FRAC: Recursive Art Compiler

COMS W4115 - Language Proposal

September 30, 2015

Team

Anne Zhang az235e - Manager

Kunal Kamath kak2211 - Language Guru

Justin Chiang jc4127 - Systems Architect

Calvin Li ct12124 - Tester

Description

FRAC enables a programmer to generate fractals in the Graphics Interchange Format,
commonly abbreviated as GIF. Specifically, the user will be able to program a fractal
using a formal grammar, as well as incorporate algorithms into their fractal generation.

We define our fractal-generating grammars as:

G = (init, rules)

where,

e init: a string that defines the initial state of the system

* rules: a set of rules that defines the way variables are replaced with combinations of
variables and movements during the recursion. Each rule has two halves to it,
separated by an arrow (—). There are two types of rules: recursive rules, which point
to a string, and terminal rules, which point to a function

Syntax

Declaration/Assignment

Variables are declared and assigned in the same syntax as C.

int a;

a = 0;

int b = 1;
Data Types

 int: an integer of 32 bits
e double: a floating point number of 64 bits
e bool: a true or false value
e string: a collection of characters/symbols
e rule: a standard object composed of 2 fields
o a predecessor string
o asuccessor string or function
e gram:: a standard object composed of 2 fields
o an init string
o a set called rules

e.g. Consider the following grammar declaration:

gram G = {
init: 'X',
rules: { 'X' » 'X up X down X',
'up' » turn(99),
"down' - turn(-99),

X' - move(1)

}s

Structures

e primitive: fundamentally built into the language
* object: Javascript-like object with (key, value)
e set: unordered collection of objects or other data types

Operators

Mathematical and logical operators are the same as in C (e.g. + - */, && ||, < > ==).

Control Flow

If/else statements, while loops, and for loops are the same as in Java.

Functions

Functions have return values and can take parameters. They are defined with the
keyword "func", followed by the function name, parameters contained in parentheses
and separated by commas, and brackets.

func add(a, b) {
return a + b;

}

Built-in Functions

e main () - entry point upon which program executes

* move (int len) - draws a line of length len. Implements turtle graphics, which graphs
line segments based on a given orientation and relative position

e turn (int theta) - Turns the turtle's orientation by an angle of theta (degrees in the
polar coordinate system)

e draw (gram G, int num) - generates a static fractal image. 'num' corresponds to the
recursion depth of the grammar, and will indicate how many times the grammar’s
ruleset should be applied in the drawing

e grow (gram G, int num) - generates a GIF of the fractal being created at each
recursive step

e zoom (gram G, int num) - generates a (seemingly infinite) zooming GIF of the fractal

Comments

Just like in Java, // for single line and /* */ for multi line comments.

Proposed Applications

Since FRAC makes visualizing fractals and other iterative shapes simple, we see it being
quite useful to mathematicians or curious students who wish to explore the world of
recursive images with minimal programming experience. Furthermore, the ability to
create GIFs with FRAC will result in not only the spread of fractal art, but will also help
visual learners better understand the concept of the self-similar pattern.

Additionally, because FRAC also supports Java-like control flow in addition to fractal-
specific methods, users have the opportunity to algorithmically manipulate fractals. See
sample program #2.

Sample Programs

Generate a static image of the Koch snowflake

/*
* See https://en.wikipedia.org/wiki/Koch_snowflake for reference
*/

gram koch = {
init: 'Frr FrrF',

rules: { 'F' > 'F1Frr F1F',
'r' > turn(60),
'1'" » turn(-60),
'"F' -> move(1)
}
¥
main() {
draw(koch, 4);
}

Expected output:

Polyzygotic snowflakes

/*
* Uses the ability to access object properties to create
* conjoined twins, triplets, etc. of your desired fractal!

*/

gram koch = {
init: 'Frr FrrkF',
rules: { 'F* > 'F1 Frr F1F',
'r' > turn(60),
'l' » turn(-60),
'F' > move(1)
}
¥

func twin(gram g, int n) {
string new_init = '';
for(int 1 = 0; i < n; i++) {
new_init = new_init + g.init;
}
g.init = new_init;
return g;

main() {
draw(twin(koch, 3), 4);

Expected output:

