
1	of	11

QL	Language	Reference	Manual

Anshul	Gupta	(akg2155),	Evan	Tarrh	(ert2123),	Gary	Lin	(gml2153),	Matt
Piccolella	(mjp2220),	Mayank	Mahajan	(mm4399)

1.0	Introduction
JavaScript Object Notation (JSON) is an open-standard format that uses human-readable
format to capture attribute-value pairs. JSON has gained prominence replacing XML
encoded-data in browser-server communication, particularly with the explosion of RESTful
APIs and AJAX requests that often make use of JSON.

While domain-specific languages like SQL and PostgreSQL work with relational databases,
languages like AWK specialize in processing datatables, especially tab-separated files. We
noticed a need for a language designed to interact with JSON data, to quickly search through
JSON structures and run meaningful queries on the JSON data, all the while using a syntax
that aligned much more closely with the actual structure of the data we were using.

2.0	Data	Types

2.1	Primitive	Types

All primitive data types are passed by value. They can each be declared and then initialized
later (their value is null in the interim) or declared and initialized in-line.

2.1.1	Integers	(intint)

Integers are signed, 8-byte literals denoting a number as a sequence of digits e.g. 5,6,-1,0.

2.1.2	Floating	Point	Numbers	(floatfloat)

Floats are signed, 8-byte single-precision floating point numbers e.g. -3.14, 4e10, .1, 2..

2.1.3	Boolean	(boolbool)

Booleans are defined by the true and false keywords. Only boolean types can be used in
logical expressions e.g. true, false.

2.1.4	String	(stringstring)

Since our language doesn't contain characters, strings are the only way of expressing zero or
more characters in the language. Each string is enclosed by two quotation marks e.g. "e",

2	of	11

"Hello,	world!".

2.2	Non-Primitive	Types

All non-primitive data types are passed by a reference in memory. They can each be declared
and initialized later (their value is null in the interim) or declared and initialized in line.

2.2.1	Arrays	(arrayarray)

Arrays represent multiple instances of one of the primitive data types represente as
contiguous memory. The square bracket notation is used to create an array and then get direct
access to elements. Each array must contain only a single type of primitives; for example, we
can have either an array of int, an array of float, an array of bool, and an array of string, but
no combinations of these types. The size of the array is fixed at the time of its creation e.g.
array(10).

2.2.2	JSON	(jsonjson)

Since the language must search and return results from JSON files, it supports Jsons as a
non-primitive type. A json object can be created through multiple mechanisms. The first is
directly from a filename of a valid JSON. For example, one could write: json	a	=
json("file1.json"). This will check file1.json to ensure it is a valid JSON, and if so, will store
the JSON in the variable a. The second way to obtain a JSON object is by using a subset of a
current JSON. For example, say the following variable is already set:

QL then allows for commands like json	links	=	b["links"]. The links variable would then
look as follows:

3.0	Lexical	Conventions

3.1	Identifiers

Identifiers are combinations of letters and numbers. They must start with a lowercase letter,

b	== 	{

				"size":: 10,

				"links":: 	{

								"1":: 	1,

								"2":: 	2,

								"3":: 	3

				}

}



links	== 	{

				"1"	:: 	1,

				"2"	:: 	2,

				"3"	:: 	3

}



3	of	11

and can be any combination of lowercase letters, uppercase letters, and numbers. Lowercase
letters and uppercase letters are seen as being distinct. We also reject dashes in identifiers.
Identifiers can refer to three things in our language: variables, functions, and function
arguments.

3.2	Keywords

The following words are defined as keywords and are reserved for the use of the language;
thus, they cannot be used as identifiers to name either a variable, a function, or a function
argument:

3.3	Comments

We reserve the symbol #~~ to introduce a comment and the symbol ~~# to close a comment.
Comments cannot be nested, and they do not occur within string literals. A comment looks as
follows:

3.4	Literals

Our language supports several different types of literals.

3.4.1	intint 	literals

A string of numeric digits of arbitrary size that does not contain a decimal point with an
optional ‘-’ to indicate a negative number.

