Knowledge Graph Language
Reference Manual

October 26, 2015

Name UNI Role
Bingyan Hu bh2447 Project Manager
Cheng Huang ch2994 Language Guru
Ruoxin Jiang 1j2394 System Architect
Nicholas Mariconda, nm?2812 Verification & Validation
Contents
1 Introduction 3
1.1 Motivation e e e 3
1.2 Proposed Uses o e 3
2 Lexical Conventions 3
2.1 Comments e e e 3
2.2 Identifiers 3
2.3 Keywords e 3
2.4 Literals 3
2.4.1 Imteger Literal 3
2.4.2 Float Literal e 4
2.4.3 Boolean Literal e 4
2.4.4 Char Literal e 4
2.4.5 String Literal e 4
2.5 Punctuations 4
2.6 Operators e 5
2.7 Whitespace e 5

Types 5
3.1 Primitive Types e 5
3.2 Graph-related Types e 5
3.21 Node. e 5
3.22 Graph 6
3.3 Derived Types e e 6
34 Void e e 6
Expressions 6
4.1 Primary expressionso i e e e e e e e e e e e e 6
4.1.1 Literals e e 6
4.1.2 Set/List/Dictionary expressionso e 7
4.1.3 Graph expressionso e 7
4.2 Postix expressions 7
4.2.1 References oL e 7
4.2.2 Function calls e 8
4.3 Operator eXpressions i i e e e 8
4.3.1 List, Set and Dict L 9
4.3.2 Graphand Node e 9
Declarations 10
5.1 Type Specifiers & Initializer L 10
5.2 Graphand Node e 10
5.3 List, Set and Dict L e 11
Statements 11
6.1 Block statements 11
6.2 Expression statementso 11
6.3 Conditional statements 11
6.4 Loop statements e e 12
6.4.1 Forloop e 12
6.4.2 Whileloop e 12
6.5 Jump Statements oL e 12
6.5.1 Continue e e e e e 12
6.5.2 Break e e 13
6.5.3 Return statements L oL 13
Built-in Functions 13

1 Introduction

1.1 Motivation

Almost everything in the world is connected together through some complex web of relationships. As
such, building, expressing and traversing graphs is one of the most essential applications of computer science.
However, it is common knowledge that implementing graphs in traditional languages is no trivial task. Many
past projects have addressed this problem by designing graph-based languages that make building graphs
easier. However, such projects were limited by having single, fixed relationships between nodes. Often,
algorithms that operate on real-world data — such as machine learning and information retrieval algorithms
— are too obfuscated to be represented by a graph with one-dimensional relationships.

1.2 Proposed Uses

Knowledge Graph Language (KGL) is a domain-specific graphing language that supports multiple user-
defined relationships between nodes. Edges, nodes, and graphs are built-in types of the language; however,
two nodes can be connected by multiple edges, with each edge being identified by a unidirectional, user-
defined relationship. KGL reaps many of the benefits of a graphing domain-specific language — users can
build, express and traverse complex graphs succinctly — while also providing a means for users to query their
graphs directly. This is the main thrust of the language — by providing the users with a mechanism for
defining their own relationships between nodes, they can extract a more robust collection of data through
graph queries.

2 Lexical Conventions

2.1 Comments

The characters #+ starts a single-line comment, which terminates at the end of the line. The characters
/# introduces a multi-line comment, which terminates with characters #/. Comments do not nest.

2.2 Identifiers

An identifier is a combination of letters , numbers and underscores _. The first character must be a letter
or an underscore. Upper and lower case letters are different.

2.3 Keywords

The following is a list of reserved keywords in the language. They cannot be used as variable or function
names:

int float char boolean string
graph node list set dict
for while continue break in

if elif else true false
func return void null

2.4 Literals
2.4.1 Integer Literal

An integer literal consists of an optional minus sign, followed by a sequence of digits. If the digit sequence
has more than one digit, the first may not be zero. The literals are interpreted as base-10 (decimal) numbers.
Examples: 76 -65 43445 0 -9090

2.4.2 Float Literal

A float literal consists of a signed integer part, a decimal part and a fraction part. The integer and
fraction parts both consist of a sequence of digits. Either the integer part, or the fraction part (not both)
may be missing. Examples: -1.36 67.0 .67 8.9

