
The Gridworld Language and its Applications

By Andrew Phan, Kevin Weng, Loren Weng, and Zikai Lin
Uni: ap3243, kw2538, lw2504, zl2442

September 30, 2015

Professor Edwards
PLT Proposal

Columbia University



1 Introduction

Gridworld is a language designed for those who want to create their own
RPG (role-playing games). It will try to provide simple, readable functions
and syntax to build the game so that users with no prior knowledge of pro-
gramming can easily learn how to design and implement an RPG.

The gridworld language can help users to design two significant parts of
RPG, both the story and combat. Using the template code, users just need
to input the characters name, the dialog and the narrations for the main
story. After that, some options can be set between the different stage of the
story for the players to choose the storyline. More importantly, users can
design some combats for some special plots. The combat design is different
from the story design and Gridworld will provide enough elements for the
users to make their own combat system.

Not only does Gridworld focus on teaching the basic principles of game
design, coding fundamentals, but it is also an open sandbox, giving freedom
to the content creator in order to seamlessly unleash their creativity and
logical thinking into a RPG.

2 Applications

The main motivation of this program is to allow an easier way to construct
the world of an RPG or other similar games. The language would facilitate
users to define the rules of their world and to reinforce these rules as the
game progresses and the state of the world changes.

Additionally, the language would simplify the process of keeping track
of the current state of the world in a grid-based format and to be able to
update the state as needed. This is also true of the objects in the world as the
language provides means to attach attributes to the objects and define their
interaction with the world. Also, as randomness is prevalent in many RPGs,
the language will offer functions to facilitate this with less difficulty. These
functionalities allow for users to create their own worlds and characters in a
straightforward manner.

1



3 Language Syntax Overview

The idea of Gridworld is to allow the user to easily create a working RPG
game environment, in which, the designer is able to model a world to their
own specifications. Not only can they apply our built-in tools but they can
also incorporate their own user-defined functions. Our language is able to
provide a simple and effective way of combining the elements of game design,
story-telling, and object oriented programming. In the following sections
below are what we as a group believe are the crucial elements in developing
a free-form RPG.

3.1 Data Types

Table 1: Various data types with their in-game applications
Data Types

Name Description Examples

Boolean True/False
If object isLiving=True,
then it will have hitpoints, damage,
image, and location.

Integers Numerical.
Move 2 units to the right on map or
how many players in RPG?

Strings Prints text output. Can hold name of characters, monsters, and print storyline.
Floats Numerical. Used to calculate attacks and hitpoints.

Object Contains location, image, attribute list.
Player starts at default location, image=F for fighter,
with Godlike attribute list.

Image on Map Represents 1 character on a map. Easily distinguish and track what is what on the game map.

Attribute User-defined value attached to an object.
Set Attribute=Godlike, if object is a character,
then it will not lose any hitpoints.

3.2 Functions

Table 2: Important RPG Functions
Game Functions

Name Action Example

random() Randomly generate environment.
Makes the virtual world with random number
of monsters, trees, and rocks spawn in various locations

attack() Attack a character/monster. Attack(player1, player2) - Player1 attacks Player2.
move() Move to up, down, left, or right on the map. Move(left, player1) - Player1 moves to the left on the map.

checkHealth() Determines how much health a player has.
checkHealth(player1) - first verify whether or not it is
a living object, then store and print health after each attack.

save() Saves the state of the entire game world.
save(rpgland1.sav) - saves the file to rpgland1.sav so that
the game can be continued later.

load() Loads the state of the entire game world.
load(rpgland1.sav) - loads the file rpgland1.sav and checks
if .sav file exists. If it exists, load the game from where it left off.

2



3.3 Loops and Conditionals

Table 3: Loops and Conditionals with Examples
Loops and Conditionals

Name Action Example

for loop Repeat code for a known amount of times.

int numberofPlayers=10
for i=1 to numberofPlayers
print (checkHitpoints(numberofPlayers[i]))

Can print the health of all players in the game.

while loop Continue to repeat code for an unknown amount of time.

while (!players)
print(there are no players initialized in RPG game)
promptPlayers()
While there are no players in the game, it can ask if you
would like to add a number of players.

if/else
Conditional statement that executes code if something is true,
else if something is false.

attack(player2, player1)
if (Player 1(hitpoints) == 0)
print(cannot kill Player 1 because Player 1 is dead)
else
subtractHitpoints()
printHitpoints()
// Statement checks to see if a player is alive or not and
then subtracts the number of hitpoints from an attack.
It then prints the new hitpoints.

3.4 Operators

Table 4: Useful Operators to Implement, [Wikipedia, 2005].
Operators

Name Action
+, -, *, / Add, Subtract, Multiply, and Divide

!=, ==, <, <=, >, >=
Not equal to, Equal to, less than, less than
or equal to, greater than and greater than or equal to

=, +=, -= Assignment, Addition Assignment, and Subtraction Assignment
&&, ‖, ! Logical AND, logical OR, and logical negation NOT.

3.5 Sample Code / Pseudocode

1 main

2 create world size 10x10

3
4 new object rock has attributes (image = X , noStack)

5 loop i from 0 to 10{

6 loop j from 0 to 10

7 if (i==0 OR i==10 OR j==0 OR j==10)

8 create rock r at i,j

3



9 }

10 new object player has attributes (canmove ,hp = 10, image = O ,speed

=10)

11 create player p at 1,1

12 new object fist has attributes (inanimate ,weapon ,damage =1d4)

13 new object sword has attributes (inanimate , weapon , damage = 2d4)

14 p.give fist ,sword

15 new object dog has attribute (cannotmove ,hp=1, image = D )

16 create dog d1 at 4,4

17 create dog d2 at 4,5

18 dog makePrompt bark(say B a r k )

19 start();

20 // creates ascii map of world and populates with movable characters

21
22 function attack(object)

23 if object.attribute.contains (damage){

24 roll(object.damage) //roll should be a built in function that parses and

rolls x amount of y-faced diced , denoted by xdy

25 }

Listing 1: samplecode.txt

4



References

Wikipedia. List of logic symbols, August 2005. URL https://en.

wikipedia.org/wiki/List_of_logic_symbols.

5


