TBAG: The Text-Based Adventure Game Language
Project Proposal

Gregory Luan Chen <glc2121>, Yu Chun (Julie) Chien <yc2937>,
Maria Van Keulen <mv2482>, Brian Slakter <bjs2135>, Iris Zhang <iz2140>

September 30, 2015

Describe the Language you Plan to Implement

Text-based adventure games were first introduced in the late 1970’s, and while gameplay technology and
graphics have evolved considerably since then, these games still remain popular and new ones are
continuously being developed. These games may differ on some details, but many of them operate on
similar principles - there is a map that a user travels through, this map contains different rooms, and the
rooms contain different monsters and items that the user can interact with. Because of these
commonalities among different games, there is no doubt similarity in the development process. We
propose developing TBAG, a language that makes building these game elements a simple process, where
typical components (map, rooms, non-player-characters (NPCs), items) will be built in as data types.

Explain what sorts of programs are meant to be written in your language

With TBAG, developers will be able to write programs that create an interactive world for gameplay.
More specifically, some components of this program would encompass:

creating a room with a description and various NPCs or items

creation of a larger world composed of rooms with links between them

a character generation process with I/O

defining interactions between characters and NPCs

loading json files written by a non-programmer to prevent hard-coding

As a more concrete example, a developer may be able to create a fantasy world with a hero whose quest is
to find a hidden treasure, defeating any foes he may encounter along the way. In such a game, the hero
may navigate through a dungeon, which is composed of smaller rooms. In some of the rooms, there will
be powerups the hero can collect to boost his HP or armor. The developer can use the language to specify
the types of items that exist in each room, and how the user can interact with these items to gain their
associated attributes. In other rooms, there may be monsters such as trolls or dragons that the hero must
battle to continue on his quest. In this case, the developer will specify attributes of the NPC such as
strength or attack damage, as well as the interaction between hero and NPC. Once fully developed, the
program will allow a player to function as the hero in a playable, interactive game.

Language Basics

Primitives:
int -100, 0, 42
boolean TRUE, FALSE
char ‘", ‘b, ‘a’, ‘g’
string “Hi!”
Operators:
I ™ S T
* /% Multiplication, division, modulo
+ - Addition, subtraction
< <= Inequality Operators: Less Than, Less Than Or Equal Left-to-right
> >= Inequality Operators: Greater Than, Greater Than Or Equal
= I= Equal, Non-Equal
&& Logical AND
I Logical OR
Keywords:
I T S
if, elif, else Control flow statements

while Loop statements

Unique Globals

e Objects that are automatically initialized in each program
e Each program contains exactly one of each Unique Global
e Cannot be created or destroyed by the user

RoomTable
A hash table containing the game’s various Rooms (array implementation).
Field Summary:

Field and Description

Room [] theArray

The array of Rooms

int currentSize
The number of occupied cells

Interface Summary:

Method and Description

void insert (String x)
Inserts x into the hash table.

void remove (String x)
Removes x from the hash table.

int hash (String x)
Returns the hashval of x.

ItemTable
A hash table containing the game’s various items (array implementation).
Field Summary:
Field and Description
Item[] theArray
The array of Items
int currentSize

The number of occupied cells

Interface Summary:

Method and Description

void insert(String x)
Inserts x into the hash table.

void remove (String x)
Removes x from the hash table.

int hash (String x)
Returns the hashval of x.

NPCTable
A hash table containing the game’s various NPC’s (array implementation).

Field Summary:
e rmavoin
NPC[] theArray
The array of NPC’s
int currentSize

The number of occupied cells

Interface Summary:

Method and Description

void insert(String x)
Inserts x into the hash table.

void remove (String x)
Removes x from the hash table.

int hash (String x)
Returns the hashval of x.
Player
Contains player attributes
Field Summary:
Field and Description
int health
the Player’s health stat
int attack
the Player’s attack stat
Stringl] items
the Player’s array of items
String location

the Player’s current location

Interface Summary:

Method and Description

void addItem(String item)
Adds item to Player.items

ActionMenu
A class used to display menu of possible actions to the player, then execute the player’s choice.

Field Summary:
Field and Description
String|] theArray

The array of possible actions

Interface Summary:

Method and Description

void refresh ()

Finds all possible Player actions (by using information about Player, World, etc.) and fills the theArray
with them. Any previous data in theArray is erased.

String toString()
Returns a String representation of all entries in theArray. Used for printing to screen.

void execute (int userSelect)
Executes the chosen action corresponding to theArray[userSelect]

Built-in Classes

o The essential building blocks for any game
e To be used by the user

Room
Each instance of Room represents a location in World.

Field Summary:
Field and Description
String name
The name of the Room
Stringl[] items
The keys (names) to the actual items
Stringl] NPCs
The keys (names) to the actual NPCs
String[] adjList

The keys (names) to the adjacent Rooms

Interface Summary:

Method and Description

void connectTo (String targetRoom)
Adds targetRoom to this Room’s adjList, and this Room to targetRoom’s adjList

void addNPCFoe (String name, int hp, int atkDmg)
Creates an NPC foe in a room with the specified HP and attack damage

void addNPCFriend (int powerup)
Creates a friendly NPC in a room with the specified powerup

void addItem (String name, String statModified, int powerup)
Creates an item that can be picked up

NPC
Non-playable Characters
Field Summary:
Field and Description
String name
The name of the NPC.
boolean friendly
TRUE if NPC is a friend, FALSE if NPC is a foe
int health
the NPC’s health stat
int attack
the NPC’s attack stat
String location

the NPC’s location

Item

Can be picked up by the player to modify the player’s statistics

Field Summary:
Field and Description
String name
The name of the Item.
int value
The magnitude of stat change that the Item causes.
String statModified

The stat that the Item modifies.

sampleGamel.tbag

setupWorld() {
Room home = new Room() ; // under the hood, a room is
// created and added to RoomTable

home.name = “Home”;
dungeon = new Room() ;
dungeon.name = “Dungeon”;
final = new Room();

final.name (“Final”) ;

home.connectTo (“dungeon”) ;
dungeon.connectTo (“final”) ;
dungeon.addNPCFoe (“*Minotaur”, 100, 10);

setupItems () {
ITtem wand = new Item();
wand.name = “Wand”;
wand.value = 40;
wand.statModified = “attack”
Item sword = new Item();
wand.name = “Sword”;
wand.value = 40;
wand.statModified = “attack”

setupPlayer () {

int userClass = -1;

while (userClass != 1 && userClass != 2){
tprint (“Please enter 1 for Mage or 2 for Warrior class:\n”);
userClass = in.next();

}

if (userClass == 1) {

Player.health = 80;
Player.attack = 20;
Player.addItem(“Wand”) ;
} elif (userClass == 2) {
Player.health 100;
Player.attack 10;
Player.addItem(“Sword”) ;

}

Player.location = “Home”;

/* main to run the game */
main {
setupWorld() ;
setupPlayer () ;
int userSelect = -1;

/* Play until either the player or minotaur dies */
while (Player.health > 0 && minotaur.health > 0) {
actionMenu.refresh;
tprint (Player.location);
userSelect = in.next ();

actionMenu.execute (userSelect) ; // execute the user’s choice

}
if (Player.health <= 0) {

tprint (“You died. Game over.”);
}

else {

tprint (“You won!”);