2.4.3 Boolean Literal

A boolean literal has two values: true, false

2.4.4 Char Literal

A char literal is a single character enclosed in single quotes. The following escape sequences may be used:
\n, \t, \\. Examples: ’a’ > > *H’> ’7’

2.4.5 String Literal

A string literal consists of a sequence of characters enclosed in double quotes. The following characters
can be escaped inside of strings with a backslash: \n, \t, \\. Examples: "hello" "" "367"

2.5 Punctuations

Colon :
separator of a key : value pair in dictionary

Semicolon ;
end of statement
separator of edge list in graph

Parenthesis ()
expression precedence
conditional parameters
function arguments

Brackets []
node access
list /dictionary access

Curly braces {}
statement blocks
function body

Angle brackets <>
element type of derived types (list/set)

Comma ,
separator of function arguments
separator of elements in list and key value pairs in dictionary

Edge brackets —()—>
edge expression

List brackets [| |]
list expression

Set/Dict bracket (| |)
set/dictionary expression

Graph brackets {| |}
graph expression

Quotes ’’

character literal declaration

Double quotes

9

string literal declaration

2.6 Operators

The following table lists the precedence and associativity of the operators. Operators are listed top to

bottom, in descending precedence.

Precedence Operator Description Associativity
1 0 Function call

1 [] list /dictionary /graph access

2 ! Logical NOT

3 */ % Multiplication, division, remainder

4 + - Addition, Subtraction Left-to-right
) >>= <<= Relational greater, greater equal, less, less equal

6 === Relational equal, not equal

7 in Membership

8 && Logical AND

9 [l Logical OR

10 = Right-to-left

2.7 Whitespace

Symbols that are considered to be whitespace are blank, tab, and newline characters.

3 Types

3.1 Primitive Types

int a signed 32-bit integer
a signed single precision floating point type,

float with a size of 32 bits

char an 8-byte data type used to store ASCII characters
boolean a 1-byte data type that only accepts true or false
string a sequence of chars

3.2 Graph-related Types
3.2.1 Node

Nodes are building blocks of a graph. Each node in a graph contains an unique id (different from other
node ids in the same graph) and a dictionary of user-defined attributes. A node can only exist in a graph;
there is no isolated node. A node in a graph could only be created when a new edge(relationship) of this
node is added in the graph.

The node type is only a pointer to a real node in a graph. It can either point to a node in graph or be
null. A variable of type node can access and modify the real node it points to in graph.

For example:

node a = g["Nick"]; ## a points to the node with id "Nick" in graph g

al"age"]; ## returns the value of key "age" in the node’s attribute dictionary
al"age"] = 22; ## sets the value of key "age" to 22 in the node’s attribute dictionary
3.2.2 Graph

A graph is defined by a set of nodes and their unidirectional relationships between each other. An
unidirectional relationship between two nodes is also called an edge, defined as such:

source_id--(label)-->target_id
the relationship between the source node and the target node is of value label

"Nike"--("knows")-->"Mike"
represents the "knows" relationship from node "Nike" to node "Mike"

3.3 Derived Types

Besides the primitive types, graph and node, there is a conceptually infinite class of derived types
constructed from any type:
list<vtype > A list is an ordered sequence of elements of a given type (vtype)
set<vtype > A set is a collection of elements of a given type (vtype) without duplicates.
A dictionary is a collection of key value pairs.
dict Keys are of type string, values of any type.
Duplicated keys are not permitted.

3.4 Void

void can only be used as function return types to indicate that a function has no return value.

4 Expressions

4.1 Primary expressions

Primary expressions are literals, identifiers, graph expressions, list expression, set expressions, dict ex-
pressions or expressions in parentheses.

primary-expression:
literal
identifier
null
set-expression
list-expression
dict-expression
graph-expression
(expression)

4.1.1 Literals

Literals are integer literals, float literals, boolean literals, char literals and string literals (see Section 2.4).

