DAVE

Data Analytical Visualization with Ease

James HyunSeung Hong (hh2473)
Min Woo Kim (mk3351)
Fan Yang (fy2207)
Chen Yu (cy2415)

Programming Languages and Translators
COMS W4115, Fall 2015
Project Proposal



Introduction

DAVE is a programming language optimized for data retrieval, manipulation, analysis
and visualization. We designed DAVE with cross-dataset operations in mind, which is
fairly common yet complicated to achieve with current toolsets in today’s data-intensive
tasks. Operators would be able to use DAVE to validate datasets, incorporate (parts of)
datasets from different sources, split up oversized datasets, conduct statistical analysis
and visualize critical data.

Motivation

For the last few decades developers have created a variety of tools to help with data
management and analysis. SQL and R language, for example, are two of the most
prominent tools in this field, being widely utilized by business analysts, social scientists,
statisticians and many more. Popular as they are, there still remain certain scenarios
where both tools are imperfect. For instance, social scientists today often need to
incorporate data of distinct formations from different sources for their statistical analysis.
SQL may work well for this job, yet it is designed for relational databases, a system
which is not suitable for most statistical tasks. R language, on the contrary, is fully
optimized for statistical analysis with all the functions and libraries, but it lacks the
simplicity and usability of SQL in terms of managing data. That is exactly why we are
building DAVE to address this problem. By implementing rec, fld and tbl data
structures, our language offers great assistance in cross-dataset operations; the
addition of statistical analysis functions also grants DAVE capabilities to analyze and
visualize data. As the libraries keep expanding, DAVE is sure to achieve more.

Language Overview

Datatypes and Operators

DAVE has mainly four fundamental kinds of datatypes and three DAVE-specific
types. The first four are the character string, 32-bit integer, boolean and 32-bit floating
point number. The new data types, tbl, rec and fld are implemented to enable a
statistical manipulation of data.

For the operators, DAVE supports arithmetic operators, relational operators, logical
operators, and assignment operators in a similar fashion as other commonly used
programming languages.



List of Datatypes

str sequence of characters, closed with single or double quotes
int 32-bit integer

float 32-bit floating-point number

bool boolean value

tbl data table that consists of collection of fields and records

rec (record)

sequential collection of heterogeneous variables

fid (field)

sequential collection of homogeneous variables

none

null type

List of Operators

-+ /7% % * | minus, plus, divide, multiply, modular, exponent
= assignment to an identifier
> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

1= not equal to

&& and

I or

! not

if elif else conditional

for while loop, iteration

r**l

comment, all characters inside /* and */ are considered comments




Functions

DAVE'’s built-in functions comprise primarily of file I/O stream, data manipulation, and
graphical modeling. Some commonly used statistical methods such as linear/quadratic

regression are also included.

List of Functions

load(str filepath,
str{] field_list,
int[] record_list)

to load a table from a path.

argument:

filepath: str - path of file to load table from (required)
field_list: str[] - list of field names to fetch (default all)
record_list: int[] - list of record indexes to fetch (default all)

save(str filepath,
tbl table,
str option)

to save a table to a path

argument:

filepath: str - path of file to save table to (required)

table: tbl - table to save to a file (required)

option: str - ‘a’ to append to file, ‘0’ to overwrite (default ‘0’)

print(str/fld/tbl, option)

to print its argument to standard output

plot(fld/rec, fld/rec, etc)

to plot the corresponding diagram

comp(fld, fld) or comp(rec, rec)

to compare two fields or records with identical data types

append(fld/rec, int/string/etc)

to add new entities following in the end of table

max(fld), min(fld), sum(fld)

to return the max, min, or sum of the records in given field

linreg(fld x, fld y)

to calculate the linear regression of fld x and fld y, and
return a new fld with slope and intercept

plotline(int k, int b)

to plot the corresponding straight line, with k is the slope
and b is the intercept

quadreg(fld x, fld y)

to calculate the quadratic regression of fld x and fld y, and
return a new fld with constants in the quadratic equation




Visualization

DAVE supports a built-in plot function which formats its argument into a python
executable data set and prints the diagram as an image file. The central idea is to
enable efficient plotting of DAVE-specific data types, fld. An example of visualization is
provided below.

Example Program

Here’s an example program for DAVE language, which includes the process for
importing data from the original text file, performing data analytics, visualizing data,
adding new data, and saving the updated data.

Database Example (w4115_roster.txt)

<ITABLETYPE dave>

str name; int age; str gender; bool is_enrolled; int score;
Emily; 24; F; true; 90;

James; 22; M; true; 80;

Min Woo; 23; M; true; 95;

Jenny; 19; F; false; 65;

<ENDTABLE>

Input:

def main():
/* read database from w4115_roster.txt above,
only for fields ‘age’, age, ‘score’ and records 1 to end */
tbl roster = read(‘w4115_roster.txt’, ['name’, ‘age’, ‘score’], [1:])
print(roster)

[* visualize linear regression on the selected data */
fld ages = roster.age

fld scores = roster.score

plot(x=ages, y=scores, reg=linreg(ages, scores))

/* create new record for a student,
with name ‘Michael’ and age from first index of ages */
rec new_student = {name: ‘Michael’, age: ages[0]}



/* add new student record to the table */
roster.append(new_student)

/* save updated roster to w4115 _roster_v2.txt */
save(‘w4115_roster_v2.txt', roster)

main()

Output:

> str name; int age; int score;
James; 22; 80;
Min Woo; 23; 95;
Jenny; 19; 65;

164

85 -~

=1 ik

0 -

55

15 19 20 21 22 3 24

w4115 _roster_v2.ixt:

<ITABLETYPE dave>

str name; int age; int score;
James; 22; 80;

Min Woo; 23; 95;

Jenny; 19; 65;

Michael; 22;;
<ENDTABLE>

5



