WA

Opposing Discrete and Definite Heuristics

Language Reference Manual

Alexandra Medway, Alex Kalicki, Daniel Echikson, Lily Wang
afm2134, avk2116, dje2125, Ifw2114

Contents

1. Introduction
1.1. Motivation and Philosophy
1.2. Language Description

2. Lexical Conventions
2.1. Identifiers
2.2. Reserved Words
2.3. Literals
2.3.1. Numerics
2.3.2. Boolean
2.3.3. String
2.4. Punctuators
2.5. Comments
2.6. Operators and Associativity

3. Types, Operators, and Expressions

3.1. Basic Types

3.2. Lists

3.3. Casting

3.4. Arithmetic Operators

3.5. Relational Operators

3.6. Logical Operators

3.7. Binding Operators and Expressions
3.7.1. Binding using set and =
3.7.2. state

3.8. Sequencing

3.9. Precedence and Order of Evaluation

4. Control Flow
4.1. Statements
4.2.Indentifier Scope
43.1f, Then, Else

5. Functions and Program Structure
5.1. Function Definition
5.2. Calling Functions
5.3. Nested Functions
5.4. Anonymous Functions
5.5.Recursion

6. Distributions
6.1. Definition
6.2. Declaration
6.3. Built-in Distributions
6.4. Operations

6.4.1. Sampling

6.4.2. Addition and Subtraction
6.4.2.1. Constants
6.4.2.2. Distributions

6.4.3. Multiplication and Division
6.4.3.1. Constants
6.4.3.2. Distributions

6.4.4. Exponentiation
6.4.5. Cropping

6.5. Usage
6.5.1. Function Application
6.5.2. Monte Carlo

7. Standard Library
7.1. String Operations
7.2.List Operations
7.3. Math Constants
7.4.Casting
7.5.Printing

1. Introduction

1.1 Philosophy and Motivation

| see your boundless form everywhere, the countless arms, bellies, mouths, and eyes;
Lord of All, | see no end, or middle or beginning to your totality” - Arjuna to Krishna,
Bhagavad-Gita.

As programmers, we are often forced to think and program in terms of definite binaries:
0 or 1, if-else, do-while, one answer or some finite number of answers. The real world,
however, is not so determinate or discrete. The real world is fluid. The real world
operates on chance and spectrums of possibility. As Arjuna remarks, the problems we
seek solutions to frequently have no apparent beginning, middle, or end. They must be
conceived of in their totality. We understand this to be the programmer’s job.

The programmer must take real-world problems - problems that present themselves as
neither obviously discrete nor definite - and come up with solutions that can be
computed on machines that operate within the realm of the discrete and definite. We
understand the programmer to be a translator of sorts, from the uncertainty of the real to
the general certainty of the virtual. The motivation for Odds is to ease this process of
translation. We recognize the need to be able to compute not only on definite values,
but also on discrete and non-discrete distributions, and continuous ranges of numbers.
In implementing these structures as an essential part of Odds, we hope to create a
programming language that more seamlessly reflects the manner in which problems
and solutions are posed in the real world, that is, the world of fluidity and uncertainty.

1.2 Language Description

Odds is a functional programming language that uses a simple and straightforward
syntax. Odds centers around mathematical distributions and expresses operations on
them in a direct and uncomplicated way.

Distributions support standard operations such as addition and multiplication. In addition
to these simple operations, users have the option of sampling the distribution in order to
apply complex calculations on portions of the data. This will allow the user to easily
create simulations on ranges of data using a Monte Carlo approach.

2. Lexical Conventions

2.1 Identifiers

Identifiers in Odds consist of a combination of alphabetical characters, underscores,
and numbers. Numbers are forbidden to be the first character of identifiers. Identifiers
are case sensitive.

Valid Invalid
helloWorld 3110wW0rld
_helloWorld hello.World
h3110WO0rld hello World

2.2 Reserved Words

Odds reserves the following words. They may not be used in a program as identifiers:

if set
then state
else return
true false
void

2.3 Literals

2.3.1 Numerics

In Odds, there are five types of literals. The four primary ones are integer, float, string,
and boolean. The final literal type, list, will be discussed in section 3.2.

There are two numerical literal types: integer literals and floating point literals. Integer
literals consist of a sequence of digits with an optional negative sign in front to indicate
negativity. Floating point literals consist of optional digits in the beginning followed by a
period and at least one digit after the period. Like integer literals, floating point literals
can have an optional negative sign in front to indicate negativity. The following table
depicts valid integer and floating point literals.

