
d.o.t.s.
A graph language.

Hosanna Fuller (hjf2106) — Manager
Rachel Gordon (rcg2130) — Language Guru

Yumeng Liao (yl2908) — Tester
Adam Incera (aji2112) — System Architect

September 2015

Contents
1 Introduction and Motivation 2

2 Language Design and Syntax 2
2.1 Comments . 2
2.2 Built-in Data Types . 2
2.3 String, Int, Float Operators . 4
2.4 Node Operators . 5
2.5 Graph Operators . 6
2.6 Built-in Functions . 8
2.7 Control Flow . 9

3 Sample Code 9

1

1 Introduction and Motivation

Graphs are a powerful and versatile data structure used across many languages to help visually organize and
manipulate data. Many languages do not provide out-of-the-box support for data structures and methods
useful in solving graph problems. Because of this, programmers end up spending unnecessary time and
energy implementing these critical structures themselves. As a result, graph implementations often widely
vary in efficiency and modularity. The goal of d.o.t.s is to provide an out-of-the-box graph framework
so that users can focus on creating the algorithms needed to solve their problems, rather than getting
bogged down in implementation issues. With d.o.t.s, users can comprehensively solve a wide variety of
graph-based problems. Some example problems include: expressing network relationships such as a series of
interconnected routers with edge costs, representing decision trees in probability, and running analyses on
propositional models.

2 Language Design and Syntax

The strict typing and control flow in d.o.t.s. is reminiscent of C and Java, but overall the language is intended
to be used more as a scripting language, where the user builds their graphs quickly using the intuitive node
and edge operators and then performs operations on the structures.

The d.o.t.s. compiler compiles code written in d.o.t.s. into C binary executables.

Note: In the following sections, the word “graph” is sometimes used to denote a data structure and sometimes
to denote the abstract structure from computer science and mathematics:

A graph data structure consists of a finite (and possibly mutable) set of nodes or vertices, together
with a set of ordered pairs of these nodes (or, in some cases, a set of unordered pairs). These
pairs are known as edges or arcs. As in mathematics, an edge (x,y) is said to point or go from x
to y. The nodes may be part of the graph structure, or may be external entities represented by
integer indices or references.

A graph data structure may also associate to each edge some edge value, such as a symbolic label
or a numeric attribute (cost, capacity, length, etc.). 1

For the sake of clarity, from this point forward we will refer to the language-specific data structure using the
lowercase “graph” and the mathematical concept using the uppercase “Graph.”

2.1 Comments

Syntax Comment Style
*

code
*\

multi-line comment

single-line comment

Table 1: Comment Styles

2.2 Built-in Data Types

d.o.t.s. comes with four basic types: int, bool, float, and string. Each of these basic types can be
used as raw values with no prior declaration of variables or can be assigned as the values of variables. d.o.t.s.
also provides two built-in data types, node and graph, which provide the basis for algorithms written

1https://en.wikipedia.org/wiki/Graph_(abstract_data_type)

2

https://en.wikipedia.org/wiki/Graph_(abstract_data_type)

in d.o.t.s.. The built-in collections are: list, dict, and pqueue. d.o.t.s. is a strictly-typed language,
meaning that the types of all variables must be declared at the same time that the variable is declared. The
exception to this rule is that the types of node values do not need to be declared. Programmers can insert
values of any type in the value field of a node, and at compile time, the compiler will mark their data
type.

In addition to these data types, d.o.t.s. also includes the value null, which represents the absence of value
for any data type.

Data Type Fields
int
float
string
bool
list
dict
pqueue
node value, in, out, marked
graph node_list

Table 2: Built-in Data Types

Explanation of Built-in Types

The data types which underpin d.o.t.s. and give it its advantage in the Graph domain over languages such as
C are node and graph. From the get-go any programmer using d.o.t.s. can use these data types to quickly
build Graphs without the need to waste time creating these data structures from scratch.

A node object represents a single vertex in a Graph, whereas a graph object represents a collection of
graphs (which can be empty). Nodes and graphs demonstrate the square-rectangle relationship, in that a
node is a graph, but a graph is not a node.

Recursive definition of graph objects:

• An empty graph is a graph.

• A node is a graph.

• A graph added to a graph is a graph.

A graph contains only the field node_list, which is a list of all node objects contained within the graph.

A node contains the fields id, value, in, out, marked. The id field is a unique identifier of the
node that is set by the compiler. The value field can be an object of any type, and simply represents some
value that the node contains. One possible use of the value field is to allow users to assign a more semantic
meaning to nodes (ex. setting the value to the name of a city). The in field is a dict mapping nodes that
the current node has edges into to weights. Similarly, the out field is a dict mapping nodes that have edges
into the current node to weights. The keys of the two dicts are the unique id’s of the nodes. An example of
accessing the in and out dicts of a node can be seen in Listing 2. The bool field marked is intended for
use in search algorithms to represent whether or not the node has already been seen.

Since node has an is-a relationship with graph, it also contains a node_list field, but this is set upon
declaration to contain only the node itself, and cannot be altered by the user.

