Review for the Midterm

Stephen A. Edwards
Columbia University

Fall 2015

)

pt.‘r W DON'T PANIC

&

N

The Midterm
Structure of a Compiler

Scanning
Languages and Regular Expressions
NFAs
Translating REs into NFAs
Building a DFA from an NFA: Subset Construction

Parsing
Resolving Ambiguity

Rightmost and Reverse-Rightmost Derivations
Building the LR(0) Automaton
FIRST and FOLLOW
Building an SLR Parsing Table
Shift/Reduce Parsing

The Midterm

75 minutes

Closed book

One double-sided sheet of notes of your own devising
Anything discussed in class is fair game

Little, if any, programming

Details of OCaml/C/C++/Java syntax not required

Compiling a Simple Program

int gcd(int a, int b)

while (a != b) {
if (a > b) a -= b;
else b -= a;

}

return a;

3

What the Compiler Sees

int gcd(int a, int b)

while (a != b) {
if (a > b) a -= b;

else b -= a;

}

return a;
}
in tsp g cd (i n tsp a ,
n tsp b)nl {nlspsp w h i 1
(asp ! =sp b) sp { nl spsp sp
fsp (asp >sp b)sp asp - =

; nl spspspsp e 1 s esp b sp
a ;nlspsp }nlspsp r e t u
a ;nl } nl

Text file is a sequence of characters

r

sp i
e sp
sp i
sp b
= sp
n sp

Lexical Analysis Gives Tokens

int gcd(int a, int b)

while (a != b) {
if (a > b) a -= b;
else b -= a;

}

return a;

}

t

’int“gc ‘1n ‘
=] [v] D] @
@E'@B return @

A stream of tokens. Whitespace, comments removed.

Q.

T[]

Parsing Gives an Abstract Syntax Tree

func
int gcd = args seq
7N VAN
arg arg while return
/ \ / \ A N
int a int b I= if a
/N TN
a b > -= -=
int gcd(int a, int b) / \ /\ /\
{
while (a != b) { a ba bb a
if (a > b) a -= b;
else b -= a;
}
return a;
}

Semantic Analysis Resolves Symbols and Checks
Types

args seq

7N VRN
arg arg while return

Symbol Table a b > - -=

int a |~ a ba bb a

Translation into 3-Address Code

L0O: sne
seq
btrue
sl
seq
btrue
sub
jmp

L4: sub

L5: jmp

L1: ret

$1,
$0,
$0,
$3,
$2,
$2,

a,
L5
b!
L0

a

aY
$1,
L1

bl
$3,
L4

al

by

oo

while (a != b)

oo

if (a < b)
b#a-=>

a#b -=a

int gcd(int a, int b)

while (a != b) {
if (a > b) a -

else b -= a;

}

return a;

3

= b; Idealized assembly language w/
infinite registers

Generation of 80386 Assembly

ged:

.L8:

.L5:

.L3:

pushl
mov1l
movl
mov1l
cmpl
je
jle
subl
jmp
subl
jmp
leave
ret

%ebp
%esp , %ebp

#

8(%ebp) ,%eax #
12(%ebp) ,%edx #

%edx , %eax
.L3
L5
%edx , %eax
.18
%eax, %edx
.18

H H W

Save BP

Load a from stack
Load b from stack

while (a != b)

if (a < b)
a-=>b
b -=a

Restore SP, BP

Describing Tokens

Alphabet: A finite set of symbols

Examples: {0, 1}, {A, B, C, ..., Z}, ASCIl, Unicode
String: A finite sequence of symbols from an alphabet
Examples: € (the empty string), Stephen, afy
Language: A set of strings over an alphabet

Examples: ¢ (the empty language), {1, 11, 111, 1111}, all
English words, strings that start with a letter followed by
any sequence of letters and digits

Operations on Languages

Let L={¢, wo}, M={man, men}

Concatenation: Strings from one followed by the other
LM = {man, men, woman, women }

Union: All strings from each language

LuM ={e, wo, man, men }

Kleene Closure: Zero or more concatenations

M*={efuMUMMUMMM---=
{¢, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, ...}

Regular Expressions over an Alphabet X

A standard way to express languages for tokens.

