Superscript Language Proposal

Uday Singh, Samurdha Jayasinghe, Tommy Orok, Yu Wang, Michelle Zheng
(urs2102, sj2564, t02240,yw2684, myz2103)

Motivation
"JS is the x86 of the web" - Brandon Eich
Why compile to Javascript? As Brandon Eich said, “JS is the x86 of the web”® . Today

Javascript is used not only to govern interactions on the front end of the internet, but also to
prototype systems on the backend of the web.

In recent years, the web has transformed in terms of interaction design and web browser
functionality. The modern web has progressed from static pages and now demands a system!"
that provides reactions based on data changes. This necessity for real-time interaction has led
to a shift in the world of rapid prototyping, from monolithic web frameworks, to a clear separation
between single-page applications and APIs.

The development of Node.js has led to more developers embracing Javascript as a viable
language for backend development. Despite its popularity however, Javascript’s verbose
syntax, mutable objects, illogical equality comparisons, and complex callbacks make it difficult
for developers be completely aware of their code’s side effects!?.

Developers should understand the full semantic structure of their code, especially when
prototyping web servers and RESTful APIs, and dealing with callbacks and Node.js requests.
However, closures and anonymous functions in Javascript are often confusing to write and
understand. The number of lines of code is also directly correlated with the number of bugs
generated.

Despite Javascript treating functions as first class objects, Javascript is typically used as an
imperative programming language. Its lack of structure has encouraged programmers to think of
Javascript objects in terms of state, instead of attempting to transform data. Javascript is a
product of rapid evolution, and thus for many people from the functional programming school of
thought, it seems broken. Although its core library is small, Javascript’'s weak typing and object
construction system create a broken mix, where functions are first class, yet objects are used
imperatively.

Our solution is Superscript, a type-inferred language, inspired by a mix of Lisp, Clojure and Arc
that compiles to Javascript.

http://www.hanselman.com/blog/JavaScriptIsAssemblyLanguageForTheWebPart2MadnessOrJustInsanity.aspx
http://rauchg.com/2014/7-principles-of-rich-web-applications/
https://www.destroyallsoftware.com/talks/wat

Language Description
"Lisp isn't a language, it's a building material." - Alan Kay

Superscript is a Lisp focused on rapid development to compile to Javascript. Primarily being
heavily influenced from both Arc and Clojure, two very new languages introduced to the Lisp
community. Superscript is a Lisp designed to have very intentional syntax, allowing the user to
know very little to write very large programs.

Unlike Javascript, Superscript encourages users to write in a functional first language thinking
more before they code. Using an inferred type system, similar to Ocaml, our compiler tells users
when their functions break for particular type and strongly encourages functional thinking over
imperative thinking. This breaks users from thinking in terms of objects as many new
programmers do when looking at Javascript and encourages clean data transformations which
the user is aware of through s-expressions. This, combined with the flexibility of the Lisp family
of languages, where functions and data are equivalent, gives users of Superscript a level of
power unavailable in languages like Javascript.

Object-oriented programming tends to be written with a lack of discipline on the developer's’
part, by preventing them from doing much damage by abstracting everything. Superscripts
focus on power and brevity encourages users for rapid prototyping to write succinct code, which
results in clean, type-inferred functions in Javascript. Additionally, another shortcoming of
Object-Oriented programming is that often times due to the lack of power provided by
object-oriented languages, users tend to believe they are doing more work than they are
actually outputting. Superscript encourages thoughtful programming, translated to Javascript
that is performant, functional, and well typed.

Superscript uses syntax based on Lisp and will translate to Javascript. It builds upon the primary
Lisp functions®!, and in addition, it allows for user-defined functions, recursion, and type
inference with seven data types. Superscript's syntax is based on closure, and is built from
multiple nested S-expressions. Similar to OCaml, it is functional. Unlike languages like Scheme,
it is type inferred. Expressions are evaluated in prefix order. Superscript supports the typical
arithmetic and logical operations.

