
HAWK (HTML is All We Know)
Language Proposal

Jonathan Adelson, Ethan Benjamin, Justin Chang,Graham Gobieski, George Yu
jma2215, jc4137, eb2947, gsg2120, gy2206

Introduction

HAWK (HTML is All We Know) is a play on AWK, and strives to accomplish for HTML web
scraping what AWK accomplished for text processing. Web scraping describes the process
of automatically extracting data from websites. For instance, one could write a web scraping
program to look at the menu for John Jay dining hall each day and determine if bacon is
being served. As another example, one could scrape IMDB to determine how many degrees
of separation a given actor has from Kevin Bacon.

Though no two web scraping tasks are the same, most web scraping programs employ a
similar workflow. For the most part, this involves finding relevant parts of a web page and
performing some action in response. In practice, the most typical “relevant parts” are HTML
elements that match some criteria or certain strings in the raw HTML document. Usually,
in order to find these parts you must combine various search mechanisms including XPath,
CSS selector search, and regexes. Often, these distinct search mechanisms are implemented
in separate libraries which each have distinct abstractions that don’t play well together.

HAWK unifies the disparate aspects of web scraping in a clean and coherent manner.
Like AWK, HAWK mostly consists of pattern-action pairs. HAWK supports multiple types
of patterns, and treats each as a first class citizen. For our project, we will support three
types of search patterns for HTML documents: CSS selectors, regular expressions, and
HAWK predicates. CSS selectors and HAWK predicates will allow users to match whole
HTML elements. HAWK predicates are simply boolean expressions with the same syntax

1

and semantics as HAWK’s action language. Regular expressions will let users cut right to
the chase and scrape raw string data.

HAWK’s action syntax and semantics will be bare-bones and dynamic, in the spirit of Lua.
We hope to provide just enough features to make the large majority of tasks straightforward,
and enough flexibility to make hard tasks possible. Like Lua, we will provide only one built-
in data structure, a table, which is essentially just a key-value hash table. Just as in AWK,
we will provide several built-in variables (for both patterns and actions) which will assist the
programmer in performing common operations.

Code Examples

Below are some hypothetical HAWK programs. Each performs a web scraping task on the
Wikipedia site listing the tallest mountains in the United States:

https://en.wikipedia.org/wiki/List of mountain peaks of the United States

Example 1: Print Top 50 Mountains From Colorado

/∗Beginning o f program . This i s a comment .
Like in AWK, code done at the beg inning i s marked with BEGIN.
No ac t i on taken in t h i s case . ∗/

BEGIN{}

/∗ t ab l e . w i k i t ab l e > t r i s a CSS s e l e c t o r and
matches a l l <tr> e lements with in the mountain tab l e .
With the { . . . } i s the ac t i on to perform when f i nd i n g a pattern .
In t h i s case , no ac t i on i s taken when encounter ing the tab l e .
Within the [. . .] are subpatterns to look f o r
with in the tab l e element , t ab l e . w i k i t ab l e > t r ∗/

tab l e . w i k i t ab l e > t r
[

/∗ F i r s t get the he ight ranking o f the mountain

2

corre spond ing to the f i r s t column .
$1 i s s p e c i a l pattern , meaning f i r s t element o f cur rent parent match
(the f i r s t <td> o f the parent <tr> in t h i s case) . ∗/

/∗Assign the $rank va r i ab l e to the content o f the <td>
Al l v a r i a b l e s have g l oba l scope ∗/
$1 { $rank = str2num ($content) ; }

/∗Next get the s t a t e o f the mountain
$3 = 3rd columnof t r = s t a t e <td>
$ e l t i s s p e c i a l v a r i ab l e cor re spond ing to the matched element .
I t i s an ob j e c t that has methods s im i l a r to jQuery e lements .
Within 3 rd column o f tr , get the second ch i ld ’ s t i t l e a t t r i b u t e . ∗/

$3 { $ s t a t e = $ e l t . nth e lement (2) . a t t r (” t i t l e ”) ; }

//Fetch the name o f the mountain
$2 { $mountain = $ e l t . nth e lement (1) . a t t r (” t i t l e ”) ; }

]
//Ending ac t i on f o r <tr >.
// Pr int name o f mountain i f i t i s ranked h igh ly enough and in Colorado
{

i f ($rank <= 50 and $ s t a t e == ”Colorado”)
p r i n t ($mountain)

end
}

Example 2: Show Tallest Mountains By State

BEGIN{
$count s by s ta t e = {}

}

t ab l e . w i k i t ab l e > t r
[

$3{
$ s t a t e = $ e l t . nth e lement (2) . a t t r (” t i t l e ”) ;
$ count s by s ta t e [$ s t a t e] = ($count s by s ta t e [$ s t a t e] or 0) + 1

3

}
]

//end o f program ac t i on s
END{

f o r s t a t e in coun t s by s t a t e do
p r in t (”STATE: ” + $s ta t e + ” , COUNT: ” + $count s by s ta t e [$ s t a t e]) ;

end
}

Example 3: List mountains between 14,000 and 15,000 feet

BEGIN{}

t ab l e . w i k i t ab l e > t r
[

//Fetch the name o f the mountain
$2 { $mountain = $ e l t . nth e lement (1) . a t t r (” t i t l e ”) ; }

/∗Get the he ight o f the mountain us ing a r e gu l a r exp r e s s i on pattern !
$MATCH i s a s p e c i a l array va r i ab l e cor re spond ing to the captured
groups in the the regex . In t h i s case i t captures the f e e t ∗/

/(\d+,\d+) f t / { $he ight = str2num ($MATCH[1]) ; }
]
{
//Ending ac t i on f o r <tr >.
// Pr int name o f mountain i f i t i s in the r i gh t he ight range

i f ($height >=14000 and $height <=15000)
p r i n t ($mountain) ;

end
}

END{}

4