3.4.2	floatfloat 	literals

A string of numeric digits of arbitrary size, followed by a single ‘.’ digit character, followed by
another string of numeric digits of arbitrary size. It can also contain an optional ‘-’ to indicate
a negative number. In addition, we are following Brian Kernighan and Dennis Ritchie's
explanation in The C Programming Language: "A floating constant consists of an integer part, a
decimal part, a fraction part, an e, and an optionally signed integer exponent. The integer and
fraction parts both consist of a sequence of digits. Either the integer part, or the fraction part
(not both) may be missing; either the decimal point or the e and the exponent (not both) may
be missing."

3.4.3	booleanboolean 	literals

Booleans can take on one of two values: true or false. true evaluates to an integer value of 1
and false evaluates to an integer value of 0. Thus, something like true	==	1 would evaluate to
true, and something like if(1) would be valid.

intint ,	floatfloat ,	bool,	string,	json,	array,	where,	inin ,	as,	forfor ,	whilewhile ,	returnreturn ,	functfunct

ionion ,	truetrue ,	falsefalse ,	ifif ,	elseif,	elseelse ,	voidvoid ,	not


#~~~~ 	This	is	a	comment.	~~~~ #

4	of	11

3.4.4	stringstring 	literals

A sequence of ASCII characters surrounded by double quotation marks on both sides.

4.0	Syntax
The following sections define the specifics of the syntax of our language.

4.1	Punctuation

QL employs several different types of punctuation to signal certain directions of workflow or
special blocks of code within programs.

4.1.1	()() :	hierarchical	evaluation,	function	arguments,	wherewhere 	clauses

Parentheses can be used in three main cases:

Numerical or Boolean statements: Forces the expression inside the parentheses to be
evaluated before interacting with tokens outside of the parentheses. For example, in 1*
(2-3), the expression 2-3 will be evaluated, and its result will then be multiplied with 1.
These can also be nested, e.g. : (1 + (4-(5/3)*2)).

Function arguments: When providing arguments during a function call, the arguments
must be listed within parentheses directly after the name of the function. For examples,
foo(array a, int b) involves a function foo() that takes in an array and an integer
enclosed in parentheses. The parentheses are also used for marking the argument list
in the function definition, i.e.

Where clauses: In a where clause, the search criteria must be enclosed within
parentheses, and the expression within the parentheses should evaluate to a boolean
value. For example,

4.1.2	{}{} :	function	definitions,	wherewhere 	clauses

Curly braces have two uses:

Function definitions: When a function is defined, the procedural code to be run must be
enclosed in curly braces.

functionfunction 	foo(array	a,	intint 	b)	:: 	array	{

				#~~~~ 	code	goes	here	~~~~ #

}

foo(arr1,	myInt)



where(["size"]	>> 	10	&& 	["weight"]	<< 	4)	as	item	{

				#~~~~ 	code	goes	here	~~~~ #

}



5	of	11

where clauses: In a where clause, immediately following the search criteria, curly braces
enclose the code to be implemented. Using the where clause outlined above. The open
and closed curly braces should contain all of the code to be run for each entry within the
JSON that passes the filter.

4.1.3	:: :	function	return	types

The colon has use in our language as the specifier of a function return type. Separated
between our language identifier and its argument list, we specify a : to mark that we will not
be specifying a return type. Immediately after this colon, then, comes our function return
type, which can be any of the data types we described above.

4.2	Operators	(listed	in	order	of	precedence)

4.2.1	[][] 	:	attribute	access

This can be used in two different ways:

[int index]: accesses value at index of array

Return type is the same as the array’s type.

[string key]: accesses value at key of JSON

Return type is inferred from the value in JSON. The type can be one of three
things: a value (int, float, bool, string), an array, or a JSON.

This operator can nest, e.g.: ["data"]["views"]["total"]. It associates from left to right.

Here is a program containing different examples of the [] operator and their return values
based on the following JSON:

#~~~~ 	["data"]["views"]["total"]	returns	an	intint .	~~~~ #

#~~~~ 	We	iterate	through	each	"data"	object	withwith 	a	total	viewcount	less	than	100	~~~~ #

where	(["data"]["views"]["total"]	<< 	80)	as	item	{

				#~~~~ 	item["data"]["users"]	returns	an	array	~~~~ #

				array	users	== 	item["data"]["users"]

				#~~~~ 	iterate	through	the	array	~~~~ #

				forfor 	(intint 	i	== 	0;	i	<< 	users.length;	i++++)	{

								#~~~~ 	print	the	user	at	index	i	inin 	the	array	~~~~ #

								print	users[i]

				}

				#~~~~ 	item["data"]["items"]["category"]	returns	a	string	~~~~ #

				ifif 	(item["data"]["items"]["category"]	==== 	"News")	{

								where	(truetrue)	as	name	{

												print	"name"

								}	inin 	users

				}



6	of	11

4.2.2	%% 	:	mod

int % int: returns int (the remainder of ($1 divided by $3))

For all other combinations of types, we throw an error (incompatible data types).