Superscript intends to provide sharp programmers a language to think and express clear
functional ideas in a language which is slowly becoming the backbone of the web.

User-Defined Functions (‘subscripts’)
(fn ‘“(argument*) expression*) defines an anonymous function that takes a list of
arguments and an expression that will be evaluated to return the result of the function:

(fn ‘() “Hello World”)
-: <Function>

http://languagelog.ldc.upenn.edu/myl/ldc/llog/jmc.pdf
http://languagelog.ldc.upenn.edu/myl/ldc/llog/jmc.pdf

(= function_name (fn ‘(argument*) expression*)) binds the anonymous function passed in as the
second argument to the name specified by the first argument (function_name).

(= hello (fn ‘() “Hello world”))
: user/hello

(hello)

-: “Hello World”

H*

Equivalently, (def function-name ‘(argument*) expression*)) is shorthand for (= function-name
(fn ‘(argument™) expression*®)).

H*

(def hello ‘() “Hello World”)
: user/hello

(hello)

-: “Hello World”

H*

Recursion
Superscript will support recursion so that functions may call themselves. Examples of recursive
Superscript code are provided under Intentional Syntax & Sample Code.

Type Inference
Superscript will support type inference; the data type of an expression will be automatically
deduced at compile-time. The compiler will draw conclusions about the types of variables based on
how programmers use those variables, similar to OCaml and Haskell. The data types supported by
Superscript are shown in the table below.

Superscript Data Types

Data Type Example

int (atom) 1, 5, -10

float (atom) 1.5, 4.0, -200.7

boolean (atom) true, ()

list (abc), (12 3), (true true false)
nil / empty list / false (atom) O

String (atom) “abc”, “ABC”, “cat”

subscript (procedure or anonymous function) (fn () “Hello world”)

Operators and Built-in Functions

Applicable
Operator Name Syntax Data Types
Basic assignment (= ab) All
Integer arithmetic (+ab), (-ab), (*ab), (/ab) int
Floating point arithmetic (+.ab), (-. ab), (*.ab), (/. ab) |float
Modulo (mod a E> int
Remainder (rem a b) int
Equal to (is “a” “b”), (is 1 2) int, float, String
Not equal to (isnt “a” “b”), (isnt 1 2) int, float, String

Comparison operators

(> ab), (>=ab), (<= ab)

int, float, String

Logical AND (and a b) boolean
Logical OR (or a b) boolean
Logical NOT (not z) 5 r b boolean
Bitwise operators (& ab), (lab), (~ab) int
N-th element of list (O-based) | (get N a) list
Isomorphic list equality (iso a b)

String concatenation (+ “hello” “world) String

Primary Lisp Functions®!

Operator Name Syntax
(quote a) returns a. For shorthand, # (quote a)
abbreviate it as “a. You must quote values if :- a
you do not want the S-expression to be # (‘a)
evaluated, but instead to be returned. :- a
(atom €a) returns the atom true if the # (atom ‘a)
value of a is an atom or the empty list. :- true
(atom ‘(a b c))
- ()
(atom ‘())
:=- true
(is a b) returns true if a equals b. # (is ‘a ‘a)
Returns the empty list, equivalent to boolean :- true
false, when a is not b. # (is ‘a ‘b)
- 0
(head a) expects atobe alist,and returns | # (head ‘(a b c))
the first element of a. :- a

http://languagelog.ldc.upenn.edu/myl/ldc/llog/jmc.pdf

(tail a) expects a to be alist, and returns
all elements after the first element.

(tail ‘(a b ¢))
:- (b ©

(cons a b) expects the value of b to be a
list, and returns a list containing the element
a followed by the elements of list b

(cons ‘(a) ‘(b <))
:- (abc)

(if a b c) where ais an S-expression
which returns a boolean; equivalentto if a
then b elsec.