Integer Literals Floating Point Literals
Valid 6 1.67
192 .4
04 234.19
Invalid 1,000 1.
+15 4.1.1.5
+6.23
2.3.2 Boolean

Odds also has boolean literals that can be one of two values: true or false. They
denote the values of logical true and logical false respectively.

2.3.3 String

String literals are delimited by double-quotes. To place a double-quote within a string, a
backslash is placed before the double-quote to escape it.

2.4 Punctuators

Type Explanation
() Function declarations, Function Calls
< > Distribution type, operators
[] Lists
; Sequencer
, List Delimiter, Distribution Range Delimiter
| Distribution function Delimiter
-> Function Delimiter
h String Delimiter

2.5 Comments

Odds supports multi-line comments. A backslash followed by an asterisk denotes the
start of a comment, and an asterisk followed by a backslash denotes the end of the

comment. Comments may not be nested and must be closed before the end of the file
is reached.

Comment

Valid

/*

*/

* This is a
* multiline
* comment

/* I can write anything here */

Invalid

/* Nested comments are /* not */ okay */

3. Types, Operators, and Expressions

3.1 Basic Types

Odds has five basic types. These basic types are explained below:

Type

Example

Explanation

int

1, -213, 24

The int type is a Signed 32-bit two’s
complement integer with a minimum value of
-2%" and maximum value of 2*" - 1. An optional
‘- is placed at the front to designate as
negative.

float

.23, =27.0

The float types is a Double-precision 64-bit
IEEE 754 floating point number. Floats consist
of an optional integer part, a decimal, a
mandatory fraction part. An optional ‘- " is
placed at the front to designate as negative.

bool

true,

false

The bool data type has only two possibilities:
true or false. Used in control flow.

string

\\23%//,

“Edwards is a

great and benevolent

The string type is a sequence of characters.
Note Odds has no char type, thus even single

teacher.”, “y&632Q7, characters are expressed as strings. All strings

“say: \” hello, are delimited by double-quotes. To place a
world\”” double-quote within the string itself, escape with
backslash.
void [void The void type has only one value, void. It is

used to represent the return type of expressions
that return ‘no value.’” Expressions that are
evaluated only for their side-effects, such as
printing functions, return the void type.

3.2 Lists

Lists are Odds’ basic ordered collection type. They are homogenous, i.e. consisting of
only one data type. They are singly linked lists and thus have O(7) insertion time but
O(n) access time. Lists are non-mutable.

Lists are delimited by square-brackets and the values within the list are
comma-separated. They may be initialized as empty or containing any number of
values. Below are a few examples of binding a list to an identifier using list literals:

set one to six = [1, 2, 3, 4, 5, 0]
/*one to six is a list of ints from 1 to 6 */

set bool list = [true, false, false]
/*bool list is a list of bools*/

set empty = []
/*empty is an empty list*/

set error list = [42, 42.0]
/* error list is an illegal list and
* will throw an error because it is
* non-homogenous. It has an int and a float

*/
3.3 Casting

There is no implicit casting in Odds. All casting must therefore be done explicitly.

All casting functions follow the pattern: x_to_y where x is the type being converted
(argument of the casting function) and y is the desired type (return type of the casting

function). For example, int to float takes as an argument an integer and returns
that integer’s floating point equivalent.

Casting rules are detailed in the standard library section of this manual.

3.4 Arithmetic Operations

Odds’ has six basic arithmetic operators. Because Odds has no implicit casting, you
cannot mix floats and ints while using any of the arithmetic operators. All integer
arithmetic yields an integer. All float arithmetic yields a float.

Operator | Example Explanation

*x 2 ** 3, The Exponentiation operator takes the number on the
2.0 ** 1.5, left-hand side and raises it to the power of the
3.0 ** =3.0 number on the right-hand side.

* 2 * 4, The Multiplication operator takes the number on the
-2 * 4, left-hand side and multiplies it by the number on the
23.42 * 0.0 right-hand side

/ 3/ 9, The Division operator takes the number on the
-3/ 3, left-hand side and divides it by the number on the
27.2 / .2 right-hand side.

+ 3 + 3, The Addition operator takes the number on the
2.0 + 2.0, left-hand side and adds it to the number on the
4.72 + -.72 right-hand side.

