
Gridworld: Language Reference Manual

Andrew Phan, Kevin Weng, Loren Weng, Zikai Lin
Uni: ap3243, kw2538, lw2504, zl2442

October 26, 2015

Professor Edwards
Programming Languages & Translators

Columbia University

1 Introduction

Creating a game, whether you are an experienced programmer or not, is a
daunting task. There are many in-game related functions, actions, and rules
to keep track of, which not only removes the fun out of creating a game but
may also scare the user away from creating a game altogether. Gridworld
language takes the average user into consideration by focusing on supplying
the necessary tools to make game creation a more enjoyable experience. Our
goal is to allow the designer to quickly delve into writing Gridworld code,
and create a modular game based on the content creator’s own storyline,
plot, combat system and their own integrated functions.

1.1 Gridworld’s Focus

• Simplifies game development, requiring little, if any, programming ex-
perience.

• Allows the user to design a game world based on their own rules, needs
and specifications.

• Offers useful game-related tools and functions for content creator.

1.2 Language Advantages

• Rapid object/class declarations.

• Easy to add and modify attributes.

• Allows for the randomization of objects in the game world.

• Generates an interactive and customizable 2d board-like map.

• Turn-based game loop focuses on user interaction via a dedicated con-
sole.

• Preserves game state and allows user to undo game actions.

1

2 Lexical Conventions

2.1 Tokens

2.1.1 Keywords

Keywords are pre-defined words in the Gridworld compiler. Each keyword
has has their own function. The keywords are reserved in the compiler and
therefore cannot be used as variable names. Below is a table of reserved
keywords in Gridworld:

Keywords
if else
while for
bool int
str print
break continue
and or
not new
return elif
gameloop

2.1.2 Identifiers

An identifier is an element in the Gridworld language that has been given
a name for a particular function, and variables. An identifier begins with a
letter or underscore followed by any alphanumeric characters. Special char-
acters such as punctuation and brackets are not allowed, except for the un-
derscore. Identifiers should give a clear indication of what the label does, if
it is an action then a name should define that action. Finally, it should not
be a keyword.

1 string player1_Name // player1_Name is the identifier

2 int hitPoints // hitPoints is the identifier

3 int sum // sum is the identifier

4 bool attackPlayer () // attackPlayer is the identifier

2

2.2 Whitespaces

Whitespaces is any character or a series of whitespace characters that are
unused or space between objects. Their purpose is to separate tokens and
format programs. Whitespace characters are usually typed in by using the
return, spacebar or the tab key. Gridworld ignores all whitespaces, as the
language uses the spacing for differentiating tokens. If we look above at code
listing ?? above, int and sum are separated by a whitespace. Unlike Ocaml,
Gridworld does not care about indentations.

2.3 Comments

Like most programming languages, Gridworld supports single line and
also multi-line commenting. The language encourages readable, organized
and logical source code. With that in mind, being able to comment source
code not only helps debug Gridworld, but also helps clarify what a func-
tion does, why the creator decided to do something, or to create notes and
reminders on what the next step is in terms of game development.

Symbol Syntax Uses Example

%| |% Multi-line comments, nested comments

%| This is a multi-line comment,
intended to allow the user to
provide more info on what’s
happening during execution |%

% Single-line comment % This is a single-line comment.

3

3 Types/Meaning of Identifiers

3.1 Primitive Types

The Gridworld languages uses several primitive types in order to describe
the user’s game environment. The primitive types are listed below and may
be used, although not limited to, for example describing a world with hit-
points, weapon damage, name, and dialog of players, monsters and other
objects.

Primitive Type Description Range Example
Int A 32 bit Integer type -2.147.483.648 to 2.147.483.647 int maxLife = 2000;
Bool A Boolean value True (Binary 1) / False (Binary 0) bool playerGodlike = TRUE;
String A sequence of characters Not Applicable String bossName = ”Diablo”

3.2 Compound Types

3.2.1 Array

An array is a data structure, which is able to store a collection of elements
of the same type in consecutive memory. The lowest address in memory
corresponds to the first element and the highest address with the last element.
All arrays in Gridworld start with an index of 0 for the first element and the
last element in the array being the total size minus 1. The arrays in Gridworld
can be implemented as 1-dimensional or 2-dimensional arrays.

