M(usic)arma(dillo)(koo)lade:
A Music Creation Language

Team:

Cathy Jin (ckj2111) - Tester

Savvas Petridis (sdp2137) Language Guru
Raphael Norwitz (rsn2117) System Architect
Uzo Amuzie (ua2144) Manager

September 30, 2015

Introduction:

Marmalade is a music writing and playback language that will focus on creating songs. A user can use
Marmalade to create a complex beat by defining a sequence of notes for each particular component of a drum
kit and then splicing this sequence into measures. But the fun does not stop there! Other instruments, such as
a guitar or piano can be layered over the beat. Sequences of single notes or chords can accompany the beat,
thereby adding a melodic component to your unique composition. At the same time, Marmalade allows users
to bypass creating every single aspect of their work, by generating chord progressions or rhythms
algorithmically through stochastic models the user defines. Of course some basic functions, like altering the
volume of certain notes will be included as well, allowing a wide range of customization.

What really sets Marmalade apart from other musical programming languages is its adherence to tried and true
programmatic paradigms, modeling the syntax and structure off of Java/C. The beauty of a language like
Marmalade is its ability to combine the idea of composition of music into the data structures we commonly
encounter when programming in an object-oriented fashion.Thus ideally someone with a musical background
could learn object-oriented programming properly by using Marmalade to make some jams.

If i's a reasonable proposition, we’d like to write the Marmalade compiler for the Raspberry Pi so that younger

kids who like music but don’t have access to full computers can get use out of it too (and for the added
challenge of making it space efficient).

Language Overview:

Built-in Types
int an integer value
quarter represents a quarter note in a measure
half represents a half note in a measure
whole represents a whole note in a measure

string data representing a simple text word
song data representing a full composition
pattern data representing a sequence of notes for a particular instrument in a song

(]

array data type

time sig

The specified time signature of a song (used by the compiler to check
measures

instrument library

measure_ seq

Control Flow
e while loops
e forloops
e f/else statements

Operators

{} defines the scope of the blocks of code ;

indicates end of each line in the code

= assigns value of right side operand to left +
side operand

add operands on the left and right side

- subtract right side operand from left side * multiple left and right side operand
operand
/ divide left side operand by right side operand | s« logic AND
I logic OR
Keywords
e import
e Pattern
e song
Comments
e /**/ Multi-line comments
o |/ Single line comment
Whitespace

Marmalade is not sensitive to whitespace, since it keeps track of scope through the use of

braces.

Defining Variables & Functions

e func function_name(arg1, arg2, arg3, ...)
Sample Program:

This program defines the Pattern (class) mary_little_lamb, or the notes to the song mary has a little lamb
expressed in measures, and then plays the notes mapped to a variety of instruments. In main, you can see the
Patterns rearranged algorithmically (using the transpose method).

/**
* imports for instrument/sound libraries will simply take an absolute path
* to the library files so as to give the user experience with system paths

**/

import ../mp3/piano.library
import ../mp3/guitar.library

pattern Mary little lamb

{
time sig time;
instrument library instrument;
measure_seq ms = [];

Mary little lamb (instrument library instr)
{

this.instrument = instr;

int i = 0;

/* variable declaration */
int repeats = 4;
/* a while loop, in action */

//OPTION 1: NOTE-BY-NOTE
while (i < repeats) {

curr measurel = [];

curr measurel.push(instr.quarter(44)); // E

curr measurel.push(instr.quarter (42)); // D

curr measurel.push(instr.quarter (40)); // C
// Middle C is labeled as ‘40’

curr measurel.push(instr.quarter(42)); // D

measure seq.push (curr measurel);

curr _measure2 = [];
curr measurel.push(instr.quarter(44)); // E
curr measurel.push(instr.quarter (44)); // E

curr measurel.push(instr.half(44)); // E
measure seq.push (curr measure?l);

curr measure3 = [];
curr measurel.push(instr.quarter (42)); // D
curr measurel.push (instr.quarter (42)); // D

