¢]

o U W N O W

o

o

(@}

to read from empty ct

o o

3

D>NNNNDDN NN

N
o
O o

channel->queue[channel->front];
(channel->front +

N N
= = O
= O G

nal (&channel->write ready);

N

pthread mutex unlock (&channel->1lock) ;

return result;

NN
=
w N

/* Make dequeue functions for int, char, and double channels */
MAKE DEQUEUE FUNC (int)

MAKE DEQUEUE FUNC (char)

MAKE DEQUEUE FUNC (double)

/* This macro calls the appropriate dequeue function */
#define CALL DEQUEUE FUNC(c, t, dot) dequeue ##t(c, dot)

/* Poison the channel, indicating that it won't be written to in the future */
void poison(struct channel *channel) {

pthread mutex lock (&channel->lock) ;

channel->poisoned = true;

pthread cond signal (&channel->read ready):;

pthread mutex unlock (&channel->lock);

This function is called whenever a channel is used in a boolean context.
Three cases:

1) Channel is poisoned and empty -> return false

2) Channel is nonempty -> return true
3) Channel is empty but not poisoned -> block

* /
bool wait for more (struct channel *channel) ({
pthread mutex lock (&channel->lock) ;
while (channel->size == 0) {
if (channel->poisoned) {
pthread mutex unlock (&channel->1lock) ;
return fa 2
else {
pthread cond wait (&channel->read ready, &channel->lock);

}
pthread mutex unlock (&channel->lock) ;
return true;

Jxh Kk kkkkkkkkkkkkkkxkxkx*k*x Migcellaneous ** *x %k xkkkkkkkkkkkkkkkxkxk /

/* Initializes global locks */

void initialize runtime (bool print dot) {
pthread mutex init (& thread list lock, NULL);
pthread mutex init (& ref counting lock, NULL);
srand (time (NULL)) ;
if (print dot)
fprintf (stderr, "digraph G{\n");

Create a pthread node and enqueue it on the list. Return
* its id for pthread create */

N

pthread t * make pthread t(char *proc name) {
pthread mutex lock (& thread list lock);
struct pthread node *new pthread
(struct pthread node *)malloc (sizeof (struct pthread node));
new pthread->next = NULL;
new pthread->proc name proc name;

O © © I C

new pthread->writing channels = NULL;
if (_head == NULL) {

_head = = new_pthread;
} else {

_tail->next = new pthread;

2
5
2
2
5
2
5

N
‘b—l\ﬁ\'\)\)[\)}_‘

_tail = new pthread;
}
pthread mutex unlock (& thread list lock);
return & (new pthread->thread) ;

@ J C

J J

D>NNNNDDN NN
o O

N
@

o U W N O W

/* Invoked when return is reached from a process.
* This function will cause the returning thread to poison all of
* its outgoing channels if it hasn't done so yet. */
void exit thread() {
struct pthread node *this thread _get thread(pthread self());
struct channel ist node *curr chan = this thread->writing channels;
while (curr chan) {
if (!curr chan->chan->poisoned)
poison (curr chan->chan) ;
curr chan = curr chan->next;

© 0 @

@ o

D>NNNNDDN NN
[e0}
J

N
@
O o

o W

exit (NULL) ;

DSw N

© o

(e}
n

/* Called from within main to wait for processes to finish
void wait for finish (bool print dot) {
struct pthread node *curr = head;
while (curr) {
pthfeadijoin(curr7>thread, NULL) ;

DN NN NN

©

w NN NN
o VW W W W
O 0 J o

o

curr = curr->next;

o
=

}
if (print dot)
fprintf (stderr,

w W W
o o

o

D W
o o
o U b W N

VAREEEEEEEEE SRR SRR E LIRS - E R e e

w W C
)

union payload {

[«

w
>

int int;
double double;
char char;

void * cell;

o O ©

struct int channel * int channel;

}i

Sw N

struct cell {
struct cell *next;
union payload data;
int references;
int length;

}i

~ o U

[e¢]

struct cell * add front (union payload element, struct cell *tail) {
struct cell *new cell = malloc(sizeof(struct cell));
new cell->references = 1;
new cell->data element;

oUW N O W

new cell->next = tail;

if (!'tail)
new cell->length

else {
new cell->length = tail->length + 1;
tail->references++;

}

return new cell;

J

w W W C

w W

o W @

pn W W

w W W C
DSw N

ol

struct cell * get tail(struct cell
if (!head) {
fprintf (stderr, "Runtime error: cannot get tail of empty list");

D W
J o

© © -

exit (1) ;

w w W C

N
=

return head->next;

void decrease refs(struct cell *head, int lock) {
if (lock)
pthread mutex lock(& ref counting lock);

if (!'head) {
if (lock)
pthread mutex unlock (& ref counting lock);
return;
1

i)
else if (head->references > 1)

[¢

head->references--;
else(
decrease refs (head->next, 0);

w w W C
I3

Ul
o O

(G2 ¢
~J

free (head) ;
}
if (lock)
pthread mutex unlock (& ref counting lock);

I
[e¢]

w W W

oy U

o U W N O W

w W

w w w

void decrease_refs(struct cell *head) {

//__decrease refs(head, 1);

J

Yy OY O O O)Y OO O O

w W W

void increase refs(struct cell *head) {
pthread mutex lock (& ref counting lock);
if (head)
head->references++;
pthread mutex unlock (& ref counting lock);

> union payload get front(struct cell *head)
if ('head) {
fprintf (stderr, "Runtime error: cannot get h
exit (1) ;

return head->data;

w W W C

int get length(struct cell *head) ({
if (!'head)
return 0O;
return head->length;

w W

g s W N

action =

J O

let (action, file)

if (Array.length
then

((List.assoc S

[("-a", B

(open_in

> ©

e

else (Compile, (open_in Sys.argv.(1l))) in
let lexbuf = Lexing.from channel file in

Q¢

let program = Par program S

o U W N

anner.token lexbuf in
let sprogram =

try Semantic analysis.check progam program

with

| Failure m ->

o J

9
J
0]
U

(prerr endline ("Error in semantic analysis\n" % m);

S

flush stdout;
exit 1)
in
match action with
Ast ->
ignore
(let _ = Printer. int tring of program program in

let graph = "¢ aph G{" *~ (!Printer.dot graph #* "}") in

let outfile = open out "out.dot" in
let = Printf.fprintf outfile "%s" graph in

NN
D WO C

C

w W

let _ = close_out outfile
in Sys.command "dot -Tpng out.dot o out.png")
->
ignore
(let _ inter.pri string of program sprogram in
let graph = aph G{" *~ (!Sprinter.dot graph # "}") in
let outfile = open out "out.dot" in
let = Printf.fprintf outfile "%s" graph in

w W W

USROS ON
< o) U1 B W N

w

w W
O

o

let _ = close_out outfile

in Sys.command "dot -Tpng out.dot o out.png")
Compile -> print string (bile.compile sprogram false)

-> print string (Compile.compile sprogram true)

[ISTENET AN AN
w N =

