
Justin Chiang jc4127
Kunal Kamath kak2211
Calvin Li ctl2124
Anne Zhang az2350

FRAC is a domain-specific programming language that enables the programmer to

generate fractals in the Graphics Interchange Format, commonly abbreviated as GIF.

Specifically, the user will be able to program a fractal using a formal grammar and call

from a collection of available system functions to generate the actual GIF. FRAC is well-

suited for those interested in the mathematical manipulation of fractal-like objects. We

designed this language to be easy to learn, easy to use, and a delight to behold.

The language supports two categories of data types: primitive types and complex types.

A primitive type requires a small and fixed amount of memory to store a single logical

value. Typical primitive types include int , double , and bool . One exception is string ,

which requires a variable amount of memory storage.

Explicit and implicit type conversion between int and double is allowed, but no other

type conversions are supported, with the exception of “reflexive conversions” (e.g.

converting double to double). Explicit type conversion can be performed with the

following syntax:

double x = 3.5;
x = (double) x; // reflexive conversions are permitted
int y = (int) x;

FRAC: Language Reference Manual

1. Introduction

2. Data Types & Data Structures

2.1 Primitive types

double z = (double) y;

Alternatively, omitting the explicit parentheses-enclosed target type produces an
identical outcome.

double x = 3.5;
x = x;
int y = x;
double z = y;

Note that explicit type conversion can operate on both variables and constants.
Therefore, the following is permitted:

int a = (int) 3.5;

Converting a double to an integer results in truncation of the fractional part, while
converting an integer to a double results in the addition of a fractional part with a value
of zero.

When performing an arithmetic operation between an integer and a double, the compiler
automatically promotes the integer into a double. Thus, the following three statements
are operationally equivalent:

double c = 3.5 + 3; // c is 6.5

double c = 3.5 + (double) 3; // c is 6.5
double c = 3.5 + 3.0; // c is 6.5

A complex type contains multiple named fields and requires a larger and variable amount
of memory to store a structured collection of values. A complex type is similar to the
familiar object type in so far as it contains fields, but a complex type does not contain
any methods. In fact, all instantiated complex types are immutable; operating on them
requires the use of functions.

Two complex types are supported in the language: gram and rule .

2.2 Complex types

A gram represents a formal grammar that is used to specify a fractal that can be drawn.
A rule represents a production rule that is a part of the formal grammar. Later sections
expand on how such grammars and rules can be declared in code.

Just like in Java, // for single line and /* */ for multi line comments.

An identifier is a sequence of alphanumerics and underscores. An identifier may begin
with neither a digit nor an underscore. Both uppercase and lowercase letters are
permitted. The following are valid identifiers: kunal_43 , hello_ANNIE , and
 do_this____justin . The following are invalid: helloworld& , _dothis , and 4calvin .

The following are a list of reserved keywords in the language:

rule
gram
func
if
else
while
return
true
false

as well as the literal types:

int
double
bool
string

No keyword may be used as an identifier.

3. Lexical Conventions

3.1 Identifiers

3.2 Keywords

A literal is a notation that represents the value itself as written. Literals can only be of one
of the primitive types, which are discussed below. A literal may not be used as an
identifier.

An integer consists of a sequence of digits not containing a decimal point.

int x = 10;

A floating point constant consists of two sequences of digits, where one may be the
empty sequence, separated by a decimal point.

double y = 4.55;

There exist only two boolean constants:

bool is_there = true;
bool is_there = false;

A string constant consists of a sequence of characters enclosed by single quotes.

string name = 'Anne Zhang’;

Just like in Java, // are used for single line comments and /* */ for nested or multi-

3.3 Literals

3.3.1 Integer constants

3.3.2 Floating point constants

3.3.3 Boolean constants

3.3.4 String constants

3.4 Comments

line comments.

// This is a single line comment
/* This is
 a multi‐line
 comment
 */

In a single line, all characters after // are ignored by the compiler.

With multi-line comments, the compiler will ignore everything from /* to */ . Note,

however, that multi-line comments cannot be nested within one another like so:

/* Multi‐line comments
 /* cannot be nested */
 like in this example!
 */

This will result in a syntax error, as the compiler will treat the first */ as the end of the

comment.

Operators specify logical or mathematical operations to be performed.

Arithmetic operators:

 + addition

 ‐ subtraction

 * multiplication

 / division

 % modulo

 = assignment

Logical operators:

 ! negation

 == equivalence

 != non-equivalence

3.5 Operators

 < less than

 > greater than

 && AND

 || OR

The arrow ‐> is a special operator used in rule definitions in grammars. In a rule, the

string to the left of the arrow can be replaced by the string or system function to the right

of the arrow. For example:

'F' ‐> 'F l F r r F l F',
'r' ‐> turn(60)

are both valid rules. The arrow has no meaning outside of rule definitions, and an error

will be thrown if it is used outside of this context.

 ;

terminate statements

 ,

separate function parameters, separate key-value pairs in grammar definitions

 '

string literal declaration

 {}

grammar definitions

scope

 ()

function arguments

expression precedence

type casting

conditional parameters

3.6 Punctuators

FRAC programs should be written in a single file. A FRAC program consists of grammar
definitions, function definitions, and a main() function. Functions and grammars are
defined first and subsequently used in the main() function, although they cannot be
defined within the main() function itself.

The main() function is the entry point for the program. It may contain variable and literal
declarations, expressions, and statements. It may also use any previously defined
functions and grammars. In addition, the main() function must use one, and only one, of
the following system functions: draw() , grow() . This function specifies the type of
image output that the program will create.