- 6 - 9, The Subtraction operator takes the number on the

right-hand side and subtracts it from the number on
the left-hand side.

o°

The Modulo operator takes the number on the
left-hand side and mods it by the number on the
right-hand side.

3.5 Relational Operators

Odds has six basic relational operators. Mixing ints and floats is not allowed when using
relational operators. All return a bool: true or false.

Operator | Example Explanation

< 1 < 2, The LessThan operator tests if the number on the left-hand
2.0 < side is less than the number on the right-hand side.
-74.2

> 4 > 17, The GreaterThan operator tests if the number on the
2.2 > left-hand side is greater than the number on the right-hand
42.2 side.

<= 1 <= 2, The LessThanOrEqual operator tests if the number on the
2.0 <= left-hand side is less than or equal to the number on the
2.0 right-hand side.

>= 2 >= 42 The GreaterThanOrEqual operator tests if the number on the
-72.0 > left-hand side is greater than or equal to the number on the
1.4 right-hand side.

== == 0, The Equals operator tests if the number on the left-hand side
-.73 == is equal to the number on the right hand side.
-.6

= 1 !=1, The NotEquals operator tests if the number on the left-hand
42.0 != side is not equal to the number on the right hand side.
.3

*Note that not all the examples above evaluate to true.

3.6 Logical operators

Odds has three logical operators. The expressions on each side of the operator must
evaluate to a bool. All operators return a bool: true or false.

Operator Example Explanation
&& true && false Logical And
[true || false Logical Or

! true Logical Not

3.7 Binding Operator, Set, and State

Remember, all expressions in Odds return a value.

3.7.1 Binding using set and =

To bind an identifier to a value or function, one uses the combination of the set keyword
and = operator.

All bindings follow the pattern set x = y where x is the identifier and y is the value or
function that the identifier, x, is being bound to. Any expression that starts with set is a
special type of expression, a statement, and does not return any value.

For example:

set num = 7
/* binds the integer 7 to the identifier num */

set A pls = “Edwards is good”
/* binds a string literal to the identifier A pls */

set 1s_true = true && (true || false)
/* binds the result of a logical expression to the identifier
is true */

3.7.2 state

Though all expressions return a value in Odds, sometimes there is no need to capture
the actual return value. Using state allows you to ignore the return value. Like set, an
expression that begins with state is a statement that does not return a value.

All uses of state follow the pattern state x where x is an expression whose return
value you wish to ignore.

For example,

state print (“Teamwork!”)

/* calls the function, print, which

* prints the string “Teamwork!”. Then

* ignore the value print returns, (print
* returns void).

*/

3.8 Sequencing

Odds’ sequencing operator is ‘; 7. It functions very similarly to OCaml’s sequencing
operator. Important to note is that in Odds, lines/statements do not needtoend in ‘;’
as they do in languages like C, C++, and Java.

Sometimes, however, it is necessary to write two statements in a place where you
would normally only be able to write one. For example, say you wanted to call two
functions in the body of an i f statement, you would need to write:

if conditional then funcl(); func2() else func3()

This means if conditional is true, call func1 and then, after it has completed its
execution, call func2. The last sequenced statement is always the value returned by the
control flow expression. In the example above, if conditional is true, the

i f-statement returns the value returned by func?2.

If, however, your whole program or a function consisted of calling funcl and func2,
i.e. you were not calling them in the body of an i f statement, then you could just write:

state funcl ()
state func?2 ()

It will be made clearer in sections 4 and 5 when it is necessary to use the sequencing
operator.

3.9 Precedence and Order of Operations

The precedence of operators is listed below from highest precedence to lowest
precedence:

Operators Explanation

* * Exponentiation

*, /0 % Multiplication, Division, Remainder
+, - Addition, Subtraction

=, l=, <=, >=, <, > Relational Operators

! Logical NOT

&& Logical AND

|| Logical OR

*All operators above are left associative

4. Control Flow

The control-flow statements of Odds specify the order in which computation is to be
performed, as well as decision-making about which computations should be run.

4.1 Statements

An expression suchasx =0ori + 1orprint(...) becomes a statement when it
is preceded by the keyword set or state, asin

set x = 0
set 1 =1 + 1
state print (“Go team!”)

The set keyword indicates the intent to bind a value or function to an identifier,
whereas the state keyword evaluates the following expression but discards the return
value.

