
Yo : A Video Analytical Editing Programming
Language

Mengqing Wang, Munan Cheng, Tiezheng Li, Yufei Ou

{mw3061,mc4081,tl2693,yo2265}@columbia.edu

1 Introduction
Yo is a user-friendly programming language for movie production. We offer the

fastest and most efficient non-linear video editing and analyzing. Users can produce
videos from varieties of sources such as images or existing video clips and apply
system- or user-defined functions to perform seamless video editing such as clip
construction, duration adjustment, subtitle burning. Besides, Yo provides strong self-
defined libraries for digital video analysis, such as sentimental analysis and pattern
recognition etc. In this light, Yo’s objective is to facilitate analytical editing on videos
and less human effort needs to be involved.

2 Frame, Clip, Layer
The concepts of frame, clip and layer are as illustrated in Figure ??. These

concepts are recursively defined but can be simplified as follows. A frame is seen as
one of a sequence still images which compose a clip. It can be constructed directly
from an image stored on the hard disk or an extract from an existing clip. Once a
clip is assembled from a series of frames at a certain frame rate (usually 24 frames
per second), it can be exported as the final product, or to be layered with other clips
to form a new clip.

Below we show the common operations on these elements.

1

Clip

Frame

Clip

Layer1

Layer2

Layer3

time

compose a new clip

Figure 1 – Frame, Clip and Layer

Frames
Contruct a frame from an image
Extract frames from clips
Modify a frame (e.g. adjust image color)

Clips

Construct a clip from frames
Trim, concatenate clips
Adjust playing speed
Layer multiple clips and form a new one
Arrange inner-clips on the time line

Layers Yo does not support operations on conceptual layers

Table 1 – Operations for frames, layers and clips

3 Features
To reduce the learning curve for new users, Yo scripts borrows much grammar

from Python and C++. The user code would be compiled into C++ code (to be
compiled by a C++ compiler) and executed utilizing a collection of C++ libraries

2

such as libopenshot 1.
Yo is planned to support the following language features :
1. Automatic garbage collection and easy interpolation with existing C++ code

and libraries.
2. Maximum code cleanliness : indent blocking, newline instead of colon between

statements.
3. Anonymous function.
4. Functional syntax sugar : with built-in functions such as map, filter, lapply,

users can define powerful inline expressions.
5. Object-oriented programming.
6. Deep optimization by compiler.

4 Use Case
Now we show how Yo facilitates movie editing with a couple of examples.

4.1 Storyboard

The first example involves concatenating a collection of images into a clip, joining
it with a series of existing clips, and showing a subtitle on the most front layer.

Example 1– Arrange clips and add subtitles
Read all images in directory "wd"

frames = [readFrame(f) for f in wd if f.endwith(".png")]

Turn each Frame into a Clip of one second , and concatenate

them into a new Clip called "clip_f"

clip_f = lapply(+, Clip(), [Clip(fm, dur =1.0) for fm in frames])

Read all videos in directory "wd"

clips = [readVideo(f) for f in wd if f.endwith(".avi")]

Join a part of clips [0] (4.5s to 12.5s) and clips [1]

(starting from 3.5s till end) to "clip_f"

clip_v = clip_f + clips[0](4.5 :12.5) + clips[1](3.5 :)

1. https ://launchpad.net/libopenshot

3

Add a subtitle above "clip_f" at 7.0s which lasts 3.0s

clip_st = clip_v ^ Subtitle(’Yo,␣world !’, duration =3.0) @ 7.0

4.2 Effects

Next we apply quick color corrections to a part of the clip.

Example 2– Add effects to frames
Define a function that recolors all pixels RGB(>140, ?,<50)

func changeColor(fm)

for row in fm.pixels

for p in row

if p.r > 140 && p.b < 50

p.r = 200

p.b = 20

ret fm

toClip is a built -in function that turn frames into a clip

apply "changeColor" to part of clip

newClip = clip(:5.6) + toClip(map(lambda x->changeColor(x),

clip(5.6 :15.6).frames ())) +

clip(15.6 :)

4.3 Analysis

Here we show how Yo performs analytical editing. The below expression performs
the following :

(a) Filter the clips and only keep those shorter than 10 seconds ;
(b) Scale the clips to 720x360
(c) Trim off the first and the last second in each clip ;
(d) Concatenate these clips into a video.

