Fall 2015 COMS 4115
Programming Languages & Translators

Language Reference Manual

StoryBook

Authors
Nina Baculinao (nb2400) - Systems Architect
Beth Green (blg2132) - Language Guru
Anna Lawson (aal2150) - Testing
Pratishta Yerakala (py2211) - Manager

Contents
1 Introduction
2 Syntax Notation
3 Lexical Conventions
3.1 Comments
B3 2 T OKENS vttt
32T Keywords . o oottt
B22Tdentiflers . v v v vt e e
323 OPerators o v v vttt

324 CONSTANLS « ¢ v v v et et et it e ettt et e e
325 SEPArAtOLS o v v v et e e e e
B320Newlnes . . oot e e
33 WHhIteSPaCe ..ottt
4 Data Types
4.1 Primitive DataTypes i
AT LSt ot
4.2 Non-Primitive Data Types i
4.4 Scoping and Lifetime i
5Purpose of Identifiers L L i
51 Chapters
5.2 CRAraCters . .« v v vt
5.2.1 Subtypes . .o
5.3 ACHONS .+« v vt ettt e e e
5.4 Variableso
DS THAILS « o v et
6 Expressions
0.1 Primary EXpressions
6. 1.1 Identiflersot
.12 CONSEANLS + ¢ v v vt v et et et ettt e e e
6.1.3 Parenthesized Expressionso vvii i
0.1 LStS. o vt e e e e e
0.2 Postfix EXpressionst
0.2.1 LSt ACCESS « v v v et e e et e e

0.2.2 Character ACCESS « v v v vttt et ettt ettt e e 9
0.22 List Functionso vi i 10
6.2.3 Chapter Invocationo oo v it 10
0.3 Prefix EXpressions 10
0.3.1 Logical Negationottt t ittt i e 10
0.4 Binary Operator BExpressions, 10
0.4.1 Arithmetic OPerators v v vv vttt e 10
0.4.2 Concatenation OPErator . v v v v v oot e ittt 11
0.4.3 Compartison OPerators . v v oottt vttt ettt 12
0.4.5 Logical Operators . v v v v vv oottt et 13
0.4.6 Assignment OPerator . . v oottt vii ittt 13
0.4.7 Sequence OPerator « o o vt v ittt 13
0.5Control Flow 14
6.5.1 Conditional EXpressionottt 14
0.5.2Lo0op EXPressions . ..o oot 14
7 Declarations and Types 15
7.1 Type SIGNAtULES . . oo vttt e et 15
72Declarations 15
7.2.1 List Declarations . . . oo oot it 16
7.1.2 Character Declaration and Instantiationo ... 16
7.1.3 Character Subtype Declaration 16
7.1.4 Chapter Declarationso oot vv ittt 16
7.1.5 Action Declarations oo vt i 17
7.1.6 Plot Declarations .« v v oo oo 17
8 Library Functions 17
T N 17
82 List Functionsot 17
2T Append . . oo 17
B2 2 INSCIt . v v 18
823 REMOVE . . v e 18
824 Length . . oot 18
8.3 Character Functions i 18
831 WhoAmI. ..o 18

1 Introduction

Once upon a time, the creators of Storybook were learning how to code for the first time. At first,
they fumbled with the tricky and alien syntax. It took a while for them to discover the joyful
creativity of computer programming.

StoryBook is a programming language targeted toward novice programmers who are just
starting to understand the basics of computer science and computational thinking. The language uses
intuitive, "story-like" syntax and structure to make object-oriented programming easier for children

and adult-beginners to read and implement. The backend of StoryBook generates Java code.

2 Syntax Notation

The syntax notation of this manual is as follows. Any literals or words that belong to the StoryBook

language will be written in monospaced typeface. Syntactic categories are written in zalic.
Grammar patterns are expressed throughout the document using regular expressions. r*

means the pattern r may appear zero or more times, r+ means r will appear one or more times, and

r? means r will appear one or zero times. rl |12 means that the pattern has either r1 or 2. r1r2 means

that the pattern rl is concatenated with r2.

3 Lexical Conventions

StoryBook programs are lexically composed of three elements: comments, tokens, and whitespace.

3.1 Comments

Symbol Description Example

~ single line comment ~~Single line comment

~o block comment ~Multi-line comment~
3.2 Tokens

A token in StoryBook is a group of characters that hold meaning when considered as a group. These

consist of keywords, identifiers, operators, separators, and constants.

3.2.1 Keywords

These are the StoryBook keywords:

Plot, Chapter, Character, Action, subtype, trait, 1list, number,
words, letter, tof, new, returns, endwith, say, repeat while,
repeat for, if, else, elseif, then, is, true, false, and, or,
not, null

3.2.2 Identifiers

identifier — (['A'-"Z''a'-'2"] [[0-9] |_)*

Identifiers are a collection of characters, numbers, and/or underscores. The characters are the
ASCII characters 'a'-'z" and 'A" -'Z', numbers are digits 0-9, and underscore '_". StoryBook is case

sensitive. Identifiers hold values that are of the type to which they are assigned.