4.2 ldentifier Scope

Identifiers in Odds are scoped to the function in which they are enclosed. There is no
concept of global variables in the language. An identifier declared in a function is local
to that function - x in function func1 is independent from x declared in function func?2.
After returning from a function, any attempt to reference an identifier declared within that
function results in undefined behavior as the identifier is considered out of scope and no
longer usable.

set x = 4

set increment = (n) ->
set x =1 /* does not affect outer x */
return n + Xx

set y = increment (x) /* y == 5 */

/* x is still equal to 4 */

Identifiers referenced within functions that have not been defined in the function take on
their previous value in the program. If the identifier has not been defined previously, an
error results:

set a = 5

set adda x = x + a /* x + 5 */
set a = 10

state print(int to string(adda(0))) /* 5 %/
set adda x = x + a /* x + 10 */
state print(int to string(adda(0))) /* 10 */

The following section will discuss defining and calling functions in further detail.

4.3 If, Then, Else

The if-then-else structure is used to express decisions and program control based off
the results of those decisions. Formally, the syntax is

if expression then statementl else statement?

The expression is evaluated; if it is equivalent to the boolean value true,
statement] is executed. Conversely, if expression has the boolean value false,
statement?2 is executed instead.

Because of the mandatory if-then-else structure, conditionals can be nested:

if expressionl then
if expression? then statementl else statement?2
else statement3

The above code will check expressionl; if expressionl evaluates to true, then
the program will proceed to check expression2, evaluating statementl on true
and statement2on false. If expressionl evaluates to false, the program will
instead evaluate statement3.

The mandatory structure also makes writing unambiguous multi-way else-if conditionals
a breeze:

if expressionl then statementl

else 1f expression? then statement’2
else if expression3 then statement3
else statement4

Finally, the sequencing operator ‘;’ discussed above comes into its own when
attempting to execute multiple statements under one branch of a conditional:

state i1f expressionl then

set x = “expression #1”; state print (x)
else

set x = “expression #2”; state print (x)

Moreover, all control-flow statements return the last sequenced statement. So, the
above example could also be written as:

set x =
if expressionl then “expression #1”
else “expression #2”

state print (x)

5. Functions and Program Structure

Functions allow programmers to break large tasks into smaller ones in order to allow for
better code reuse and more readable work. Odds makes it easy to define and call your
own functions in order to write algorithms and perform complex tasks.

5.1 Function Definition

In order to be called in various parts of a user program, a function must first be defined.
Functions definitions take the form:

(argument 1, argument 2, .., argument n) -—>
declarations and statements
return statement

In order to better understand the process of function definition in Odds, let us break this
function into its respective components and examine each individually. To begin with,
we have the function signature:

(argument 1, argument 2, .., argument n)

The function signature defines a list of identifiers used to refer to user-passed
arguments within the function. The function name may be followed by a list of one or
more argument names, each of which corresponds to a mandatory value that must be
passed when the function is called. All arguments in Odds are passed by value.

The function signature is followed by the delimiter “~>", and an arbitrarily long list of
declarations and statements. These statements can declare local function identifiers,
call other functions, or execute complex control flow logic as described in the preceding
sections.

Finally, the function must end with a mandatory return statement. This statement
uses the return keyword, followed by the value the function will return when called.
Functions in which it is not necessary to return a value must end with return void.

Function definitions are usually bound to identifiers using the set statement, just as we
would normally bind values to identifiers. In the previously given example,

set increment = (n) ->
set x =1
return n + X

we are defining a function that takes one argument, bound to n within the function, and
returns n+1. We bind this function to the identifier increment for later use. The code

set i1s_sum even = (a, b) ->

[e)

return if a + b % 2 == 0 then true else false

\

defines a function that takes two arguments with identifiers a and b within the function,
and returns the boolean true if the sum of the arguments is even or false if the sum
is odd. The code binds this function to the is_sum_even identifier using the set
statement.

5.2 Calling Functions

Calling previously defined functions in Odds is extremely straightforward and mimics the
workflow found in many other contemporary languages. Given a function

set increment = (n) -> return n + 1
you call the function by listing its identifier followed by the arguments to be passed in:
state print(int to string(increment(4)) /* 5 */

Anonymous functions, described below, are called by defining the function and
immediately providing arguments with which to call the function.

5.3 Nested Functions

Odds supports the definition of nested functions in order to further break down
functionality into its component parts. While these types of functions are most useful
when making recursive calls, as discussed below, they can also be used for more
straightforward computation as well.