The following is an example of a valid FRAC program:

gram my_grammar = {
 init: 'F r r F r r F',
 rules: {
 'F' ‐> 'F l F r r F l F',
 'r' ‐> turn(60),
 'l' ‐> turn(‐60),
 'F' ‐> move(1)
 }
}

main() {
 grow(my_function(my_grammar), 2);
}

In this example, the program will construct a grammar given in the declaration of
my_grammar. Then, it will output a GIF showing the growth of the fractal generated by
that grammar (the fractal will have undergone 2 iterations, as specified by the second
parameter to the grow() function).

4. Syntax

4.1 Program Structure

4.2 Expressions

Variables can be declared and assigned to a value simultaneously, or declared without
assignment and assigned to a value later on. Declarations take the form:

// declaration without assignment
var_type var_name;
var_name = value;

// declaration with assignment
var_type var_name = value;

where var_type is any of the four literal type keywords (int , double , bool , string),
 var_name is any valid identifier as defined in 3.1, and value is either a literal of type
 var_type or an expression that evaluates to a literal of that type.

Functions are declared and defined simultaneously - unlike variables, they cannot be
declared without definition and defined later. All functions must return a value, although
the return type is not be specified in the function declaration. Any function except for the
 main() function is defined as follows:

func my_name(params) {
 // function body
}

while the main() function is defined without the keyword func :

main() {
 // main function body
}

The main() function should not contain any return statements.

All functions except for the main() function must be called explicitly, with the correct

4.2.1 Variable Declarations

4.2.2 Function Definitions

4.2.3 Function Calls

number of arguments as specified in the function definition. The main() function is
called implicitly at the start of every program run, and calling main() explicitly in the
program will throw an error.

// valid function call
my_func(args);

// this will throw an error
main();

Function calls may be placed on the right-hand side of an assignment expression, in
which case the identifier on the left-hand side will be assigned the return value of the
function call.

// n is assigned the return value of my_func(args)
int n = my_func(args);

Function calls may also be nested. They can be passed as arguments into other
functions, in which case the return value of the inner function call will be passed as an
argument to the outer function call. The return value of the inner function call must match
the argument type specified in the outer function’s definition. A type mismatch will throw
an error.

/* my_func must return an object of type gram, otherwise this
 expression will throw an error */
draw(my_func(args), 2);

Grammar definitions are similar to function definitions, but the grammars themselves are
more similar to objects. Grammars are defined as follows:

gram my_gram {
 init: // init string here,
 rules: {
 // start string ‐> end string
 }
}

4.2.4 Grammar Definitions

Every grammar must contain at least one recursive (string-to-string) rule - it wouldn’t
generate a fractal otherwise! Every character in the init string must have at least one and
at most two corresponding rules. If a character has only one rule, that rule must be non-
recursive and evaluate to a terminal. If a character has two rules, one rule must be
recursive and the other must be non-recursive. Any other combination of rules is
ambiguous and will throw an error.

Grammars are evaluated when they are passed into a drawing system function (draw()
or grow()). Grammar evaluations start with the init string, which is then evaluated
recursively for the number of times specified in the second argument to the drawing
function call. For every recursive evaluation, the compiler will look for a recursive rule for
each character, and will only use a non-recursive rule for a character if there is no
recursive rule for that character. When the recursive evaluations have been completed,
the compiler uses non-recursive rules to generate a final string of terminals, which are
used to draw the fractal.

Arithmetic expressions are expressions that contain an arithmetic operator, and evaluate
to a literal value. They can be placed on the right-hand side of variable assignments, or
passed as arguments to function calls.

int x = 3;
int y = 8;
int z = x + y; // z = 11
my_func(x + y); // 11 is passed into my_func

Boolean expressions are expressions that contain logical operators, and evaluate to a
boolean value true or false . They are used to evaluate conditional and loop
statements.

bool isTrue = true;
bool isFalse = false;
if(isTrue || isFalse) {
 print(“truth”);

4.2.5 Arithmetic Expressions

4.2.6 Boolean Expressions

}

A statement is a complete instruction that can be interpreted by the computer.
Statements are executed sequentially within a function.

Expression statements are the most common type of statement, and can include any of
the previously covered expressions. In FRAC, all statements are terminated with a
semicolon ; .

Conditional statements first check the truth condition of a boolean expression, and then
execute a set of statements depending on the result. Here is an example if / else
conditional statement:

if (expression) {
 statement
}
else if (expression) {
 statement
}
else {
 statement
}

Only the if clause of the conditional statement is required. The else statement is
executed only if none of the previous conditions return true.

Loop statements are constructed using the while keyword, which allows you to iterate
over blocks of code.

while (expression) {

4.3 Statements

4.3.1 Expression Statements

4.3.2 Conditional Statements

4.3.3 Loop Statements

 statement
 ...
}

In the case of while loops, the truth condition of the boolean expression is checked
before every execution of the body of the while loop, which is executed only if
expression returns true.

Ends the execution of a function with the use of the keyword return . If a function does
not have a return statement at the end, it is assumed to be a void function without a
return type.

This is one of two possible terminals in a FRAC grammar:

move(int distance)

The function draws a line of length distance .

The other possible terminal in a FRAC grammar:

turn(int angle)

The function indicates to the grammar that the current line being drawn should be re-
oriented by angle degrees, which can be in the positive or negative direction (abiding by
the right hand rule).

4.3.4 Return Statements

5. System Functions

1. move()

2. turn()

3. draw()

This is one of two functions in a FRAC program that generates a fractal image:

draw(gram g, int n)

The function creates a static image of the fractal described by the grammar g over n
number of iterations.

grow(gram g, int n)

The function resembles draw() , except instead of creating a static image, it creates a
dynamically “growing” GIF (merely a collection of static images) of the fractal described
by the given grammar g over n iterations.

print(string s)

The function prints out the string s to the standard output. The same escape sequences
as Java would be interpreted correspondingly (i.e. \n for newline).

4. grow()

5. print()

