finL|
Language Reference Manual

Manager

System Architect
Language Giiru
Tester

Lauren O’Connor, leo2118
Robert Cornacchia, rlc2160
Josh Fram, jpf2141

Paddy Quinn, pmg2101

II.

L.

IV.

VL

VIL

Contents

Introductionccccoeeeeeeeennnn..
Lexical Conventions..................

Tokens

Identifiers

Comments

Whitespace

Separators

Reserved Words & Symbols

Primitive
Non-Primitive
Casting

EXPIreSSIONS.......cccuuuueeeuneaennanennns

Declaration & Assignment
Arithmetic Operators
Shorthand Operators
Relational Operators
Logic Operators

CONLIOL....oeeeeeeeeeeeeeeieeeaeaeenn

Conditionals
Loops
Scope

Functions.........ccuueeeeeeeeieenannnnn.

Reserved Words
Built-in Functions
Function Definition

APPENdIX......ccceueevueereeeenenannnnn.

.. 8

.. 12

I. Introduction

As quantitative and algorithmic trading strategies are being increasingly
adopted by investment firms, the goal of finL is to provide a language to
simplify the development of financial programs. Via Yahoo's web query
language (YQL) and Finance API], finL provides easy access to current stock
information. finL's special currency, percent, stock, order, and portfolio data
types make software development simpler for financial analysts. In
addition, reserved words and built-in functions allow users to easily utilize
more functionality, such as switching between portfolios, converting
different currency denominations, or exporting results to a .csv file.

II. Lexical Conventions

Tokens:
There are five types of tokens in finL. They are: identifiers, reserved words,
whitespace, operators, and separators.

Identifiers:

Identifiers are any sequence of letters and underscores that signify the
name of a variable or function. Identifiers in finL are case-sensitive and ny
other punctuation or digits are not allowed.

Comments:
Only single-line comments are supported in finl.. Comments are indicated
with a single # symbol, 1.e:

this is a one-line comment

Whitespace:
All whitespace (spaces, tabs, new lines) in finL is ignored.

Separators:

finL uses the following characters as separators:
{} — code block separator
() — grouping separator and parameter list separator
; - statement delimiter

Reserved Words & Symbols:
Types & Null (see III: Types):
int
float
percent
null
array <type>
string
currency
stock
order
portfolio
Boolean Logic Operators (see IV: Expressions):
and
or
not
Control Flow & Loops (see V: Control):
?
22
!
for
when
break
index
Functions & Related (see VI Functions):
function
return <expression>

void
main
use
export
ITI. Types
Primitive
int
signed 64 bit type

a string of numeric characters without a decimal point, and an optional

sign character
an integer literal may be expressed in decimal (base 10).

example: -4

float
o signed 64 bit type
o astring of numeric characters that can be before and/or after a decimal
point, with an optional sign character
o afloat literal may be expressed in decimal (base 10)
o example:34.55
percent
o signed 64 bit type
o astring of numeric characters that can be before and/or after a decimal
point, with an optional sign character
value of percent treated in calculations as <value>/100
example:
percent myRate<<50;
myRate*80 # evaluates to 40, since 50 is treated as 0.5
o makes using percentages more intuitive to/readable for the user
null
o the value of an uninitialized object
o example:null

Non-Primitive
array

o arrays only hold elements of the same type
o finL arrays have the same behavior as Java ArrayLists, i.e. dynamic sizing
o adding an element:

m <identifier>.add(<element>);

m example:myArray.add (“hello”);
o accessing an element:

m <identifier>.at(<index>);

m example:myArray.at (3);
o removing an element:

m <identifier>.at(<index>).remove;

m example:myArray.at (2) .remove;
o setting an element:

m <identifier>.at(<index>) << <values;

m example:myArray.at (2) << “world”;
o finding the maximum element:

m <identifier>.max();

m example:myArray.max () ;
o finding the minimum element:

m <identifier>.min();

m example:myArray.min () ;
o finding the average of the array:

m <identifier>.avg();
m example:myArray.avg () ;
o sorting an array in ascending order:
m <identifier>.sort();
m example:myArray.sort () ;
string
o afinite sequence of ASCII characters, enclosed in double quotes
o example: “Hello”
currency
o tuple with float and string
o currency has two attributes: <identifier>.value (float determining the
value) and <identifier>.denomination (string determining which
currency)
example: myCurrency.value<<312.40;
currency conversions supported:
USD (US Dollar)
EUR (Euro)
JPY (Japanese Yen)
GBP (Great Britain Pound)
CHF (Swiss Franc)
CNY (Chinese Yuan)
(later versions of finL will support more currency conversions)
o string() function:
<identifier>.string converts currency into a string (adds
corresponding currency symbol and rounds off to hundredths place)
example:
currency lb;
1lb.value<<100.4567;
1lb.denomination<<“GBP”;
print (lb.string()); # prints £100.46
stock
o wrapper type that contains the stock ticker and all data from Yahoo
Finance YQL database table yahoo.finance.quotes (see Appendix for
Yahoo Finance YQL database reference)
o .populate() function:
<identifier>.populate (<optional string array>)
populates/refreshes all data if no string is specified or specified data if an
input string array is specified