Nested functions are defined within their enclosing functions just as local, function
identifiers are bound. The nested function, being local to its enclosing shell, can not be
called outside the scope with which it is defined:

set is_sum even = (a, b) ->
set is even = (n) -> return n $ 2 == 0
return is even(a + b)
state is sum even (2, 4) /* true */
state is even(5) /* error */

5.4 Anonymous Functions

In addition to declaring functions and binding their definition to identifiers, users can also
define “anonymous functions” that are not bound to a name. These functions are often
applicable when the functionality is only needed for an ephemeral amount of time to
render a direct result:

set is 4 even = ((n) -> return n $ 2 == 0) (4)

/* is 4 even == true */

Anonymous functions can also be used as a return type. Here, the function normal
takes a mean and standard deviation and returns a function mapping a value x to its
weight within the distribution:

set my normal = (mean, stdev) ->
return (x) ->
set exp = -1.0*((x - mean)**2.0/(2.0 * stdev)**2.0)

return 1 / (stdev * (2.0 * PI) ** (0.5)) * EUL ** exp

set my standard normal = normal (0.0, 1.0)
state print(int to string(my standard normal (0.5)))

5.5 Recursion

Like many languages, Odds supports the ability for a function to recursively call itself.
Such functions typically have a base case that defines the point at which recursion ends

and a recursive call if it has not yet ended. For example, one could define the Euclidean
algorithm as follows:

set gcd = (a, b) ->
return if b == 0 then a else gcd(b, a % b)
state print(int to string(gcd(48, 36))) /* 12 */

6. Distributions

6.1 Definition

A distribution is a range (measurable set of data) to which a function of a discrete
variable is applied. This function will map the set of data to a new set of weighted
outcomes. However if no function is applied, the data will have a uniform distribution (as
explained below).

6.2 Declaration

To create a distribution in Odds, users need to specify the measurable set they are
interested in. The measurable set of values, also called a range, indicates a continuous
set of numbers. Declaring a distribution over the range 0 to 10 can be done in the
following way:

set a = <0, 10>

Notice that in the definition of distribution, this range of numbers is meant to be mapped
by a function to a set of outcomes. However, the declaration above has no such
function. This is because if users don’t specify a function to apply to a distribution range,
Odds assumes a uniform distribution. Therefore, the distribution above, a, can be
visualized with the following graph:

P(x)

Figure A

0 10
Let’s create a new distribution which has a function associated with it. Functions
associated with distributions, also called maps, are a bit different from standard
functions within Odds. Maps take in one parameter of type float or int, and return one
parameter of type float or int. Let’s create a function with these specifications called
‘squared.” This function will map the input x to an output, x2. We declare our function in
the following way:
set squared(x) -> return x**2
We can then create our distribution d in the following way:

set b = <0, 6> | squared

This creates a distribution, b, which can be visualized with the following graph:

Figure B

Applying a function to a distribution creates weight within the distribution. Looking at the
graph above, we see that a value of 4 with a weight of 16 is 4 times more likely to occur
than a value of 2 with a weight of 4. Compare this to a in which each value is equally
weighted: a value of 4 is equally as likely to occur as a value of 2.

6.3 Built-In Distributions

Distributions can be used for a number of purposes, including statistical probability.
Odds has several built in probability distributions: the uniform distribution, normal
distribution, binomial distribution, and the gamma distribution. To apply these
distributions to a range of numbers, the user can declare a distribution in the following
way using the built-in probability distribution keyword:

set ¢ = <=3, 3> | normal

This creates a distribution, c, over the range -3 to 3 with the normal distribution applied.

TN

Figure C

Standarg Deviations

The normal distribution is centered about O with a standard deviation of 1. If the user
doesn’t center the range about 0, the distribution will be skewed.

set x = <0, 3> | normal

In a visual representation of x, we can see that the data is skewed.

Figure D

To create a normal distribution centered around a point other than 0, with a standard
deviation other than 1, users must use operators as described in the next section.

Additionally, Odds supports binomial and gamma distributions, which can be created by
replacing “normal” in the declaration for ¢ with the distribution one is interested in.

6.4 Operations

6.4.1 Sampling

There are a number of operations one can use on distributions. The first of which is
sampling. Sampling has several advantages, as it allows the user to work with discrete
values rather than a continuous range. The sampling operator can be used on a
distribution, d, in the following way:

set d = a<100>

We had defined a to be a uniform distribution across the range 0 to 10. Thus, we would
expect our sample of 100 values to reflect the continuous distribution.