4.2.3	** 	:	multiplication

int * int: returns int ($1 multiplied by $3)

float int, int float, float * float: returns float ($1 multiplied by $3)

For all other combinations of types, we throw an error (incompatible data types).

4.2.4	// 	:	division

int / int: returns an int (the floor of ($1 divided by $3))

float / int, int / float, float / float: returns float ($1 divided by $3)

For all other combinations of types, we throw an error (incompatible data types).

4.2.5	++ 	:	addition,	concatenation

int + int: returns int ($1 added to $3)

}	inin 	json("file1.json")

file1.json::

[{"data":: 	{

				"views":: 	{

								"total":: 	80

				},

				"items":: 	{

								"category":: 	"News"

				},

				"users":: 	[

								"Matt",

								"Evan",

								"Gary"

]

},

{"data":: 	{

				"views":: 	{

								"total":: 	1000

				},

				"items":: 	{

								"category":: 	"Sports"

				}

}]

7	of	11

float + int, int + float, float + float: returns float ($1 added to $3)

string + int, int + string, float + string, string + float: returns string ($1
concatenated with $3)

For all other combinations of types, we throw an error (incompatible data types).

4.2.6	-- 	:	subtraction

int - int: returns int ($1 minus $3)

float - int, int - float, float - float: returns float ($1 minus $3)

For all other combinations of types, we throw an error (incompatible data types).

4.2.7	== 	:	assignment

anytype = anytype: sets value of $1 to $3.

If the type of $1 is different from the type of $3, we throw an error.

4.2.8	notnot 	:	negation

not expr = evaluates expr as a boolean (throws error if this is not possible); returns the
opposite of expr (if expr was true, return false; if expr was false, return true)

If this operator is used on anything other than a bool, we throw an error.

4.2.9	Equivalency	operators

== : equivalence,

!= : non-equivalence,

> : greater than,

< : less than,

>= : greater than or equal to,

<= : less than or equal to

anytype OP anytype: returns a bool (true if $1 OP $3 e.g. 3	==	3 returns true)

if $1 and $3 are strings, we do a lexical comparison

if $1 and $3 are both ints, or both floats, we see if they are equal

If the types are anything other than these specified combinations, we throw an error.

4.2.10	Logical	operators

expr1 & expr2: evaluates expr1 and expr2 as booleans (throws error if this is not
possible), and returns true if they both evaluate to true; otherwise, returns false.

expr1 | expr2: evaluates expr1 and expr2 as booleans (throws error if this is not
possible), and returns true if either evaluate to true; otherwise, returns false.

8	of	11

4.3	Statements

There are several different kinds of statements in QL, including both basic and compound
statements. Basic statements can consist of three different types of expressions, including
assignments, mathematical operations, and function calls. Statements are separated by the
newline character \n, as follows:

The effects of the expression are evaluated prior to the next expression being evaluated. The
precedence of operators within the expression goes from highest to lowest. To determine
which operator binds tighter than another, check the operator precedence above.

4.3.1	Declaration	of	Variables

To declare a variable, a data type must be specified followed by the variable name and an
equals sign. After the equal sign, the user has to specify the datatype with the corresponding
parameters to be passed into the constructor in parentheses.

Some examples of the declaration of variables would be:

4.3.2	Function	Calls

A function-call invokes a previously declared function by matching the unique function name
and the list of arguments, as follows:

This transfers the control of the program execution to the invoked function and waits for it to
return before proceeding with computation. Some examples of possible function calls are:

4.3.3	Conditional	Statements

Our conditional statements behave as conditional statements in other languages do. They
check the truth of a condition, executing a list of statements if the boolean condition provided
is true. Only the if statement is required. We can provide an arbitrary number of elseif

expression	\n

<< data_type>> 	<< variable_name>> 	== 	<< data_type>> (<< parameter>>)

<< parameter>> 	== 	<< identifier>> 	|| 	<< literal>>


array	testArr	== 	array(10)

intint 	i	== 	intint (0)

floatfloat 	f	== 	floatfloat (1.4e10)

bool	b	== 	bool(truetrue)

string	s	== 	string("foo")



<< function_identifier>> (<< arg1>> ,<< arg2>> ,...)

sort(a)

array	a	== 	append(a,	intint (2))


9	of	11

statements following the if, though there can also be none. Finally, we can follow an
if/combination of elseif's with a single else, though there can be only one.

