Flow Language Proposal
PLT 4115 Fall 2015

Mitchell Gouzenko (mag2272), Zachary Gleicher (zjg2012)
Adam Chelminski (apc2142), Hyonjee Joo (hj2339)

Intro

Flow is a language that aims to process streams of input using the Kahn Process Network (KPN) model
through a variety of user-defined transformations. As the name of the language suggests, the goal of Flow is to
enable cascading of data over seamless sequences of operations and functions (aka transformations). Data
will pass through transformers, each of which will have a well-defined input protocol. The syntax of Flow will
make it intuitive to connect transformations with each other. We plan on compiling Flow into multithreaded C
code.

Motivations

Data processing has become one of the most important tasks for computers, and we want to design a
language that makes it easy to create pipelines for reading, transforming, and writing data. We think that
traditional sequential programming languages do not provide the most intuitive method for pipelining data, but
rather, can be better organized with an alternative model of computation that resembles a directed acyclic
graph. The nodes of the graph, which we have decided to call transformers represent workers that perform a
specific task and route data to other transformers. Flow would be a useful language for implementing the
following three types of programs:

e A program that processes a stream of log messages.

e A program that processes a stream of MIDI messages to produce sounds.

e A program that analyzes streams of financial data.

Language Overview

The most important concept in Flow is the transformer. A transformer is similar to a function in that it contains
code to execute and accepts arguments in the form of an input protocol. Furthermore, transformers can have
persistent state variables. However, rather than returning a value to the routine that invoked it, a transformer
can only send data forward to zero or more other transformers. A Flow program is built by creating a network
of these transformers, each of which performs a task on a single mutable element of data. Each transformer
has a queue of data elements that were sent to it but not yet processed.

Like other programming languages, Flow also supports traditional functions that return values and accept
arguments. Regular functions can be invoked in the code of a transformer as well as in other regular functions.
Functions cannot send data to transformers.

A special entry transformer is used as an entry point for a Flow program. This transformer will not have an
input protocol and will instead read input from a raw data stream.



The last important piece of Flow is the protocol, which defines the type of data that a transformer can accept.
Each transformer specifies a protocol for its input. A protocol is defined similarly to a C-style struct, except that
it can also contain a method that defines how to convert a stream of data into an element of the protocol type.
This makes it easier for programmers to read from raw data streams in the entry transformer.

Syntax Example

Below, we present a sample program that parses application error logs from stdin. These logs vary in severity,
origin (within the application), and are not easily readable by the human eye. The flow program we propose
aims to route these logs to appropriate destinations in a logical way. The graphic below illustrates a KPN of the
transformers that compose this program, along with their descriptions.

Entry

Critical
Log
Mailer

Anomaly
Detector

Entry: The entry point transformer that formats raw input from stdin into log messages.

Log Monitor: Transformer which routes logs to the appropriate transformers. It makes decisions based on
metadata that it collects about the stream. For instance, when the average interval between error logs
becomes too small, the log monitor starts forwarding data to the Anomaly Detector.

Anomaly Detector: Looks for the anomaly that has caused errors to start occurring more frequently.

Critical Log Mailer: Sends an email to the lead engineer on the team that is in charge of the feature that has
caused a critical error.

int BATCH SIZE;

protocol time stamp({
int second;
int minute;
int hour;
int day;



int month;
int year;

protocol log message(

from(int source){ // Source is a file descriptor
//Initialize the protocol structure from file stream
this.warning level = . . . ;

}

int warning level;

string message;

string module name;

time stamp tstamp;

transformer entry {
log message message;

transform() {
// invokes the ‘from’ method of message
message <- stdin;

// send the message to the log monitor transformer.
message -> log monitor;

// The program will repeat this indefinitely until EOF is reached.

// At this point, the program will terminate cleanly by stopping the
// entry transformer, and emptying the gqueues of the other

// transformers. Alternatively, the keyword ‘exit’ in any transformer
// will start the clean termination process.

transformer log monitor/({
// Persistent variables to preserve state
int interval average;
int position;
int [10] interval list;

transform(log message message) {
if (log message.warning level > 10) {
// If the warning level is particularly high, send the log to
// a transformer that can determine which team to email it to.
message -> critical log mailer;

update moving average();

if (interval average < 2){
// Something is broken. Start sending the logs to a transformer
// that knows better how to detect anomalies in the log stream
message —-> anomaly detector;



}

vold update moving average () {
this.interval average = ...;
}
}

transformer critical log mailer {
transform(log message message) {
// Code that emails the appropriate team

}

transformer anomaly detector ({
transform(log message message) {
// Looks for the source of the error

Goals

e 0.8 (MVP)
o transformers with
m input protocol
m ability to send to a transformer
each transformer executes on its own thread
a special entry transformer
normal C-style functions
control statements
m if, else, while, etc.
local variables
protocols
m with a ‘from’ stream method
o away to check for cycles in the program at compilation time
o an ‘exit keyword
e 1.0 (Final Project)
o persistent state within a transformer
o a standard library of functions based on the C standard library
o a built-in string type
o the ability to invoke C code within Flow code with a special block so as to make it easy to use
existing C libraries
e 1.2 (Stretch goals)
o multiple input sources to a transformer
m special type of transformer
o aclean way to define optional and repeated types within a protocol
o the notion of transformer factories to modularize transformer functionality

O O O O