Figure E

As one can see in the example above, because we have sampled discrete values and
are working with experimental data, the sample doesn’t have the same horizontal
appearance as the distribution. However, this is a result of working with experimental
data rather than theoretical data, and is to be expected.

Sampling is especially useful with statistical distributions. We create a second sample,
sample, below using d from above.

set sample = d<10>

We defined d above to be a normal distribution over the range -3 to 3. Looking at Figure
C one sees the percentage of values distributed within a specific standard deviation
range. In the normal distribution, 68% of the values are within one standard deviation
from the mean. We would expect our sample to also have ~68% of its values between
-1 and 1. In sample above, Odds would select the 10 values randomly from within the
d, given the weight of its distribution.

6.4.2 Addition and Subtraction
6.4.2.1 Constants

To transform a distribution by shifting it a constant value, one has the option of adding
or subtracting constants to it.

set distribution = <-1, 1> | normal
/* Normal distribution from -1 to 1 */

set transformation = distribution + 5

/* Transformation is now a normal distribution
* ranging in values from 4 to 6, with a mean
* of 5, and the same standard deviation as

* the original distribution

*/
6.4.2.2 Distributions

Two distributions of different variables can be combined into a single distribution of one
variable by using the addition or subtraction operator.

set e = <0, 3> /* Uniform distribution */
set f <3, 6> /* Uniform distribution */

It helps to think about a distribution as a sampled list of discrete values rather than
continuous values when visualizing addition. Let’'s choose a sample with precision value
of 1, thus we are working with two lists of [0, 1, 2, 3] and [3, 4, 5, 6].
Adding the values of a distribution is not as simple as adding the lists together. Rather,
each element in the first distribution must be summed with each element in the second
distribution. We can then visualize addition with the following:

22 (eli] + fIjD

As one can see, the smaller the step value between each i and j, the more precise the
addition. Ideally, the step value is 0, and the distribution is entirely continuous rather
than discrete. Rather than performing this complicated mathematical operation, Odds
makes addition as simple as the following:

set g =e + £

The calculation of g, with precision value 1, would result in the following list:

Notice that we no longer are working with a uniform distribution, as the value 6 appears
4 times, whereas the value 3 appears only once. Thus, 6 has a heavier weight than 3,
and when sampled, is 4 times more likely to occur.

However, g does not have to be treated like the discrete list of numbers we see above,
and can be treated as a continuous distribution which represents the combination of e
and £ with the operation from above.

6.4.3 Multiplication
6.4.3.1 Constants

Multiplying a distribution by a constant greater than one stretches the values and their
corresponding weights. Dividing a distribution by a constant greater than one contracts
the values and their corresponding weights.

set h = <=1, 1> | normal

set 1 = h * 3

/* 1 1s a normal distribution across the range -3 to 3
* centered about 0 with a standard deviation of 3

*/
6.4.3.2 Distributions

Just like addition, the multiplication operator will combine two distributions into one. If
we have e and f from above, then the multiplication of the two distributions would be
done with the following mathematical formula:

X2 (eli] = fjD)

To do this calculation in Odds, a user can create j— the multiplication of e and £ — with
the following line of code:

set j = e * f
6.4.4 Exponentiation

Distributions can only be exponentiated by a constant. This applies the exponentiation
operator to every value in the distribution, as if the distribution were to be treated as
discrete values.

set u = <1, 2>
/* u 1s a uniform distribution across the range 1 to 2 */

set v = u ** 2
/* v 1s a distribution across the range 1 to 4, with weights
following the previous distribution, squared */

6.4.5 Cropping

Distributions are defined by a range of numbers. If the user decides they wish to work
with a subset of this range, they have the option to crop the distribution.

set w = <=10, 10> | normal
/* A normal distribution across the range -10 to 10 */

set z = w<-1, 1>
/* z is a normal distribution across the range -1 to 1, a subset
of w */

With cropping, you maintain the same distribution as before but remove values outside
the cropped range.

6.5 Usage

Distributions allow a user to work with a range of values rather than discrete numbers.
This poses a number of advantages to working with standard lists.

6.5.1 Function Application

If a user is interested in the way a function will affect a range of data, they can create a
distribution and apply functions in order to transform it. This is far simpler than creating
a list, and running loops to apply the function, especially if the user is unsure how
precise they want their sample to be. To work with the discrete values, the user always
has the option of sampling the data.