4.1.2 Set/List/Dictionary expressions
A set expression is an empty set or a non-empty collection of expressions.

set-expression:
set(l)
(| expression-list |)

A list expression is an possibly-empty ordered sequence of expressions.

list-expression:
[l expression-list-opt |]

A dictionary expression is possibly-empty collection of key /value pairs. Each key/value pair contains two
expressions, the key and the value, separated by a colon.

dict-expression:
(I kv-pairs-opt |)

kv-pair:
expression : expression
4.1.3 Graph expressions

A graph expression is a possibly-empty collection of edges(relationships). Each edge contains three
expressions: the id of source node, the label of this relationship, and the id of target node.

graph-expression:
(| edge-list-opt |)

edge:
expression--(expression)-->expression

4.2 Postfix expressions

Postfix expressions are primary expressions, function calls, and list/dict/graph references

postfix-expression:
primary-expression
postfix-expression (argument_list_opt}
postfix-expression [expression]

4.2.1 References

A posfix expression followed by an expression in square brackets is a postfix expression denoting a refer-
ence to list element/graph node /dictionary value/ node attribute.

Reference to Syntax Description

list element list_var[3] the 4th element in list list_var

graph node graph_var["Nick”] the node with id ”"Nick” in graph graph_var
dictionary value dict_var[’k”] the value of key ”k” in dictionary dict_var
node attribute node_var[”age”] the value of attribute ”age” in node node_var

4.2.2 Function calls

A function call is an function identifier, followed by parentheses with a possibly empty, comma-separated
argument list.

4.3 Operator expressions
Unary Operator

unary-expression:
postfix-expression
! expression

Multiplicative Operators

multiplicative-expression:
unary-expression
multiplicative-expression * mulplicative-expression
multiplicative-expression \ mulplicative-expression
multiplicative-expression % mulplicative-expression

Additive Operators

additive-expression:
multiplicative-expression
additive-expression + additive-expression
additive-expression - additive-expression

Relational Operators

relational-expression:
additive-expression
relational-expression < relational-expression
relational-expression > relational-expression
relational-expression <= relational-expression
relational-expression => relational-expression

Equality Operators

equality-expression:
relational-expression
equality-expression == equality-expression
equality-expression != equality-expression

Logical AND Operator

logical-AND-expression:
equality-expression
logical-AND-expression && logical-AND-expression

Logical OR Operator

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-OR-expression

Assignment expressions

assignment-expression:
logical-OR-expression
assignment-expression

4.3.1 List, Set and Dict

assignment-expression

Only the following operators have meanings for list-expression, set-expression and dict-expression: ! + -

Operand Operator Operand Description

! list /set/dict-expression true if list/set/dict is empty, false otherwise
list-expression + list-expression concatenation of two lists
set-expression + set-expression union of two sets
set-expression - set-expression set of elements in the first set but not in the second
dict-expression + dict-expression union of two dictionaries

dict-expression
list /set/dict-expression
list /set/dict expression

set-expression
list /set/dict-expression
list /set/dict expression

dict of key/value pairs in the dict whose key not in the
true if they contain the same elements, false otherwise
true if they do not contain the same elements, true othe

4.3.2 Graph and Node

Only the following operators have meanings for graph-expression and node: ! + - == 1= =

Operand Operator Operand Description
! node true if node is null, false otherwise
node + dict-expression union of the node’s attribute dictionary and the dict
. dict of key/value pairs in the node’s attribute dict
node - set-expression .
whose key not in the set
node == node true if they point to the same node in the same graph
node = node false if they point to the same node in the same graph

graph-expression +
graph-expression -
graph-expression ==
graph-expression =

graph-expression
graph-expression
graph-expression
graph-expression
graph-expression

true if graph is empty, false otherwise

union of two graphs

graph of edges in the first but not in the second

true if they contain the same nodes and relationships
false if they contain the same nodes and relationships

Examples:

add nodes and relationships to a graph

graph g = {|1};
g:
g:

g + {|"Nick"--("friends")-->"Mike" |};
g + {I"Nick"--("knows")-->"Jack"|};

add an attribute to node

adds a new relationship to g

adds two new nodes and a relationship to g

string key = "age"; int value = 22;
g["Nick"] = g["Nick"]+[key:valuel;

remove an attribute from node
g["Nick"] = g["Nick"] - (| key |);

remove nodes / relationship from graph
g = g - {I"Nick"--("knows")-->"Jack" |};
node "Jake" which is connected to no other nodes in g is deleted from the graph as well.