An example conditional statement is as follows:

4.3.4	Return	statements

A return statement ends the definition of a function which has a non-void return type. If
there is no return statement at the bottom of the function block, it is evidence that there is a
void return type for the function; if it's not a void return type, then we return a compiler error.

4.3.5	Loop	statements

4.3.5.1	wherewhere 	clauses

The where clause allows the user to search through a JSON and find all of the elements within
that JSON that match a certain boolean condition. This condition can be related to the
structure of the element; for example, the condition can impose a condition of the certain
property or key of the element itself.

A where condition must start with the where keyword, followed by a boolean condition
enclosed in parentheses. This condition will be checked against every element in the JSON.
The next element is the as	__identifier__, which allows the user to identify the element
within the JSON that is currently being processed. This must be included. Following this is an
{, which marks the beginning of the body code which is applied to each element. A closing }
signifies the end of the body. The last section is the "in" keyword, which is followed by the
JSON through which the clause will iterate to extract elements.

4.3.5.2	forfor 	loops

The for loop starts with the for keyword, followed by a set of three expressions separated by
commas and enclosed by parentheses. The first expression is the initialization, where
temporary variables can be initialized. The second expression is the boolean condition; at
each iteration through the loop, the boolean condition will be checked. The loop will execute
as long as the boolean condition is satisfied, and will exit as soon as the condition is evaluated
to false. The third expression is the afterthought, where variables can be updated at each stage
of the loop. Following these three expressions is an open { , followed by a list of statements,
and then a close }.

ifif 	(__boolean	condition__)	{

				#~~~~ 	List	of	statements	~~~~ #

}

elseif	(__boolean	condition__)	{

				#~~~~ 	List	of	statements	~~~~ #

}	elseelse 	{

				#~~~~ 	List	of	statements	~~~~ #

}



where	(__boolean	condition__)	as	__identifier__	{

				#~~~~ 	List	of	statements	~~~~ #

}	inin 	__json__



10	of	11

4.3.5.3	whilewhile 	loops

The while loop is initiated by the while keyword, followed by an open paren (, followed by a
boolean expression, which is then followed by a close paren). After this, there is a block of
statements, enclosed by { and }, which are executed in succession until the condition inside
the while parentheses is no longer satisfied. This behaves as while loops do in other
languages.

5	Standard	Library	Functions
Standard library functions are included with the language for convenience for the user. The
first few of these functions will give users the ability to perform basic modifying operations
with arrays.

5.1	appendappend

The above function takes in an array and an integer as arguments and returns an array with
size increased by 1 that contains that integer at the last index.

5.2	uniqueunique

The above function receives an array as argument and returns a copy of the array with
duplicate values removed. Only the first appearance of each element will be conserved, and a
resulting array is returned.

5.3	sortsort

forfor 	(__initialization__,	__boolean	condition__,	__update__)	{

				#~~~~ 	List	of	statements	~~~~ #

}



whilewhile 	(__boolean	condition__)	{

				#~~~~ 	List	of	statements	~~~~ #

}



functionfunction 	append(array	arr,	intint 	x)	:: 	array	{

}



functionfunction 	unique(array	arr)	:: 	array	{

}



functionfunction 	sort(array	arr)	:: 	array	{

}



11	of	11

The above function receives an array as argument and returns a copy of the array with all of
the elements sorted in ascending order. To compare the elements of the array, the > operator
is used. For example, the array [1,4,3,5,2] passed into the sort() method would return
[1,2,3,4,5]. The array ["c","e","a","c","f"] would return ["a","c","d","e","f"].

5.4	printprint

We also include a built-in print function to print strings and primitive types.

Multiple primitives may be printed to console in one statement, concatenated by a +:

Attempting to print something that is not a primitive will result in an error.

print(toPrint)

print(toPrint1	++ 	toPrint2)