(if (odd 1) ‘a ‘b)
i- a

Additional use of if function

Syntax

(if a b ¢ d e) where ais an expression
and b is a return value considers c to fall as a
condition for an else-if statement with the
result of c being true resulting in d and with
the else of the entire if statement being e.

(if a b c d e) is equivalent to:
(if a
b
(if ¢
d
e))

Intentional Syntax & Sample Code

GCD

; Superscript source code for GCD
(def gcd (a b)

(if (is @ b)a
(ged b (mod a b))))

/**
* GCD in resulting Javascript
L7
var gcd = function(a, b) {
if (b === 0) {
return a;
}
return gcd(b, a % b);
1

Insertion Sort®

:
; Insertion Sort
s Superscript source code

Edef sort (myList)
(if (is ') myList) '()
(insert (head myList) (sort (tail myList)))))

(def insert (item myList)
(if {(is ') myList)
(list item)
(if (< item (head myList))
({cons item mylList)
{cons (head myList) (insert item (tail myList)}))))

http://cs.princeton.edu/courses/archive/spr11/cos333/lectures/17paradigms/sort.lisp

Insertion Sort, translated to Javascript:

var _ clone = function(obj) {

return JS0N.parse(JSON.stringify(obj));
1
var __head = function(list) {

return __clone(list[@]);

i

var __tail = function(list) {
return __clone(list.slice(1));

ko

var __list = function(item) {
return [__clone(item)];

E

var __cons = function(item, list) {
if (list === null) {
return _ list(item);
} else {
var __temp = _ _clone(list);
__temp.unshift{__clone(item));
return __ temp;

}
¥

var insert = function(item, myList) {
if (myList.length === @) {
return __ list(item};
I else {
if (item < myList[o0]) {
return _ cons(item, myList);
T else {
raturn __cons{__head{myList), insert(item, _ tail(myList))}};
1
b
i

var sort = function{myList) {
if (myList.length == 8) {
return _ clone{myList);
} elzse {
raturn insert{__head{myList), sort{__tail{myList)));
}
i H

Recursive list length function in Superscript:

]

; Superscript length function

(def length (1lst)
(if (no 1lst)
0]
(+ 1 (length (tail 1st)))))

List length function, translated to Javascript:

var __clone = function(obj) {
return JSON.parse(JSON.stringify(obj));

};

var _ tail = function(list) {
return __clone(list.slice(1));

1

var length = function(lst) {
if (lst.length === @) {

return 0;
} else {
return 1 + length(__tail(lst));
}
I

Footnotes & References

[0]: Javascript is Assembly Langauge for the Web

http://www.hanselman.com/blog/JavaScriptlsAssemblyLanguageForTheWebPart2MadnessOrJu

stinsanity.aspx

[1]: 7 Principles of Rich Web Applications. Guillermo Rauch.
http://rauchg.com/2014/7-principles-of-rich-web-applications

[2]: Wat, a lightning talk by Gary Bernhardt. https://www.destroyallsoftware.com/talks/wat

[3]: The Roots of Lisp. Paul Graham. http://languagelog.ldc.upenn.edu/myl/Idc/llog/jmc.pdf

[4]: Arc. Paul Graham. http://www.paulgraham.com/arc.html

[5]: Insertion Sort Lisp Implementation. Bob Dondero.
http://cs.princeton.edu/courses/archive/spr11/cos333/lectures/17paradigms/sort.lisp

[6]: Clojure for the Brave and True. Daniel Higginbotham http://www.braveclojure.com/

http://rauchg.com/2014/7-principles-of-rich-web-applications
https://www.destroyallsoftware.com/talks/wat
http://languagelog.ldc.upenn.edu/myl/ldc/llog/jmc.pdf
http://www.paulgraham.com/arc.html
http://www.cs.princeton.edu/courses/archive/spr11/cos333/lectures/17paradigms/sort.lisp
http://www.braveclojure.com/