5 Declarations

Declarations defines the types of identifiers and initializes their values.

declaration:
type-specifier identifier
type-specifier identifier = initializer
5.1 Type Specifiers & Initializer
The type-specifiers are

type-specifier: initializer:
void N/A (void only used for func return type)
int expression evaluated to int
float expression evaluated to float
boolean expression evaluated to boolean
char expression evaluated to char
string expression evaluated to string
graph graph-expression
node reference to node in graph
dict dict-expression
set<type-specifier> set-expression
list<type-specifier> list-expression

5.2 Graph and Node

The following examples shows the declaration and initialization of graphs and nodes.

/# Syntax of graph declaration and initialization
graph g = {| sourceID--(edgelLabel)-->targetID;

sourceID--(edgeLabel)-->targetID;...|};
#/
declare a graph gl
graph gl;
declare a graph g2 and initialize it with two relationships
graph g2 = {|
"Nick"--("friends")-->"Mike";
"Mike"--("knows")-->"Jake"
1};

10

declare and initialize another graph g3

string rel = "knows";

string sourceID = "Nick"; string targetID = "Mike";
graph g3 = {| sourceID--(rel)-->targetID |};

declares a node
node ni;

declare and initialize nodes
node n2 = g2["Nick"];
node n3 = g3[targetID];

5.3 List, Set and Dict

list<int> 11 [l

=] ## declare an empty integer list
list<float> 12 |

|
[11.0, 2.0, 3.0 |] ## declare an float list with three elements

set<string> s = set(||) ## declare an empty string set
set<string> s = (|"one", "two", "three"|) ## declare a string list with three elements

dict d = (||) ## declare an empty dictionary
dict d = (|"name": "Nick", "age": 22, "sex":male, "married":false|) ## declare a dict with key-v

6 Statements

statement:
block-statement
expression-statement
conditional-statement
loop-statement
jump-statement

6.1 Block statements

block-statement:
{ statement-list-opt }

6.2 Expression statements

Expression statements are mostly used as assignments or function calls.
expression-statement:

expression;

6.3 Conditional statements
A conditional statement is used to express decisions.

conditional-statement:
if (expression-opt) statement

11

if (expression-opt) statement else statement
if (expression-opt) statement elif-list

elif-list:
ELIF (expression-opt) statement
ELIF (expression-opt) statement ELSE statement
ELIF (expression-opt) statement elif_list

6.4 Loop statements

Loops are control statements that specify iteration, which allow a block of code (?substatement”) to be
executed multiple times. KGL supports two types of loops: the for loop and the while loop.

loop-statement:
for (expression-opt; expression-opt; expression-opt) statement
for (expression in expression) statement
while (expression) statement

6.4.1 For loop

The for loop supports two separate usages. The first is the standard usage in which the for loop takes
three expressions: an initialization expression, a test expression, and an update expression.

The second usage of the for loop resembles the Pythonic implementation — it executes the substatement
for each element in a given collection. The first expression is a user-specified label that will serve as a
reference to the current element in the collection, and the second expression is the handle for the collection
being iterated through. Supported collections include sets, lists, dictionaries and graphs.

6.4.2 While loop

The while loop is the for loop stripped of the initialization and update expressions. It contains the test
expression and statement. The statement is executed repeatedly until the test expression is evaluated to a
boolean false. The expression is reevaluated before each iteration of the loop.

6.5 Jump Statements

jump-statement:
continue;
break;
return expression_opt;

6.5.1 Continue

continue is used to skip some statements in the iteration loops and cause control to pass to the loop-
continuation portion of the smallest enclosing such statement. For example:

while (expr) {

if (expr) { continue; }

12

6.5.2 Break

break statement is used to terminate all iteration loops. For example

while (expr) {

if (expr) { break; }

6.5.3 Return statements

The return statement terminates the execution of a function and returns control to the calling function.
When return is followed by an expression, the value is returned to the caller of the function.

7 Built-in Functions

getNodes (graph g): returns the set of all nodes in graph g

getNeighors(node v): returns the set of all nodes connected to node v, regardless of the relationship

getNeighbors(node v, string label): returns the set of all nodes connected to the node v by the
relationship ’label’

getLabels(node vl,node v2): returns the set of labels that connect two given nodes, vl and v2

13