example:
stock stk << @GOOG;
stk.populate(); # populates all data from yahoo

array string arr;
arr.add (“EBITDA”) ;

arr.add (“PERatio”) ;
stk.populate (arr); # refreshes only data within arr
o .get() function:
<identifier>.get (<string>) gets specified data from stock type

example:
stock stk << @GOOG;
stk.populate(); # populates all data from yahoo

stk.get ("EBITDA”); # returns the EBITDA data in the
stk variable
o .string() function:
<identifier>.string () converts stock into a string
example:
stock stk<<QTSLA;
print (stk.string()); # prints Q@TSLA
order
o buy or sell order
o contains:
m <identifier>.shares:the number of shares (populated at
initialization)
<identifier>.stock:a stock type (populated at initialization)
<identifier>.price:the price of the stock at time of sale
(populated when the order is executed)
m <identifier>.time:timestamp (populated when the order is
executed)
o 1n abuy order, the number of shares is positive, but in a sell order, the
number of shares is negative
o .execute() function:
<identifier>.execute () executes the buy or sell order immediately
(places a market order); to place a limit order (execute the order based on
a trigger) use a when loop
example:
order myOrder;
myOrder.shares<<10;
myOrder.stock<<@AAPL;
myOrder.execute (); # executes order
edits current portfolio
portfolio
o type that contains order history, stocks owned, and capital on hand
o afinL program can work on multiple portfolios at a time through when
loops, however each thread can have at most one active portfolio
program starts with a default portfolio, imported from a csv
new portfolios can be created or switched to using the use keyword

Casting
finL. does not support casting.

IV. Expressions

Declaration & Assignment
To declare what an identifier means, the general syntax is as follows:
0 <type> <identifier>;
o examples: int x; float number; string name;
o arrays
m arrays are declared array <type> <identifier>;
m example:array int numberList;
To set or reset a value of an identifier, the syntax is as follows:
0 <identifier> << <value>;
o examples: x<<3; dollars<<2.2;
o currency
m currency attributes should be initialized separately
m <identifier>.value<<43.432;
<identifier>.denomination<<“EUR”;
o arrays
m arrays can be initialized via declaration and then continuous
calling of the “add” function

Shorthand Operators
finL also supports shorthand operators (for ints, floats, and percents) that
combine arithmetic and assignment, for the following operations: addition
(+<<), subtraction (-<<), multiplication (*<<), and division (/<<):

example: x<<x+3; can also be written x+<<3;

example: x<<x*4; can also be written x*<<4;

Arithmetic Operators
finL. supports the following arithmetic operators, in order of precedence:
power (**)
multiplication(*)/division(/)
addition(+)/subtraction(-)
modulus(%)

Relational Operators
finL supports the following relational operators:

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

= (equal to)

not = (notequal to)
All return a result of 0 if the condition is false or 1if the condition is true.
Equality operators support integers, floats, percents, currencies
(currency.value is compared), and strings, while all other relational
operators support integers, percents, currencies, and floats.

Logic Operators
finL supports the following boolean operators as reserved keywords:
and
o logical intersection of two expressions
o example:0 and 1 evaluates to 0 (false)
or
o logical union of two expressions
o example:1 or 0 evaluatesto 1 (true)
not
o logical negation of an expression
o example:not 1 evaluates to 0 (false)
Any non-zero number is considered true, and zero is considered false.

V. Control

Conditionals
All conditional statements must terminate with a colon.

if
? (<boolean expression>): { .. }
e if conditionals are represented with a single question mark (?) at the end
of the statement
e denotes an if statement, which must be followed by a boolean expression,
and a block that is executed if the condition is true
e example: 2 (x = 2): { print(“X is 2!”);}

else if

?? (<boolean expression>): { ..}

else

all else if statements follow an if statement. They are denoted by two
question marks (2 ?2).
example: ??(x = 3) { print(“X is actually 3!”);}

}
denotes an else statement that occurs following a ? or 22 statement. It is
not followed by a boolean expression, but it is still followed by a block
example: ! { print(“X is 2!”);}

Full conditional example:

int number << 0;

? (number>0)
{number+<<1;}

?? (number<0)
{number-<<1;}

{number+<<5;}

print (number) ;

prints 5
Loops
for
for <integer> to <integer> by <integer>: { .. }
e perform iterations of a loop a specified number of times until the boolean
condition (evaluated at the start of each iteration) is false
range is inclusive (i.e. 1to 5 would iterate 1, 2, 3, 4, 5 times)
example: for 1 to 10 by 1: { .. }
NOTE: for loops should not be used to continually query the YQL database;
use a when loop
when

when (<boolean expression>):

a key control loop in finL

starts a new thread to support being able to place multiple limit orders
the when loop checks the conditional periodically based on the Yahoo
Finance YQL database rate limiting and the number of active when loops
when the when loop has a boolean expression that evaluates to true it
executes its body once and terminates