1. eis a regular expression that denotes {¢}
2. If aeZ, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

> (r)](s) denotes L(r) UL(s)
> (r)(s) denotes {tu:te€ L(r),uc L(s)}
> (r)* denotes U2 L' (L% ={e} and L' = LL'"!)

Nondeterministic Finite Automata

1. Set of states

“All strings containing S:{ @ @ }

an even number of 0's ,
v Y 2. Set of input symbols X : {0, 1}

3. Transition function o :Sx %, — 25
state [¢ 0 1

A ¢ {B} {C
B | ¢ {A (D}
C |o (D} {A
D |¢ {C (B}

4. Start state sg :

5. Set of accepting states

r{()

and 1's”

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” x.

Show that the string “010010” is accepted.

02000 0R0N0

Translating REs into NFAs

a HO—LZ'@ Symbol

i @@ 2 @ Sequence

Choice

r|r

(r*

Translating REs into NFAs

Example: Translate (a| b)*abb into an NFA. Answer:

€ €

3

Show that the string “aabb"” is accepted. Answer:

OO S OEOR OSSO

Simulating NFAs

Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state

2. For each character ¢,

» New states: follow all transitions labeled ¢
» Form the e-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: -aabb, Start

bb
€ 9 €
b

€

Simulating an NFA: a-abb

€
a
e@'.\e

—(@5(1] 50 -@ >0
€ 09 €

Simulating an NFA: aa-bb

€
a
e@'.\e

—(@5(1] 50 -@ >0
€ 09 €

Simulating an NFA: aab-b

Simulating an NFA: aabb-, Done

Deterministic Finite Automata

Restricted form of NFAs:

» No state has a transition on ¢
» For each state s and symbol a, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

e ~ | ~s ~e ~ i ~f
—O—0O—0O—~0O—0—0O—0

Deterministic Finite Automata
{ type token = IF | ID of string | NUM of string }

rule token =
{ IF }

parse "if"
1 [’a’-"z” ’0’-"9’]% as 1it { ID(lit) }

| [!a1_721
| [70°-"9"]+ as num { NUM(num) }

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Subset construction for (a| b)*abb

Result of subset construction for (a| b)*abb

Is this minimal?

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider

parsing

with the grammar

e—e+ele—elexele/e|N

/+\ A PN A,
/ \ - + /
3 \ */ 5 /\ /\ \
/ \ 4/ \2 3 42 5 / \

/\
* 5

/\

2

/\
3 4

Operator Precedence

Defines how “sticky” an operator is.

1+2+3=*4

+
= at higher precedence than +: /.
(1%2)+ (3 4) ANEAN
1 2 3
/\
+ at higher precedence than =: ¥ 4
17’:(2+3)7’:4 1/\+
/\

Associativity

Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1-2-3-4

N\
- 4
N\
- 3
N\
1 2
(1-2)-3)-4

left associative

/\
N\
/\
I\
/\
3 4
1-2-(3-4))

right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr
| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

4

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

Rightmost Derivation of Id « Id + Id

e

l:e—t+e t+e
2:e—t I +1
3:t—Id *t t+1d
4:t—Id
Id « ¢t + Id
Id «Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.

Rightmost Derivation: What to Expand

e

l:e—t+e I+te
2:e—t r+1
3:t—Id =t t+Id
4:t—1d id s+ id
Id = Id +Id
e
r+e
r+t
t+Id
Id « ¢+ Id
Id «Id + Id

Expand here 1 Terminals only

Reverse Rightmost Derivation

e
l:e—t+e tLte
2:e—t r+1
3:t—Id =t t+Id
4:r—Id Id « ¢t + Id
Id = Id +Id
Id «Id + Id I‘d
Id*z¢+Id Id = t
\I/
t+1d t I(‘i
t+1t ‘t
r+e + e
//
e é

viable prefixes terminals

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e tLte
2:e—t r+1
3:t—Id x¢ t+Id
4:t—Id Id « ¢+ Id

Id = Id +Id
Id < Id + Id shift
Id«Id +1d shift
Id =« Id + Id shift
Id = Id + Id reduce 4
Id « ¢+ Id reduce 3
t+1d shift
t+1d shift
t+Id reduce 4
t+t reduce 2
t+e reduce 1
e accept

stack input

Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when
rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:
When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match
against them? Usually infinite in number, but let’s try
anyway.

