Project Manager: Lilia Nikolova (Ipn2112)

Language Gurus: Maxim Sigalov (ms4772), Dhruvkumar Motwani (dgm2138)
System Architect: Srihari Sridhar (ss4964)

Verification and Validation: Richard Munoz (rtm2129)

Senet

30" September 2015

OVERVIEW

Past projects for Programming Languages and Translators have included languages for
expressing the setup and flow of playing card games. Inspired by such languages, we propose
to extend the domain to general, two-dimensional board games. Examples of games that
might be expressed in our proposed language are tic-tac-toe, checkers, and chess. A similar
idea has been investigated by Romein, Bal and Grune (1995), who described a language called
Multigame that compiled to a parallel game playing program.! The authors focused their
research on parallelized artificial intelligence to find optimal moving while playing games
created in Multigame. In part due to this research focus, the authors restricted the class of
games that could be described in Multigame to those with fixed-sized boards (thereby

excluding card games) and to those where all players have perfect information.

We propose a similar language focused on simple expression of board games; however, we
will construct our compiler to create games that may be played interactively on the command
line. The players will execute the game program of their choice after which they will be
presented with prompts that navigate them through the game. We have named our new
language Senet after one of the oldest-known board games, which traces its origins back to

ancient Egypt.

GOALS

With our proposed language, we aim to provide:

1. Intuitive, relatively high-level expression of the setup and flow of board games;
2. Simple description of boards and pieces; and
3. Static, strong typing, and a mix of C and Python syntax to minimize the learning curve.

' J. Romein, H. Bal and D. Grune. (1995). Multigame - A Very High Level Language for Describing Board
Games. ASCI 95, pp. 278-287.

SPECIFICATIONS

Operators

Senet includes basic math operators found in a wide variety of programming languages (+,
-, /, *, **, %), logical operators (or, and, not), comparison operators (>, <, >=,
<=, ==, !=). The meanings of these operators are similar to their meanings in Python,

except that all math operations are purely integral.

Built-in Types

Senet includes a number of basic types from Python as shown in the table below.

Basic Types Meaning

int 32-bit Integer

char Char

str String (list of char)

bool Boolean (True or False)

list C-like arrays

set Unique sets

void type of None, a value used to represent the
absence of a value

The language is object-oriented, with inheritance (but no multiple inheritance). As such, the
standard classes shown in the table below are built in and meant to be extended by the
programmer.

Standard Classes Meaning Methods & Variables
Board Defines board geometries, remove (int x):removes the
win conditions, cleanup piece at index x
methods
owns (int x):returns the number
of the player atindex x of cells
full ():returns True if all spots are
occupied, else False
cells: list of board cells, each
element is either None or the piece
at that spot
Piece Defines possible moves, place (Board b, int x):
keeps track of position, places the piece on board b at index
owning player, and other x ofb.cells
needed variables
owner: the owner of the piece
fixed: whether or not the piece
can be overwritten

Control Flow

The language includes 1f, for, and while which operate as usual. Also, for .. in syntax

can be used as in Python. All games must have two program sections: @setup; which contains

functions, objects, and parameters used to set up the game; and @turns, which contains

several “phase” functions each of which operate as a “while True” loop but can call other

functions in the @turns section.

Syntax

The language’s syntax borrows C-style brackets, semicolons, and function and variable

definitions. Lines (or the remainder of a line) can be commented one at a time with “#”.

EXAMPLE PROGRAM

Tic-tac-toe is a two-player game that is played on a three row, three column board. The
players take turns placing either an “X” or an “O” in each cell. A player wins if three of their
pieces fall in a line (vertical, horizontal, or diagonal). The game ends in a draw if all cells are full
and no player has won. Below, we describe how our language could be used to create an

interactive tic-tac-toe game.

@setup

class b (Boards.Rect (3, 3)) {
three in a row(player) {
for (1 in {[O, 1, 2], [3, 4, 5],
e, 7, 81, 4, 171,

(o,
(1, 5, 81, [2, 6, 9],
4,

(0, 81, [2, 4, 61}) {
Tests each line

if (b.owns(1[0]) == player and
b.owns (1[1]) == player and
b.owns (1[2]) == player) {

return True;
}
owns checks the owner of a piece at an index,
and returns -1 if the space is empty

}

return False;

bool won (int player) { # checks if the player won
if three in a row(player)
return True;
return False;

bool draw () {
if b.full ()
return True;
return False;

class Mark (Piece) { # inherits from Piece
self.fixed = True; # piece cannot be overwritten

char repr () {
if (self.owner == 0) { # self.owner is the id of the owner

return ‘X’ ;
} else {
return ‘Y’ ;

N PLAYERS = 2; # number of players, this is mandatory

N PHASES = 1; # number of distinct game phases, 1 by default
print (“Input coordinates of square to place”)

print (M"in i.e. \”722\” or \”10\”.\n”); # prompts the players

reset ()
{
char c; #defaults to '
while(c!="y’ && c!='n’") {
print (“Do you want to continue playing?\n”);
print ("Type y to continue and n to exit\n”);
c=read(l) [0];
}
if(c=="y") {
restart(); # restarts the game
}
else {
exit(); # exits from the game

@turns
{
begin () {
this is basically just "while True" with only 1 phase
players input moves by typing coordinates, e.g. "11" or "02"
int a = stoi(read(l)); # reads one character and converts it to an int
int ¢ = stoil(read(l));
if (Mark.place (b, b.toindex(a, c))) {
if (b.won(ON MOVE)) { #ON MOVE is the index of the player
print ("Player " + itos(ON MOVE + 1) + " wins.\n");
print ("Congratulations!");
reset () ;
Instead of ending the game entirely, could we
ask if the players want to continue playing? Say, a reset
function which either calls exit or clears the board
for a new game??

if (b.draw()) {
print ("Game ends in a draw.\n");
reset () ;
}
pass(); # if the move was legal, went through successfully,

and the game is not over, pass the turn to the
next player