e finL does type checking on the boolean expression to determine what it
needs to repopulate and if it should change the time between calls
e example:
stock chill << @NFLX;
chill.populate();
order netflixOrder;
netflixOrder.shares << 70;
netflixOrder.stock << @NFLX;
when (chill.get ("FiftydayMovingAverage") >
chill.get ("TwoHundreddayMovingAverage")) : {
netflixOrder.execute () ;
}

netflixOrder.execute () ;

this mini-program executes the netflixOrder once
no matter what and once in the when loop
according to the boolean, the when loop starts a
new thread so the other order can be executed
immediately

index

index

e used to get the value of the current iteration in a for loop
e example:
for 1 to 5 by 1: {
print (index) ;
} # prints 12345

break

break;
e break out of the current iteration of the loop and exit the function block
e example:
for 1 to 10 by 1: {
if (index=2) {break;}

Scope

Identifiers declared within bracket ({ }) separators have a local scope and
cannot be accessed outside that bracket. Functions have a global scope,
and must be declared with unique identifiers. Portfolios have a global
scope. When a when loop is entered the current portfolio is passed into the
scope of the when loop. The current portfolio can then be changed without
affecting the portfolio within the when loop.

10

VI. Functions

Reserved Words:
function
e areserved word used to define a user-defined function that takes 0 or
more parameters, and returns an <expression> or void
° exanuﬂe:function volid tester (int testParam): { .. }
return <expression>
e return expression to the caller from the function block
e example: return 1;
void
e areserved word returned to the caller from the function block that
indicates the function does not return a value
e example: return void;
main
e name of the entry function, the first function called by the program at
run-time. Every finL program must have a main function
e example: function void main(): { .. }
use <string>
e keyword that sets the current portfolio to the csv file specified in the
string
e example:use “secondPortfolio.csv”;
export <string>
e keyword that exports the current portfolio to the csv file specified at that
point in the program
e example: export “middayPortfolio.csv”;

Built-in Functions:

print (<primitive data type>)
e system function that prints a primitive data type to the console
e example:percent pct << 10; print(pct); # prints 10%

convert (<currency>, <string>)
@® system function that converts one denomination to another
@ paramters: takes in a currency (i.e. value and denomination), and a string
indicating the desired new denomination
@® returns a currency object with the new value and denomination
@® example:
currency x;
x.value<<102.3;
x.denomination <<”USD”;
currency newX << convert(x, “GBP”);
#newX now holds value in pounds and “GBP”

11

Function Definition
Functions in finL are defined with the following syntax:

function <return type> <identifier> (<optional parameters>):

{...}
example:
function int foo(currency myEuro) : {
print (myEuro.string());
return 1;

VII. Appendix

Yahoo Finance YQL yahoo.finance.quotes Database Table:
"symbol"
"Ask"
"AverageDailyVolume"
"Bid"
"AskRealtime"
"BidRealtime"
"BookValue"
"Change_PercentChange”
"Change”
"Commission”
"Currency”
"ChangeRealtime"
"AfterHoursChangeRealtime"
"DividendShare"
"LastTradeDate"
"TradeDate"
"EarningsShare”
"ErrorIndicationreturnedforsymbolchangedinvalid”
"EPSEstimateCurrentYear"
"EPSEstimateNextYear"
"EPSEstimateNextQuarter”
"DaysLow"
"DaysHigh"
"YearLow"
"YearHigh"
"HoldingsGainPercent"
"AnnualizedGain”"
"HoldingsGain"
"HoldingsGainPercentRealtime"

12

"HoldingsGainRealtime"
"Morelnfo"
"OrderBookRealtime"
"MarketCapitalization”
"MarketCapRealtime"
"EBITDA"
"ChangeFromYearLow"
"PercentChangeFromYearLow"
"LastTradeRealtimeWithTime"
"ChangePercentRealtime”
"ChangeFromYearHigh"
"PercentChangeFromYearHigh"
"LastTradeWithTime"
"LastTradePriceOnly"

"HighLimit"

"LowLimit"

"DaysRange”
"DaysRangeRealtime"”
"FiftydayMovingAverage"
"TwoHundreddayMovingAverage"
"ChangeFromTwoHundreddayMovingAverage"
"PercentChangeFromTwoHundreddayMovingAverage"
"ChangeFromFiftydayMovingAverage"
"PercentChangeFromFiftydayMovingAverage"
"Name"

"Notes"

"Open”

"PreviousClose”

"PricePaid"

"ChangeinPercent”

"PriceSales”

"PriceBook"

"ExDividendDate"

"PERatio”

"DividendPayDate"

"PERatioRealtime”

"PEGRatio"

"PriceEPSEstimateCurrentYear"

"PriceEPSEstimateNextYear"

"Symbol"

"SharesOwned"

"ShortRatio"

"LastTradeTime"

"TickerTrend"
"OneyrTargetPrice"
"Volume"
"HoldingsValue"
"HoldingsValueRealtime"
"YearRange"
"DaysValueChange"
"DaysValueChangeRealtime"
"StockExchange”
"DividendYield"
"PercentChange":

14