Nodes can be declared in two different ways. In the first, a the variable can be simply be declared with the
node keyword and a variable name. This creates a basic node with an empty value, in_list, and out_list. In
the second manner, a node can be declared by giving it an initial value inside parentheses after the variable

3

name (as seen in line 11 of Listing 1). Alternatively, a declared variable can be initialized with the assignment
operator “=” to any object of the type node.

Graphs can be declared as a variable name only or alternatively be assigned a value at declaration time. A
graph can be assigned any expression that evaluates to something of the type graph (as seen in line 9 of
Listing 1).

Explanation of Collections

Lists are declared using the keyword list and an indicator of the type of the list, as all objects in a list must
be of the same type. Lists can be assigned by putting a comma-separated list of objects inside brackets, as
seen in line 5 of Listing 1.

Dictionary objects in d.o.t.s. represent mappings from strings to objects; all keys must be of the type string,
and all objects in a single dict must be of the same type. Dict objects are declared in a similar manner to
lists, using the keyword dict and an indicator of the type that the dict maps to. Dicts can be assigned by
putting a comma-separated list of (key:value) pairs inside curly braces, as seen in line 6 of Listing 1.

The pqueue object represents a priority queue in d.o.t.s. with the distinction that objects contained in the
priority queue do not themselves need to be directly comparable. Instead, when objects are inserted into the
priority queue, they are inserted along with a number that represents their value. As with lists and dicts,
pqueues must be declared along with an indicator as to the type of object it contains. d.o.t.s. has no basic
queue type. Instead, a basic queue can be simulated using a pqueue by using the same weight value for all
inserted objects. Pqueues can only be assigned by setting them equal to another object of type pqueue.

1 int x = 12;
2 float y = 12.0;
3 string z = "12";
4

5 list<int> intList = [1, 2, 3];
6 dict<int> intDict = {"one" : 1, "two" : 2, "three" : 3};
7 pqueue<node> nodeQueue;
8

9 graph g1;
10 graph g2 = g1;
11 node x;
12 node y("nyc");

Listing 1: Declaration of built-in data types.

2.3 String, Int, Float Operators

Category Data Type Operator Explanation
comparison int, float, string <, >, <=, >=, !=, == Operate in the same way as languages

such as C/C++, with the exception that
string equality compares the value con-
tained in the string.

computation int, float +, -, *, /, % Operate in the same way as languages
such as C/C++.

concatenation string + String concatenation operator

Table 3: Comparison Operators

4

d.o.t.s. provides an infinity value for both floats and ints: float.INF and int.INF. The operators perform
a little differently for these values. As the primary use of infinity in graph problems is to define edge weight
and not to perform mathematical calculations, the computation operators return null whenever infinity is
an operand.

For comparison operators, INF values are greater than all non-null non-infinity values and equal to other
infinity values of the same type (i.e. int or float). Defining the comparison operators for INF values allows
them to be used both as valid edge weights, and valid weights in priority queues, which can be useful for
graph problems.

2.4 Node Operators

The node operators outlined in Table 4 are all binary operators which take a node object on the left-hand
and right-hand sides of the operator.

Operator Explanation
-- Add undirected edge with no weights between

the 2
--> Add directed edge from left node to right node

with no weight
--[num] Add an undirected edge between 2 nodes with

weight num in both directions
-->[num] Add a directed edge from the left node to the

right node with weight num
[num]--[num] Add edge from left to right with the weight

in the right set of brackets, and an edge from
right to left with the weight in the left set of
brackets

== Returns whether the internal ids of 2 nodes
match

!= Returns whether the internal ids of 2 nodes do
not match

Table 4: Node Operators

5

Figure 1: Example Graph showing nodes with different weights and edges.

1 node X, Y, Z, Q, R;
2

3 X --> Y;
4 Y -->[.3] Z;
5 Z -- Q;
6 Q --[45] R;
7 R [.87]--[.39] X;
8

9 R == Q; # returns false
10 R != Q; # returns true
11

12 * accessing edge lists: *\
13 X.out[Y.id]; # == null
14 Y.out[Z.id]; # == .3
15 R.in[X.id]; # == .87

Listing 2: Shows the use of node operators that creates the graph in Figure 3.

2.5 Graph Operators

The graph operators outlined in Table 5 are all binary operators which take a graph object on the left-hand
and right-hand sides of the operator.

6

Operator Explanation
+ Returns a graph that contains all of the graphs

in the left-hand and right-hand graph
+= Adds the graph on the right-hand side of the

operator to the graph on the left-hand side.
-= Removes the graph on the right-hand side of

the operator from the graph on the left-hand
side.

== Returns whether the two graphs contain the
same nodes.

Table 5: Graph Operators

Figure 2: Example showing graphs and graph nesting. The bottom graph is the result of removing the node
“Q” from the graph G1.

1 node X, Y, Q, R;

7

2 graph G1, G2, G3;
3 G2 = X + Y;
4 G1 = Q;
5 G1 += R;
6 G3 = G1 + G2; # result is the top graph
7 G1 -= Q; # result is now the bottom graph

Listing 3: Shows the use of graph operators that creates the top graph in Figure 2 and then alters it to the
bottom graph shown.