Example 3– Calculate based on videos
lapply(+, Clip(),

[c(1.0 :-1.0).scale (720) for c in clips if c.duration < 10.0]

)

4

The analytical editing becomes quite handy when we want to extract clip pieces
of some interesting features from a long, everlasting (think of a security camera)
video. For example, the following statement extract all clips with Yo’s appearance :

Example 4– Identify Yo’s face :)
face = readFrame("yo_face.png")

yo_appearance = lapply(+, Clip(),

[fm for fm in clips.frames () if imageMatch(fm, face) > 0.95])

)

5 Syntax

5.1 Types

Like a scripting language, users do not need explicit type declaration for variables.
The equal sign = is used to assign values to variables. Types of variables are inferred
and could be overwritten.
Basic data types :

1. int : signed integers
2. double : floating point real values
3. bool : boolean
4. string : a contiguous set of characters

Composite data types :
1. array : holds a sequence of elements of the same type
2. tuple : holds a sequence of elements, immutable
3. struct : a user-defined prototype for an object that defines a set of attributes

including variables and methods

Example 5– TypeExample
answer = 42 # int

endtime = 7.5 # double

subtitle = "Yo,world" # string

criteria = (a > 2) # boolean

clips = [] # array

color = (255 ,136 ,23) # tuple

clip = Clip() # struct

5

5.2 Operators

Yo provides with operators as shown in Table ??.

5.3 Control Flow

Yo supports basic control flow. To help understand the code, the Yo code snippet
is followed by C++ code that achieves the same effect.

Example 6– Yo Control Flow Example
conditional statement

if clip.time > 10

log(clip.time)

cascading for -loop

for i <- 1 to 10, j <- 1 to 10, i + j == 10

log("%d+%d=%d\n", i, j, i + j)

s = 0

for i <- 10 downto 1 by -1, i != 2, x <- a[i]

s += x

suffix if/while/for

log("Yo␣world") if length > 100

fun1() while a > b

a[i] = 0 for i <- 1 to 10, i % 2 == 0

Example 7– C++ Control Flow Example
int main() {

if (clip.time > 10){

printf("%d",clip.time) ;

}

for (auto i = 1 ; i <= 10 ; ++i) {

for (auto j = 1 ; j <= 10 ; ++j) {

if (i + j == 10) {

printf("%d+%d=%d\n", i, j, i + j) ;

}

}

}

auto sum = 0 ;

for (auto i = 10 ; i >= 1 ; i = i + -1) {

6

if (i != 2) {

for (auto x : a[i]) {

sum += x ;

}

}

}

if (length > 100) {

printf("Yo␣world") ;

}

while (a > b) {

fun1() ;

}

for (auto i = 1 ; i <= 10 ; ++i) {

if (i % 2 == 0) {

a[i] = 0 ;

}

}

}

5.4 Functions

Yo functions are defined starting with keyword func. Lambda functions are also
supported.

Example 8– Function Example
function declaration

func longerTime (a, b)

if a.duration > b.duration

return a.duration

else

return b.duration

function calls

longerTime(clip1 ,clip2)

lambda functions

pixels = map(lambda x -> x.r=200 && x.b=20, selected_pixels)

7

5.5 IO

Yo load video, audio and image files on the drive, render the timeline and output
edited video. To debug and log, a log function that dumps standard output stream
is provided.

Example 9– IO Example
read all images in a directory "wd"

frames = [readFrame(f) for f in wd if f.endwith(".png")]

read all videos in directory "wd"

clips = [readVideo(f) for f in wd if f.endwith(".avi")]

log file name to stdout

log(clips [0]. filename)

output final movie

saveClip("myYo.webm",final_cut)

8

Table 2 – Operators and Notations in Yo.

start of comment line
#{ start of multi-line comment
#} end of multi-line comment

+ add operator
concatenate clips

- subtract & negate operator
* multiply operator
/ divide operator

% mod operator
format output specifier

& same layer operator, a & b set the z-index of layer in clip b
equals to the one of clip a

ˆ @ above layer operator, a ˆ b @ c set the z-index of layer in clip b
larger than the one of clip a, with a offset of c second

&& and operator
|| or operator
! not operator

< less-than operator
<= less-than-or-equal operator
== equal operator
>= greater-than-or-equal operator
> greater-than operator
= assign operator

<- list comprehension generator
single assignment operator

-> lambda function definition operator
. call member or function in struct operator
: list slice operator
∼ inference operator
", ’ string construction operator
[] array construction operator

() tuple construction operator
clip time access operator

, separator

9

