
Knowledge Graph Language (KGL)

September 30, 2015

Team

Name UNI Role
Bingyan Hu bh2447 Project Manager
Cheng Huang ch2994 Language Guru
Ruoxin Jiang rj2394 System Architect
Nicholas Mariconda nm2812 Verification & Validation

Motivation

Almost everything in the world is connected together through some complex web of relationships. As
such, building, expressing and traversing graphs is one of the most essential applications of computer
science. However, it is common knowledge that implementing graphs in traditional languages is no
trivial task. Many past projects have addressed this problem by designing graph-based languages
that make building graphs easier. However, such projects were limited by having single, fixed
relationships between nodes. Often, algorithms that operate on real-world data – such as machine
learning and information retrieval algorithms – are too obfuscated to be represented by a graph with
one-dimensional relationships.

Proposed Uses

Knowledge Graph Language (KGL) is a domain-specific graphing language that supports multiple
user-defined relationships between nodes. Edges, nodes, and graphs are built-in types of the lan-
guage; however, two nodes can be connected by multiple edges, with each edge being identified by
a unidirectional, user-defined relationship. KGL reaps many of the benefits of a graphing domain-
specific language – users can build, express and traverse complex graphs succinctly – while also
providing a means for users to query their graphs directly. This is the main thrust of the language
– by providing the users with a mechanism for defining their own relationships between nodes, they
can extract a more robust collection of data through graph queries.

1

Syntax

Data Types

• Primitive Types

int an integer
float a floating point number
boolean data type that has only two values: true and false
char a character
string plain text encoded in ASCII

• Graph Related Types

Node a node in a graph, storing data such as name, an array of outgoing
edges, an array of incoming edges and other attributes of the node

Edge an directed edge in a graph, storing data such as label, source
node, target node and attributes of the edge

Graph a directed, multi-relational graph, representing a collection of
nodes and edges

• Other Types

array an ordered sequence that can change in size
attribute a key/value map, e.g. {key1 : value1, key2: value2}

Operators

• Basic Operators

>,<,<=, >=,==, ! = comparison operators for basic types
!,&&, || logical NOT, AND, OR for boolean type
∗, /,%,+,− arithmetic operators for int and float
= assignment operator

‘

• Graph-related Operators

(object).(member) member access, e.g. graph.allEdges()
==, ! = == /! = return true if two nodes/edges are identical/ not

identical
node1 −(label)− > node2 defines an arc from node1 to node2
node1 < −(label)− > node2 defines an undirected edge between node1 and node2

Control Flow

; end of a statement
start of a single line comment, e.g. # Comment here.
/# ... #/ start/end of a block comment
while while loop, e.g while (loop invariant) { loop body }
for for loop, e.g for (loop invariants) { loop body }

2

Build-in functions

• Graph

allEdges() return all edges in the graph
allNodes() return all nodes in the graph
addNode(name, attributes) create a new node in the graph
addEdge(source, target, label,
attributes)

add a new edge in the graph

deleteNode(node) delete the given node from the graph
deleteEdge(edge) delete the given edge from the graph
getNode(name) get the node with the given name
countNodes() return the total number of nodes
countEdges() return the total number of edges
print(graph) print all the nodes and edges in this graph using print(node) and

print(edge) described below

• Edge

getSourceNode() return the source node
getTargetNode() return the target node
getLabel() get the label of this edge
getAttributes() return all attributes of the edge
getAttribute(key) get the value of the given key from the edge’s attributes
addAttributes(attributes) add new attributes (a key/value map) to the edge
setLabel(label) set the new label of this edge
print(edge) prints the source and targets nodes using print(node) along with

the attributes

• Node

getName() return the name of this node
getOutgoingEdges() get all outgoing edges
getOutgoingEdges(label) get all outgoing edges with the given label
getNeighbors() get all neighboring nodes
getNeighbors(attribute) get all neighboring nodes with the given attribute
getAttributes() get all attributes of the node
getAttribute(key) get the value of the given key from the node’s attributes
addAttributes(attributes) add new attributes (a key/value map) to the node
print(node) prints all attributes of the node

• Attribute

getKeys() return all keys in the attribute
getValue(key) return the value of the given key in the attribute
insert(key, value) insert an key/value pair in the attribute
delete(key) delete a key/value pair from the attribute
size() return the number of key/value pairs in the attribute
clear() clear all key/value pairs in the attribute

3

Program Structure

• Function

func ret_type fname(type1 arg1, type2 arg2, ...)
function declaration

ret_type fname(type1, arg1, type2, arg2, ...) {

declarations

statements

return value

}

function definition

main() {

declarations

statements

}

main routine

• Graph

Graph g = {

a --(knows)--> b;

b --(knows)--> c;

a --(likes)--> d;

c --(likes)--> d;

}

graph definition (1)

Graph g;

g.addNode("a", {}); g.addNode("b", {});

g.addEdge("knows", "a", "b", {});

graph definition (2)

Sample Code

func Node [] findAll2ndConnections(Graph g, Node start) {

Node [] firstConnections = start.getOutgoingEdges("knows").getTargetNode();

Node [] secondConnections;

for (Node n in firstConnections.getOutgoingEdges("knows").getTargetNode()) {

if (! n in firstConnections && n != start) {

secondConnections = secondConnections + n;

}

}

return secondConnections;

}

main() {

4

Graph g = {

a --(knows)--> b; a --(knows)--> c; b --(knows)--> c;

b --(knows)--> d; b --(knows)--> f;

c --(knows)--> e; c --(knows)--> f;

}

Node [] connections = findAll2ndConnections(g, g.getNode("a"));

print connections

}

5