2.6 Built-in Functions

Syntax Explanation
print(x, ...) prints to standard output the string rep-

resentation of a list of comma-separated
values or variables.

range(int_lower, int_upper) returns a list of the integers from
int_lower to int_upper, inclusive. The
first argument can be ommitted, in which
case 0 will be used as the default value of
int_lower. The data type of both argu-
ments must be int.

len(iterable_var) returns the length of the iterable variable
isEmpty(iterable_var) returns len(iterable_var) > 0
getNodeById(node_id) returns the node object with the id

node_id
node functions:
mark(bool_value) sets the marked field of the node to the

given bool value. If the argument is om-
mitted, bool_value defaults to true

pqueue functions:
enqueue(object, num_weight) adds the given object to the priority queue

with the given weight
dequeue() returns and removes the object with the

lowest weight from the queue

Table 6: Built-in Functions

1 list<int> x = range(1, 3);
2 list<int> y = range(3);
3

4 print("x: ", x, "\ny:", y);
5 * prints out -->
6 x: [1, 2, 3]
7 y: [0, 1, 2, 3]
8 *\
9

10 node n;
11 n.mark();
12 print(n.mark); # prints --> true
13 print(n == getNodeById(n.id)) # prints --> true
14

15 node x, y, z;

8

16 pqueue q;
17 q.enqueue(x, 13);
18 q.enqueue(y, 2);
19 q.enqueue(z, 3);
20 print(q.dequeue()); # prints --> y.id
21 print(len(q)); # prints --> 2
22 print(isEmpty(q)); # prints --> false

Listing 4: Shows the use of built-in functions.

2.7 Control Flow

As Listing 5 includes example usage for each of the different types of control statements, this section omits
a separate demonstration of their use.

Explanation
if condition {

* code *\
}
else {

* code *\
}

if else statement

while condition {
* code *\

}

while loop

for var_name in iterable_var {
* code *\

}

Iterates through all the elements of the
iterable variable, assigning the current el-
ement to var_name.

example:
for node_var in graph_var {

* code *\
}

Iterates through all the nodes contained
in graph_var, assigning the current node
to the variable node_var.

Table 7: Control-flow Syntax

3 Sample Code

In this section, we demonstrate how a simple path-searching algorithm can be implemented using d.o.t.s.’s
syntax. The end-goal of our project is to be able to implement more complex algorithms such as Djikstra’s
algorithm. But for the purposes of demonstration, we chose to show the Breadth-First Search algorithm, as
its implementation makes use of each collection type and control-flow statement.

9

Figure 3: Visual of graph created by sample code.

1 * Graph set-up *\
2 node x("dc"), y("chicago"), z("philly"), q("nyc"), r("boston");
3 x --[2] z;
4 z --[2] q;
5 q --[3] r;
6 z --[9] r;
7 x --[8] y;
8 y --[9] r;
9

10 graph g1 = x + y + q + r + y;
11 * end Graph set-up *\
12

13 * breadth-first search *\
14 node start = z;
15 node end = r;
16

17 node next;
18 pqueue<node> search;
19 dict<node> parent_list = {y.value : null};

10

20 y.mark();
21 search.enqueue(y, 0);
22 bool found = false;
23

24 while !isEmpty(search) {
25 next = search.dequeue();
26

27 if next == end {
28 found = true;
29 break;
30 }
31

32 list<string> children = next.out.keys;
33 for c in children {
34 node child = getNodeById(c);
35 if !child.marked {
36 parent_list[child.id] = next;
37 child.mark();
38 search.enqueue(child, 0);
39 }
40 }
41 }
42

43 if found {
44 node cur = next;
45 list<node> path = [cur];
46 while parentList[cur.id] != null {
47 cur = parentList[cur.id];
48 path.add(cur);
49 }
50 print (path);
51 }
52 else {
53 print ("path not found");
54 }
55

56 * end breadth-first search *\
57

58 * Djikstra’s algorithm, calculate paths starting from "philly" and return a
list of nodes with the order of traversal*\

59 node source = z;
60 pqueue<node> nodeSet;
61 dict<int> dist;
62 dict<node> parentList;
63

64 dist[source.id] = 0;
65 parentList[source.id] = null;
66

67 for vertex in g1 {
68 if vertex != source {
69 dist[vertex.id] = int.INF;
70 parentList[vertex.id] = null;
71 }
72 nodeSet.enqueue(vertex, int.INF);

11

73 }
74

75 while !isEmpty(nodeSet) {
76 node u = nodeSet.dequeue();
77 for outNodeId in u.out {
78 int altDist = dist[u.id] + u.out[outNodeId];
79 if altDist < dist[outNodeId] {
80 dist[outNodeId] = altDist;
81 parentList[outNodeId] = u;
82 }
83 }
84 }
85 print(dist);
86

87 * end Djikstra’s *\

Listing 5: Path Searching

12

	Introduction and Motivation
	Language Design and Syntax
	Comments
	Built-in Data Types
	String, Int, Float Operators
	Node Operators
	Graph Operators
	Built-in Functions
	Control Flow

	Sample Code

