Geo

A geometric solution language

Proposal

Group Members
PM (make sure conductible, write-ups):
Qi Wang (qw2197)
Language Guru (design language syntax):
Yuechen Zhao (yz2877)
System Architect (based on syntax, build compiler):

Zichen Chao (zc2321)

Tester (test test test test):

Ziyi Luo (zI12471)

(COMS W4115) Programming Languages and Translators
Fall 2015

Sept. 27, 2015

1. Description

Geo is an objective-orient geometric solution language that enables students,
physicists, mathematicians, as well as other geometry-interested professionals to solve
spatial problems efficiently. It involves functionalities that computes relationships among
geometric figures, including lines, circles, and rectangles, etc. Users are able to define
figures, set their moving patterns, and perform various analysis (including static and
dynamic analyses) of the interacting figures. If desired, a user can also change the
moving pattern or shape of objects.

2. Syntax

Syntax of Geo is simple and friendly. In this section, the basic syntax of Geo will be
introduced.

2.1. Comments

Geo has same comment syntax as C and Java. It allows single-line comment and
multiple-line comment like the following example:

/[This is a single-line comment
[* This is a multiple-line
comment */

2.2. Panel declaration

All works of Geo must be assigned in Panels. The declaration of Panel as well as basic
configurations is shown as bellow:

I* Define panel */

@Panel panelDemo

/* Mode choices: Console & Figure */

@Mode Console

/* Default: Cartesian coordinate system */
/l@Co Cart

/* End panel indicates the boundary of a panel*/
@End Panel

Note that, several panels are allowed to exist in one Geo program. All Panels in one
Geo are allowed to work either serially or parallelly during the run time. Console mode
presents all result of analyses in a command line window. Figure mode presents a
much more intuitive view of the geometric objects in the program.

2.3 Primitive data types and Variable declaration

Primitive data types of Geo includes C-like data types (i.e., Bool, Int, Float and String)
and geometric types. Note that the names of all basic data types start with an
uppercase letter. Declarations of C-like data types are shown as follows:

stat = true; //Declare a Bool named stat

int1 = 3; // Declare an Int named int1

float1 = 3.;// Declare a Float named float1

string1 = "Hello world”; //Declare a String named string1

Geometric types include Dot, Line, Rect, and Circle. A Dot is defined by its coordinate
(i.e., x and y in Cartesian coordinate system), a Line by its slope and intersect or two
coordinates (named a and b), a Rect by a coordinate and its width and height, and a
Circle by its center and radius.

/* Dot definition */
dot1 = [2,3];
dot2 = [3,4];

/* Line definition */
line1 = Line(3,4); //Line(a:Float,b:Float) denotes the function y=ax+b
line2 = Line([0,0],[5,10]); // Two points determine a line

/* Rectangle definition */
rect1 = Rect([2,5],3,5); //Rect(Coordinate:Dot, Width:Float, Height:Float)

[* Circle definition */
circle1 = Circle([3,5],5); //Circle(Center:Dot,Radius:Float)

2.4 Function

Function of Geo allows one return value, but note that all input parameters of a function
are reference parameters in default, which means that if the input parameters are
modified in the function, the parameter will keep that change after the execution of the
function. "Const” is strongly recommended to add in the declaration of a function in
order to avoid the modification of input parameters.

/[Function with a Circle as the input and a Dot as the output
Function Get_circle_center(c:Circle):Dot:

return c.Center;

End

/IA Function without return value.

Function Print_circle_center(c:Circle Const):
Printin(c.Center);

End

2.5 Control Flow

Geo includes If-Elif-Else statements. The following example uses a build-in function
Line.Intersect(Circle):int to examine the intersect point number(s) of a line and a circle.

If(line1.Intersect(circle1) > 0):
Printin("Intersection");
Elif(line1.Intersect(circle1) == 0):
Printin("Tangent");

Else:

Printin("Neither intersection nor tangent");
End

Besides, we have loop control flow like While and For-in statements:

While(true):

End

/[Declare a List of Circles

list_of circle = {Circle([3.4,5.1],5.2),Circle([1,9],6.5),Circle([2.3,4.1],7.3)};
For c:Circle in list_of_circle:

Printin(c.Center);
End

2.6 Dynamic analysis statement

Geo includes a special Run statement for all kinds of dynamic geometric analysis. For
all geometric-type objects with Timer(s), the properties of these geometric objects may
be shown and analysis in a Run statement. An example of Run is shown as bellow:

t1 = Timer(-0.5); //Timer(Timestep:float)
t2 = Timer(1);

/* As for a line, the standard expression is ax+b=y */
line1.AddTimer(t1,a); //For each time in Run, a+(Timestep of t1) -> a
circle.AddTimer(t2,r);//(x-a)"2+(y-b)*2=r"2

/* Run line1 & circle1 20 times. Note that both line1 and circle1 must have a timer for
dynamic analysis*/

/* Run(Times:int,Geo_obj1:Geo_type,Timer_of Geo_obj1:Timer, ...) */
Run(20,line1,t1,circle1,t2):

Printin("Intersection length: ",line1.IntersectLength(circle1));
/* Line.Expression:string */

Printin(line1.Expression);

I* Circle.Expression:string */

Printin(circle1.Expression);

End //End of Run

Run is a powerful statement that allows diverse dynamic analyses. For example, one
can set the distance between a dot and the center of a circle to be fixed, and set the
length between a segment and a circle to be dynamic changing.

3. Build-in functions support

Geo includes a large number of built-in functions for basic geometric analysis. For
instance, Geo has Intersect function for Line and Circle, Line and Triangle .etc, Distance
function for Dot and Dot, Dot and Line .etc. Besides, Geo includes many basic system
input & output commands.

/* Line.Intersect(Circle):Int */
line1.Intersect(circle1);

/* Line.Intersect(Circle):Float */
line1.IntersectLength(circle1)

/* Dot.Distance(Dot):Float or Dot.Distance(Line):Float */
dot1.Distance(dot2);

/* Console mode ONLY */

* Printin(String/Float/Int/Dot)*/

Printin(line1.Expression);

Printin(circle1.Expression);

/* Println function allows different data type in one function, divided by comma. The
following example prints a string and float*/

Printin(dot1.Distance(dot2),” ”,dot1.Distance(line1));

4. Samples of Geo

4.1 A static analysis sample

@Panel paneldemo

@Mode Console

dot1 = [5,5];

circle_list = {Circle([2,4],6),Circle([0,0],5)};
For c:Circle in circle_list:

Printin("Distance between dot1 and the center of ”,c.Expression, " is ”,
dot1.Distance(c.center));

End

@End Panel

4.2 A dynamic analysis sample

@Panel paneldemo
@Mode Console

t1 = Timer(0.1);

line1 = Line(2,3);
line1.AddTimer(t1);
circle1 = Circle([3,5],4);

Run(100,line1,t1):
If(line1.Intersect(circle1)>=0):
Printin(line1.IntersectLength(circle1));
Else:

Printin("Not intersect.”);

End

End

@End Panel