1 String [] inventoryItems = [sword , shield , boots]; // creates 1d array of 3

elements

2 int [][] sizeofMap = new int [100][100]; // creates 2d array of 100 x100 int

elements for xy coordinate system

3.2.2 <object>Array

This is almost identical to the array above, however, the difference is the
ability to store objects rather than a collection of the same data types.

1 GameObject [] monsters = new GameObject [200]; // creates an array of 200

monsters

4

4 Expressions and Operators

The precedence of expression operators are indicated by the order of the
following subsections, from highest precedence to the lowest.

4.1 Primary Expressions

Identifiers: An identifier refers to a variable or a function.

Constants: A constant can be a number, string, boolean etc. with the
different types defined in lexical conventions.

String literals: String literals are directly translated to strings by the com-
piler.

Parenthesized expressions: The expression is equivalent to the result
without parentheses, but the presence of parentheses indicates the prece-
dence as a primary expression.

4.2 Unary Operators

4.2.1 Logical Negation

Types used with the logical negation operator are Bool and Int. The
result of the logical negation of a Bool is true if the value of the expression
is false, and false if value is true. The result of the logical negation of an Int
is 1 if the value of the expression is 0, and 0 if the value of the expression is
non-zero.
!expression

4.2.2 Increment Operator

Type used with the increment operator is Int. The value of the expression
is incremented by one. The result is the value of the expression incremented
by one.
Increment expression++

5

4.2.3 Decrement Operator

Type used with the decrement operator is Int. The value of the expression
is decremented by one. The result is the value of the expression decremented
by one.
Decrement expression--

4.3 Function Call

To call a function, it must have been declared and defined previously.
A function call has the form functionName(expression1, expression2,...), fol-
lowing the form defined in its declaration. The result is a value of the type
defined as a return type in the function declaration.

4.4 Multiplicative Operators

The multiplicative operators are left associative. Types of both expressions
used with the * operator are Int. The result is the first expression multiplied
by the second.
expression ∗ expression;

Types of both expressions used with the / operator are Int. The result is the
first expression divided by the second, and division by zero is not allowed.
expression / expression;

Types of both expressions used with the % operator are Int. The result
is the remainder from the division of the first expression by the second. Di-
vision by zero is not allowed.
expression % expression;

4.5 Additive Operators

The Additive operators are left associative. Types of both expressions used
with the + operator are Int.

6

The result is the sum of the two expressions.
expression + expression;

Types of both expressions used with the - operator are Int. The result is
the first expression minus the second.
expression− expression;

4.6 Relational Operators

The relational operators are left associative. The type of the relational op-
erators are Int.

The result is of type Bool and the value is true if the first expression is
less than the second expression, and false otherwise.
expression < expression;

The result is of type Bool and the value is true if the first expression is
greater than the second expression, and false otherwise.
expression > expression;

The result is of type Bool and the value is true if the first expression is
less than or equal to the second expression, and false otherwise.
expression <= expression;

The result is of type Bool and the value is true if the first expression is
greater than or equal to the second expression, and false otherwise.
expression >= expression;

4.7 Equality Operators

The equality operators are left associative. Types used with equality opera-
tors are Int, Bool, and String.

7

The result is type Bool and the value is true if both expressions have the
same value, and false otherwise.
expression == expression

Types used with equality operators are Int, Bool, and String. The result
is type Bool and the value is false if both expressions have the same value,
and false otherwise.
expression ! = expression

4.8 Boolean Operators

The boolean operators are left associative. Types used with the Boolean
operators are Bool.