curr measurel.push(instr.half(42)); // D
measure seq.push (curr measure3l);

curr measured = [];

curr measurel.push(instr.quarter (44)); // E
curr measurel.push(instr.quarter (47)); // G
curr measurel.push (instr.half (47)); // G
measure_seq.push (curr measure4) ;

curr_measureb = [];

curr measurel.push(instr.quarter (44)); // E
curr measurel.push(instr.quarter(42)); // D
curr measurel.push(instr.quarter (40)); // C
curr measurel.push(instr.quarter(42)); // D
measure_ seq.push (curr measureb);

curr measure6t = [];

curr measurel.push(instr.quarter (44)); // E
curr measurel.push(instr.quarter (44)); // E
curr measurel.push(instr.quarter (44)); // E
curr measurel.push(instr.quarter (44)); // E
measure seq.push (curr measureb);

curr measure’ = [];

curr measurel.push(instr.quarter (42)); // D
curr measurel.push(instr.quarter(42)); // D
curr measurel.push(instr.quarter (44)); // E
curr measurel.push(instr.quarter(42)); // D
measure seq.push (curr measure’) ;

curr _measure8 = [];

curr measurel.push (instr.whole (40)); // C

measure seq.push (curr measure8);
i=1+ 1;

//OPTION 2: BY MEASURE
curr _measurel = [];
curr _measurel.push(instr.quarter(44), instr.quarter(42),
instr.quarter (40), instr.quarter(42)); // E D C D
measure seq.push (curr measurel);

curr _measure2 = [];
curr measure2.push(instr.quarter(44), instr.quarter(44),
instr.half(44)); // E E E

measure seq.push (curr measurel);

curr measure3 = [];

curr measure3.push(instr.quarter(42), instr.quarter(42),
instr.half(42)); // D D D

measure seq.push (curr measure3);

curr measured = [];
curr _measure4d.push(instr.quarter(44), instr.quarter(47),
instr.half(47)); // E G G

measure_ seq.push (curr measured);

curr measured = [];

curr _measureb.push(instr.quarter(44), instr.quarter(42),
instr.quarter (40), instr.quarter(42)); // E D C D

measure_seq.push (curr measureb) ;

curr_measure6t = [];

curr _measure6.push(instr.quarter(44), instr.quarter(44),
instr.quarter(44), instr.quarter(44)); // E E E E

measure seq.push (curr measureb);

curr _measure’ = [];

curr measure7.push(instr.quarter(42), instr.quarter(42),
instr.quarter (44), instr.quarter(42)); // DD E D

measure_ seq.push (curr measure’) ;

curr measure8 = [];

curr measure8.push (instr.whole (40)); // C
measure seq.push (curr measures8);
i=1+1;

void main () {

/* declare song lamb */
song lamb;

/* set time signature of the song lamb to 4/4 */
lamb.time sig = ‘4-47;

/* create two patterns for the song ‘Mary Had a Little Lamb’ */

/* the first is the sequence of notes played by a piano, the second is the same
sequence played by a guitar */

pattern mary piano = new Mary little lamb(piano);

pattern mary guitar = new Mary little lamb(guitar);

/*
* play is a function defined in the standard header of the language

* It iterates through the measure seqg object, playing each note in the measure
* It takes the starting measure as an explicit parameter

*/

/* function ‘transpose’ is called - transposes the song from C Major to F Major */
pattern mary piano trans = transpose (mary piano, 5);

lamb (mary piano.play(0));
lamb (mary piano_ trans.play(0));

/* play guitar after 8 measures */
lamb (mary guitar.play(8));

/* mp3 out generates mp3 for lamb song */
lamb.mp3 out();

/**
* This function transposes the song into a different key,

* based on the input of steps given.
**/

func pattern transpose (Pattern song, int steps) {
int i = 0;
while (i < song.measure count) {
int 7 = 0;
while (j < measure count[i].length) {

song.measures_seq[i] [J] = song.measure seq[i] []]

return song;

+ steps;