The Handle-ldentifying Automaton

Magical result, due to Knuth: An automaton suffices to
locate a handle in a right-sentential form.

Idsids-x Idxz -
Idsld s« Id ---
[+1+-+t+e
t+t+--+t+ 1d

t+t+-+t+ldsld s - Id* 1 Id
tHt+e+ b

Building the Initial State of the LR(0) Automaton

e —-e

lie—t+e
2:e—t
3:t—Id *¢
4:t—Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition "¢’ — -e"

Building the Initial State of the LR(0) Automaton

e —-e
e—-t+e
lie—t+e e— -t
2:e—t
3:t—Id *¢
4:t—Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition "¢’ — -e"

There are two choices for what an e may expand to: r+e
and t. Sowhen ¢ — ¢, e—-t+e and e— -t are also true, i.e.,
it must start with a string expanded from .

Building the Initial State of the LR(0) Automaton

e —-e

e—-t+e
lie—t+e e— -t
2:e—1t t—-ldx* ¢
3:t—Id *¢ t—-Id

4:t—Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this

u _/

condition "¢’ — -e”

There are two choices for what an e may expand to: r+e
and t. Sowhen ¢ — ¢, e— -t+eand e— -t are also true, i.e.,
it must start with a string expanded from .

Similarly, t must be either Id « ¢ or Id, so r — -Id x t and ¢ — -Id.

Building the LR(0) Automaton

The first state suggests a
viable prefix can start as any
string derived from e, any
e — e string derived from ¢, or Id.
e—-t+e
SO:e— -t
t—-ld=z
t—-Id

Building the LR(0) Automaton

“Just passed a string

derived from e” The first state suggests a

. ol . .
viable prefix can start as any
e “Just passed a prefix, . .
e "~ ~"string derived from e, any
ending in a string))
e —.e derived from ¢~ String derived from ¢, or Id.
SO'E_).lt‘-Fe t gy et +e The items for these three
i d st e—t- states come from advancing
r—-Id the - across each thing, then
performing the closure
Id operation (vacuous here).
t—Id-«t
S1: f—1d
“Just passed a
prefix that ended

inan Id”

Building the LR(0) Automaton

e

S0:

e —-e
e—-r+e
e— -t
t—-ld=t
t—-id

Y

Id

S1:t—>ld-

t—Id-xr

1*

S3:

t—Idx*-r

S2:

e—t-+e
e— 1

e—1r+-e

S4:

In S2, a + may be next. This
gives t + -e.

In S1, * may be next, giving
Id -7

Building the LR(0) Automaton

e

S0:

e —-e
e—-r+e
e— -t
t—-Idx*z¢
t—-id

Y

Id

S1:t—>ld-

t—Id-xr

1*

S3:

t—Idx*-t
t—-Idx*¢
t—-id

e—t-+e

S2:

e— 1

e—1t+-e
+ e—-t+e
f—n
S4:e— -t
t—-ldx*t
t—-Id

In S2, a + may be next. This
gives t+-e. Closure adds 4
more items.

In S1, * may be next, giving
Id -t and two others.

Building the LR(0) Automaton

e
e —-e e—t+-e
e—-t+e ; e~t~+e/t* e—-t+e
SO:e— -t ~52:e_>t. pS4:e—>-t
t—-Idx*z¢ t t—-Idx*¢
t—-Id t—-Id
id Id e
r—1d-xt
S1‘t—>ld-
IdH*
t—Idx*-t ;
S3:r—-Idx*rt S5: r—Id=«t
t—-id

The first function
If you can derive a string that starts with terminal r from

some sequence of terminals and nonterminals a, then
tefirst(a).