The result is type Bool and the value is true if both expressions are true
and false otherwise.
expression && expression

The result is type Bool and the value is true if at least one of the expressions
is true and false otherwise.
expression || expression

4.9 Assignment Operators

The assignment operators are right associative. The types used with the
assignment operators are Int, Bool, String. Assignment stores the value of
the second expression in the first expression, both expressions must be of the
same type.
expression = expression

8

4.10 Object Creation

Objects are both declared and created within a single program in grid-
world. Objects are declared through referencing its name as a new object:
new object testObject;

Object creation uses similar syntax, except replacing object with the name
of the object being created
new testObject t;

4.11 Object Access

The attributes of an object can be accessed through dot notation. The
type and value of the access is equivalent to the type and value of the accessed
attribute:
object.attributeName

4.12 Array Creation

An array is initialized with the form [expression, expression, ...] where
each expression must be of the same type. The result is an expression with
its type being array, and the value being a reference to the array.

4.13 Element Access Operators

The elements in an array are accessed with bracket notation, with the
form arrayName[expression]. The expression must be of type int and be
within the bounds of the array. The result will be the element in the array
at the index indicated by the expression.

9

5 Declarations

5.1 Type Specifier

The type specifiers are int, boolean, and string.

5.2 Variable Declaration

The variables can be initialized with a constant, literal value, or an ex-
pression as long as the type of the value and the type of the variable are the
same. Variables are declared as:
typeSpecifier varName

5.3 Array Declaration

Arrays can be declared as: typeSpecifier[] varName = [a, b, c];

5.4 Function Declaration

Functions consist of a function header and a function body. The header
takes the form of: typeSpecifier funcName(typeSpecifier a, typeSpec-
ifier b, ...)

In the example above, the first type specifier indicates the return type,
and the parameters are separated by commas and enclosed in parentheses.
The function body is enclosed in brackets, for example, after the function
header.

10

6 Statements

6.1 Expression Statement

Expression statements are the most common form of statement, which
are simply of the form:
expression;

6.2 Conditional Statement

There are two basic forms of conditional statements:

1. if (expression) statement

2. if (expression) statement else statement

Any number of elif statements can be added after the if statement and before
the else if there is one. A few examples are listed below:
if (expression) statement elif (expression) statement elif (expres-
sion) statement
if (expression) statement elif (expression) statement else statement

The expressions must be of type Bool and if the value is true, the statement
directly after it will be executed, and once one is executed, any expressions
afterwards will not be considered.

6.3 Loop Statement

The while statement has the form:
while (expression) statement

The statement is executed repeatedly as long as the value of the expression
remains true. This expression is checked before each execution.

11

6.4 Break and Continue Statement

The break statement can be used to terminate a loop.
while (expression) statement
if (expression) break;
statement

The continue statement can be used in loops to terminate an iteration of
the loop and begin the next iteration:
while (expression) statement
if (expression) continue;
statement

6.5 Return Statement

A function returns to its caller by the return statement. If an expression
follows return, the value is given to the caller of the function and must be of
the type specified by the function.
return expression;

12

7 Built-in Functions

7.1 print

The print function outputs text to either stdout or a file. The first param-
eter, being the output text, must be a string. The second parameter, also a
string, specifies the filepath of output. The absence of the second parameter
causes print to default to stdout.

1 // print example

2 print("Hello gridworld!");

3 print("Goodbye gridworld!", "output.txt");

7.2 read

The read function reads text from either stdin or a file. The parameter
specifies the filepath of input. If no parameter is given, it reads from stdin.

1 // read example

2 input = read();

3 fileInput = read("input.txt");

7.3 object.give

The give function assigns an variable (referred to as an attribute) of the
specified type to the object which called the function. The first parameter
contains the type of the variable, e.g. (bool,int,string or list), and the second
parameter the name of the variable.

1 // give example

2 dog.give(string , name);

3 new dog dog1;

4 dog1.name = "spot";

7.4 object.has

Checks whether or not an object has been given a specified attribute.
Accepts a string and checks whether or not the object calling the function
has a variable with that name.

13

1 // has example

2 if (dog1.has(name))

3 print(dog1.name);

7.5 save/load

Due to the game-based nature of this language, a built in save and load
function is essential for the user. Save creates a log file of actions that a user
has made during runtime, while load reads a config file created by save and
initializes the board in gridworld so as to recover a previous game state.

7.6 undo

Under the same logic as saving and loading, the step-wise operating na-
ture of gridworld makes it possible to undo an action done by a user by
reiterating the actions done before the current point minus one.

