
Stitch Language Proposal

Daniel Cole (System Architect), Megan Skrypek (Tester), Rashedul
Haydar (Manager), Tim Waterman (Language Guru)

dhc2131, ms4985, rh2712, tbw2105

September 30, 2015

Motivation
Most ”modern” programming languages trace their origins back decades to before the
advent of cheap, general purpose multicore CPUs. They were designed for a distinctly
mono-threaded environment. While libraries and enhancements to mainstay languages
such as C/C++ and Java have added multithreading capabilities, it remains in many ways
bolted on kludge. While newer frameworks such as Node.js provide more integral support
for asynchronous operations, they lack the depth of support and power of a fully compiled
language. With Stitch, we aim to build a language that has the power and flexibility of a
fully compiled C style language, while having native threading support for modern multi-
threaded applications. Our goal is to create a translator from Stitch to C.

Description
Stitch is inspired by C, which has a very well known syntax, and has been one of the most
widely used languages since it was released over forty years ago. Stitch is a general purpose
language that supports all standard mathematical and logical operations. Like C, Stitch
is strongly typed, and whitespace does not matter.

In addition to the standard C primitive types (int, double, char, etc.), Stitch has native
support for the string type. This includes concatenation, and an inbuilt length operator.
Stitch also has support for the bool type.

1 // S t i t c h comments are s im i l a r to C comments
2 // t h i s i s a s i n g l e l i n e comment
3 /∗
4 You can a l s o have mult i−l i n e comments
5 ∗/
6

1

7 // f unc t i on s are dec l a r ed us ing the ’ de f ’ keyword , l i k e Python
8 def int main () {
9

10 // the var keyword d e c l a r e s a v a r i a b l e
11 var int x = 7 ;
12 // boo leans are a p r im i t i v e data type
13 var bool b = true ;
14
15 // s t r i n g s are f i r s t c l a s s c i t i z e n s in S t i t c h
16 var string s = ”This i s a S t r ing \n” ;
17 var string h = ” St i t ch a l s o supports ” + ” s t r i n g concatenat ion ! ” ;
18 var unsigned long l = l eng tho f (h) ;
19
20 let double PI = 3 . 1 4 ; // l e t i s used to d e f i n e cons tan t s
21
22 return 0 ;
23 }

What sets Stitch apart is its native support for multithreading using the async keyword.
This keyword can be applied to any function call, as well as to any loop construct. When
called in this way, functions and loops will run in their own thread.

1 /∗
2 async keyword : used on func t i on c a l l s and on loop cons t ruc t s , to
3 make the loop execu te asynchronous ly
4 ∗/
5
6 def int main () {
7
8 var int even sum = 0 ;
9 var int odd sum = 0 ;

10
11 //adds up a l l the even numbers from 0 to 100 m i l l i o n
12 async for (var int i = 0 ; i < 100000000; i+=2) {
13 even sum += i ;
14 }
15
16 //adds up a l l the odd numbers from 0 to 100 m i l l i o n
17 async for (var int i = 1 ; i < 100000000; i+=2) {
18 odd sum += i ;
19 }
20
21 p r i n t f (”The sum of a l l va lue s i s %d” , even sum + odd sum) ;
22
23 return 0 ;
24 }

2

Example Program

1 // f unc t i on s are de f ined wi thou t the async keyword . . .
2 def int createHashTable (string [] [] t ab l e) {
3
4 def int numItems = 0 ;
5
6 /∗ in here we ’ d put code to p u l l encrypted i n f o from a f i l e
7 and use i t to c r ea t e a ha s h t a b l e f o r something l i k e a s e r v e r
8 ∗/
9

10 return numItems ;
11
12 }
13
14
15 def int main () {
16
17 var string [] [] s ;
18 var string user name ;
19 var string password ;
20
21 // . . . but are c a l l e d wi th the keyword when you want
22 // to run them in a separa t e thread
23
24 async createHashTable (s) ;
25
26 p r i n t f (” Please ente r your username : \n”) ;
27 s can f (”%s ” , user name) ;
28
29 /∗ Since IO opera t i ons are s low and b l ock ing , t h i s async keyword
30 can be used to a l l ow concurrent p roce s s ing wh i l e wa i t ing f o r
31 t h e s e user−dependent f unc t i on s to f i n i s h
32 ∗/
33
34 }

3