1. Trivially, first(X) = {X} if X is a terminal.

2. If X —¢, then add € to first(X).

3. For each production X — Y---, add first(Y) — {¢} to
first(X).
If X can produce something, X can start with whatever
that starts with

4. For each production X — Y;--- Y3 Z--- where €€ first(Y;)
fori=1,...,k, add first(2) — {e} to first(X).
Skip all potential ¢'s at the beginning of whatever X

produces
liemtte first(ld) = {Id}
2:e—t first(r) = {ld} because r—1Id *rand t—Id
3:t—ld «¢ first(e) = {Id} because e — t+e, e — t, and
4:1t—Id

first(¢) = {Id}.

The follow function
If ¢ is a terminal, A is a nonterminal, and --- At--- can be

derived, then r e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add first(a) — {¢} to
follow(A).
A is followed by the first thing after it

3. For each production A—---Bor a— ---Ba where
¢ € first(a), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}
2:e—t follow(r) = { }
3:t—Id =1t

1. Because e is the start symbol
4:r—Id

first(r) = {Id}
first(e) = {ld}

The follow function
If ¢ is a terminal, A is a nonterminal, and --- At--- can be

derived, then r e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add first(a) — {¢} to
follow(A).
A is followed by the first thing after it

3. For each production A—---Bor a— ---Ba where
¢ € first(a), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}
2:e—t follow(r) ={+ }
3:t—Id =1t

4:1—I1d 2. Because e — t+e and first(+) = {+}

first(r) = {Id}
first(e) = {ld}

The follow function
If ¢ is a terminal, A is a nonterminal, and --- At--- can be

derived, then r e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add first(a) — {¢} to
follow(A).
A is followed by the first thing after it

3. For each production A—---Bor a— ---Ba where
¢ € first(a), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}
2:e—t follow(t) = {+,$}
3:t—Id =1t

4-t—1d 3. Because e — t and $ € follow(e)

first(r) = {Id}
first(e) = {ld}

The follow function
If ¢ is a terminal, A is a nonterminal, and --- At--- can be

derived, then r e follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each production — --- Aa, add first(a) — {¢} to
follow(A).
A is followed by the first thing after it

3. For each production A—---Bor a— ---Ba where
¢ € first(a), then add everything in follow(A) to
follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

l:e—t+e follow(e) = {$}
2:e—t follow(t) = {+,$}
3:t—Id =1t

Fixed-point reached: applying any rule

4:t—1d does not change any set

first(r) = {Id}
first(e) = {ld}

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
T
. 3: t—>|g * 1 State Action Goto
4:t—1

d + = $ e 1t

450}—%\52 e—t] 0 s 17 2

From SO, shift an Id and go to S1;
or cross a t and go to S2; or cross
an e and go to S7.

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
2:e—t
3:t_’|g * 1 State Action Goto
4:t—1
d + =« $ e t
0 s1 7 2
1 r4 s3 r4d

From S1, shift a = and go to S3;
or, if the next input could follow
a t, reduce by rule 4. According
to rule 1, + could follow ¢; from
rule 2, $ could.

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
2:e—t
3:t_’|g * 1 State Action Goto
4:t—1
d + =« $ e t
s 7 2
+ 1 rd s3 r4
2 s4 r2

From S2, shift a + and go to S4;
or, if the next input could follow
an e (only the end-of-input $),
reduce by rule 2.

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
2:e—t
3:t_’|g * 1 State Action Goto
4:t—1
d + = $ e 1t
0 s1 7 2
1 r4 s3 r4d
2 s4 r2
S1: r—Id- 3 s1 5
[]
t From S3, shift an Id and go to S1;

’ S5: r— Id * r- ‘ or cross a ¢ and go to S5.

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
2:e—t
3:t—>|g * 1 State Action Goto
4:t—1
d + = $ e t
0 s 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 | s1 6 2

From S4, shift an Id and go to S1;
or cross an e or a f.

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
2:e—t
3:t—>|g * 1 State Action Goto
4:t—1
d + = $ e t
0 s1 7 2
1 rd s3 rd
2 s4 r2
3 s1 5
4 | s1 6 2
5 r3 r3

From S5, reduce using rule 3 if

’ S5: 7 —Id 1 ‘ the next symbol could follow a ¢

(again, + and $).