7.7 roll

Roll generates a random integer ranging from 1 to X, X being the integer
parameter. This simulates the rolling of an X-sided die.

1 // roll example

2 print ("roll for initiative!");

3 print (roll (20));

14

8 Language Scope

8.1 Global Scope

All variables defined at the top-level of a program will be by default part
of the global scope, and be visible, modifiable to the entire program. Be
careful, to define the variables at the beginning of the program. If a variable
is defined at the middle of the program, code written before this variable
declaration can not access to this variable.

1 int sum;

2 int moverange;

3 boolean canMove (int a, int b){

4 sum = a + b;//able to use varibale sum

5 abs_distance = abs(a - b);// unable to use variable abs_distance

6 if (abs_distance <= moverange) return true;

7 else return false;

8 }

9 int abs_distance

8.2 Scope within a Function

Variables defined within the function are the local variables to that func-
tion, and it will be expired automatically when the function ends. Codes
outside that function can not access or modify those variables.

1 int sum (int a, int b){

2 return a+b;

3 }

4 a = a - b;// unable to use a, b outside the function sum()

15

9 Standard Library

9.1 Map

The map function takes two integers, to build an empty map with the size
of n * m. The first integer indicates the length of the board and the second
indicates the width. Once the map size is define, it can not be changed
dynamically during runtime.

1 //map() sample

2 map myMap = new map(int , int);

9.2 Object

The object function takes six integers and a boolean, to build an object
with the following attributes: position of x-axis on the map, position of y-
axis on the map, health point, attack, defense, if the object or not, how far
can the object move.

1 // object () sample

2 object objectRock = new object(posx=int , posy=int , hp=int , att=int , def=int ,

moveable=boolean , moverange=int);

3 objectRock.hp=2;

4 objectRock.positionx =3;

9.3 Attack

Attack function will calculate the moverange of the player, the attack
point and the defense of the target, to return a boolean of whether player
attacks or not and updates the attribuates of the objects. If attack action
make sense, it return true, otherwise, it return false.

1 // attack () sample

2 attack(object , object);

16

9.4 Max, Min

The max and min function takes serveal integers, to return the maximum
or the minimum one in the series of integers.

1 //max(), min() sample

2 max = (int , int , int);

3 min = (int , int);

17

10 Sample Game

10.1 Initialization

Before designing the game, the map and the objects on the map are
needed to be intialized. Sample gives the initialization of the map size and
some attribuates of objects.

1 //to initialize the map and objects

2 map rpgMap = new map(10, 10); //from 0~9

3 object objectRock1 = new object(9, 9, 5, 0, 0, false , 0);

4 object objectRock2 = new object(5, 5, 3, 0, 0, false , 0);

5 object objectPlayer = new object(0, 5, 10, 3, 2, true , 3);

10.2 Attack or Move

Some choices can be set during the game. In the sample game, it sets
two move modes and describes the status changes of the objects after each
movement.

1 //to implement attack or move behavior

2 while(true){

3 print("Choose attack or move: attack :1 ; move:2");

4 str behavior = read();

5 if (behavior == "1"){

6 print("Choose the target: rock:1 ; rock:2");

7 str target = read();

8 if (target == "1"){

9 if (! attack(objectPlayer , objectRock1)) continue;

10 }

11 else (target == "2"){

12 }

13 }

14 }

15 if (behavior == "2"){

16 print("input the point to go");

17 int pointx = read();

18 int pointy = read();

19 if((pointx >= rpgMap.width) || (pointy >= rpgMap.height)){

20 print("out of the map , please move again");

21 print("input the point to go");

22 pointx=read();

23 pointy=read();

24 }

25 if(abs(pointx -objectPlayer.posx)+abs(pointy -objectPlayer.posy) >

objectPlayer.moverange){

26 print("out of the move range , please move again");

27 print("input the point to go");

28 pointx=read();

29 pointy=read();

18

30 }

31 objectPlayer.posx=pointx;

32 objectPlayer.posy=pointy;

33 }

34 }

19