6.5.2 Monte Carlo

The Monte Carlo method is a way of obtaining numerical results given a broad range of
data on which computation would be tedious. These tedious calculations are
unnecessary in Odds, as any normally tedious calculation can be done easily by using
the distribution creating a distribution, transforming it using the distribution operators,
and sampling it to receive measurable data.

/. Standard Library

7.1 String Operations

Odds has a number of built-in functions to simplify operations on strings. These
operations are detailed below:

Operator Example Result Explanation
substring substr (“hello”, | “hel” The new string generated from the
0, 3) substring function is the span of the

input string from the first numbered
index (inclusive) to the second
numbered index (exclusive).

concatenation | “hello” + ™ ” + [“hello | The concatenated stringis sum of

“world” world” | the strings in the input function.
str_len str length (%) 0 Returns the length of the string.
== “hi” = “bye” false Checks strings for equality (case
sensitive).

7.2 List Operations

Lists are an important data type in Odds. Remember, all lists in Odds are homogenous
and immutable.

There are two ways to create a list. A user can create a list with a set of literals, or with
the included make function.

set 1 = [1, 2, 3]
/* A list of 1, 2, 3 */

set m = make list (3, 0)
/* A list of size 3, all initialized to 0 */

There are numerous functions included in the standard library, detailed below. Note that
all the functions below are returning completely new lists, they are not modifying
references or anything like that; lists are immutable.

Operator Example Result Explanation
make make list (3, 0) [0, 0, 0] make takes in two
arguments, the size of
the list to be created,
and initialization values.
concatenation | concat ([1,2]1, [3,4]) [1,2,3,4] The concatenated list is
the first list combined
with the second list.
fold set str concat = “hi” Apply a function to a
(cur, str) -> partial result and an
return cur + str element of the list to
produce the next partial
fold(str concat, “”, result. Moves from the
[“h”, “17]) end of the list to the
head
iterate iterate (print, [“1”, | /*prints*/ | Apply a function to each
w2, W37 12 3 element of a list;
produce a void result.
reverse reverse ([1, 2, 31) (3, 2, 1] Reverse the order of
the elements of a list.
map map (int to string, (17, “27, | Apply a function to each
(1, 2, 31) “37] element of a list to
produce another list
get get (2, [1, 2, 31) 3 Returns an element at a
specific index in a list
head head ([1, 2, 31]) 1 Returns the head of the
list
tail tail([1, 2, 3]) (2, 3] Returns a list of all
elements but the head.
put put (1, [2, 3]) [1, 2, 3] Append an element to
the beginning of the list
in O(1) time.
insert insert (1, 2, [1, 31) [1, 2, 3] inserts the specified

value before the
specified index

remove Remove (0, [0,1,2,3]) (1, 2, 3] removes the value at
the specified index

list_length list length([1,2,3]) |3 Returns the length of
the list

7.3 Mathematical Constants

Because Odds can be used for numerous mathematical purposes, such as modeling
and distribution, the user is provided with built-in mathematical constants.

Constant Value Definition
Pl 3.14159... Pi.
EUL 2.71828... Euler’'s constant, also referred to as ‘e.’
7.4 Casting

Users have the option to typecast a number of data types within Odds. The following
operations are valid:

Function Example Result Explanation

int_to_float |int to float(1) 1.0 Converts an int to a float with
a decimal value of 0.

float_to_int | float to int(2.1) 2 Floors the value of the float,
returning the integer only.

int_to_string | int to string(1l) w17 Returns a string
representation of the input
integer.

float_to_string | float to string(l.2 |“1.2” | Returns a string
) representation of the input
float.

int_to_bool | int to bool (0) false | Returns ‘false’ if the input
integer is 0, true otherwise.

float_to_bool | float to bool(1.2) true | Returns ‘false’ if the input float
is 0, true otherwise.

7.5 Printing

Users only have the ability to print strings. This can be done with the following
statement:

state print (“hello”)

Citation for Figures:

a. http://www.dummies.com/how-to/content/how-to-graph-the-uniform-distribution.ht
ml
b. http://raider.mountunion.edu/ma/MA125/Spring2011/Chapter10/RelationsOnSets.

html
c. http://medical-dictionary.thefreedictionary.com/Normal+distribution+curve
d. https://www.spcforexcel.com/knowledge/basic-statistics/normal-distribution
e. http://daveqiles.blogspot.com/2011/08/visualizing-random-p-values.html