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
2:e—t
3:t—>|g *t State Action Goto
4:t—1
d + =« $ e ¢
0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 | s1 6 2
5 r3 r3
6 "

From S6, reduce using rule 1 if
the next symbol could follow an
e ($ only).

Converting the LR(0) Automaton to an SLR Parsing
Table

l:e—t+e
e
. e — e
3:t—>|g * 1 State Action Goto
4:t—1
d + =« $ e ¢
0 s1 7 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 | s1 6 2
5 r3 r3
6 ri
7 ve

If, in S7, we just crossed an e,
accept if we are at the end of
the input.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

O | 1d«1d+Id$ Shift, goto 1

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state 1.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id *1¢

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

O | 1d«1d+Ids Shift, goto 1

old
1 | x1d+Id$ Shift, goto 3

Here, the state is 1, the next
symbol is *, so shift and mark it
with state 3.

Shift/Reduce Parsing with an SLR Table

Stack Input Action
l:e—t+e 0 | id«Id+1d$ Shift, goto 1
2:e—t 0 id
3. told %t 1T | «Id+1d$ Shift, goto 3
) Id *
4:t—Id 079 3 | 1d+1ds Shift, goto 1
0 Id * Id
State Action Goto 131 | +1ds$ Reduce 4

Here, the state is 1, the next

0 s1 7 2 symbol is +. The table says reduce
1 rd s3 r4 using rule 4.

2 s4 r2

3 s1 5

4 s1 6 2

5 r3 r3

6 ri

7 v

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
0 | id«Id+1d$ Shift, goto 1
[¢]
U «Id+1d$ Shift, goto 3
Id *
079 3 | 1d+1ds Shift, goto 1
oldxId
131 | +1ds Reduce 4
old x
13 +1d$

Remove the RHS of the rule (here,
just Id), observe the state on the
top of the stack, and consult the
"goto” portion of the table.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
0 | id«Id+1d$ Shift, goto 1
Id
U «Id+1d$ Shift, goto 3
Id *
079 3 | 1d+1ds Shift, goto 1
0 Id * Id
131 | +1ds Reduce 4
0 Id * ¢
135 | +1ds Reduce 3

Here, we push a ¢ with state 5.
This effectively “backs up” the
LR(0) automaton and runs it over
the newly added nonterminal.

In state 5 with an upcoming +,
the action is “reduce 3.”

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
0 | id«Id+1d$ Shift, goto 1
Id
U «Id+1d$ Shift, goto 3
Id *
079 3 | 1d+1ds Shift, goto 1
0 Id * Id
131 | +1ds Reduce 4
0 Id * ¢
135 | +i1ds$ Reduce 3
t
02 | iids Shift, goto 4

This time, we strip off the RHS for
rule 3, Id = ¢, exposing state 0, so

we push a r with state 2.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =1

4:t—Id

State Action Goto

Id + * $ t

0 s1 2
1 rd s3 r4
2 s4 r2
3 s1 5
4 s1 2
5 r3 r3
6 r1
7 v

Stack Input Action
O | 1d«1d+Ids Shift, goto 1
Id
0% | xid+1ds shift, goto 3
Id *
079 3 | 1d+1ds Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
0 Id = t
135 | +i1ds$ Reduce 3
¢
02 | iids Shift, goto 4
i [
024 | gs Shift, goto 1
o L ® Id
241 |3 Reduce 4
A8 B
0242 |5 Reduce 2
P+ e
0246 |5 Reduce 1
e
07 |5 Accept

	The Midterm
	Structure of a Compiler
	Scanning
	Languages and Regular Expressions
	NFAs
	Translating REs into NFAs
	Building a DFA from an NFA: Subset Construction

	Parsing
	Resolving Ambiguity

	Rightmost and Reverse-Rightmost Derivations
	Building the LR(0) Automaton
	FIRST and FOLLOW
	Building an SLR Parsing Table
	Shift/Reduce Parsing