3.2.3 Operators

operator —> +

*

or
not
In StoryBook there are arithmetic, comparison, boolean, 1ist, and Character operators. The

syntax and use of these expressions are described in 6.2, 6.3 and 6.4.

3.2.4 Constants

digit —> [0-9] *

constant — [1 -9 digit*
true
false

Values in StoryBook that always have the same value include true, false, and digits 0-9.

3.2.5 Separators

separator —> ;

StoryBook uses ; to separate items in a 1ist data structure or in a list of function arguments. A .

is used to mark the end of an expression.

3.2.6 Newlines
StoryBook uses newlines to identify the end of a single line comment. Otherwise, newlines are

ignored by the compiler.

3.3 Whitespace

Tabs and spaces are used by StoryBookers to make their programs more readable. However,

whitespace is ignored by the compiler.

4 Data Types
4.1 Primitive Data Types

There are five primitive data types in Storybook: letter, words, tof, number,and list.

Type Definition

letter - Single character

words - Grouping of consecutive characters, a string

tof - Boolean type, holds a value of true or false

number - Any type of number: int, short, float, double, or long

list - Can hold multiple instances of primitive or user-defined types;

all values in a list must be of the same type.

4.1.1 Lists
While a list can be declared and used as a primitive data type, its methods can be called in the same
way as character methods (see 8.2). For this reason, lists are treated as a special object in the

compiler to separate them from other primitive data types.

4.2 Non-Primitive Data Types
A Character is auser-defined data type comprised of traits (instance variables) and
Actions (methods). Traits can be of a primitive type or of a Character type, including itself.

See section 7.1.2 for an example.

4.3 Scoping and Lifetime
A variable's scope is the block in which the variable is declared, with the exception of traits.

In the case of nested blocks, if a variable declared within an inner block and shares the same
name as a variable declared in the outer block, then the variable declared in the inner block takes
precedence, effectively overriding the one in the outer block. Thus, in this case, the outer block's
variable with the shared name is inaccessible from the inner block. If two variables are declared

within the same block level, consequently sharing the same scope, with the same name, the one

6

declared later will take precedence and the earlier one will be inaccessible after the point of the later
variable's declaration.

traits have the lifetime of their object. Local variables have a lifetime from their
declaration's execution to when the program counter exits the block in which the vatiable was

defined.

5 Purpose of Identifiers

An identifier is an alphanumeric sequence of characters that amounts to either a geyword or the name
ofa Chapter, Character, Action or a variable. This sections details the purpose and scope
of the possible types of non-keyword identifiers.

5.1 Chapters

In Storybook, a Chapter isany function that is not the P1ot (main function). Chapters
enable users to create reusable and versatile blocks of code that can be called in the P1ot. In this
way, users can construct more concise P1ots that are either comprised of or include sequences of
Chapter calls. Chapters can take zero or more arguments. Hach Chapter can have zero or

one return value. All argument and return types must be declared in the Chapter header.

5.2 Characters

In Storybook, classes are called Characters. Characters are user-defined data types that
represent a type of object. Users can then instantiate Character objects of a specific
Character type. Each Character object has its own copy of instance variables declared using
the trait keyword and can perform Actions.

5.2.1 Subtypes

Inheritance can be employed to create subtypes of Characters and avoid duplication of code
for shared functionality. This structure allows users to define reusable data types and to abstract the
implementation details of story characters. Characters allow computer science novices to begin
to understand the key concepts object-oriented programming in the familiar context of story

characters.

5.3 Actions

Actions are methods that can be invoked on instances of a Character. Actions are defined

inside the Character class definition.

5.4 Variables

In Storybook, variables are statically-typed. A variable is an identifier that is bound to a reference of
a value of one of the following types: Character, letter,words, tof, 1ist, oranumber.
Variables of type number are dynamically typed in that they can be initialized and re-assigned to

any type of number. The variables in Storybook are mutable.

5.5 Traits

In StoryBook, traits represent the object-oriented concept of instance variables. Traits are
variables that are defined at the scope of a Character type. Each instantiated object of that
Character type has its own instance of each trait.

6 Expressions

This section describes the syntax of StoryBook expressions. StoryBook uses postfix, prefix, or infix
operators. The precedence of expression operators mirrors the order of the major subsections of this
section, highest precedence first. Within each subsection, the operators have the same precedence.

The grammar of StoryBook incorporates the precedence and associativity of the operators.

6.1 Primary Expressions
primary-expr —> constant
identifier
(expression)
[expression]
Primary expressions include identifiers, constants, or expressions that can be evaluated to a single value in

parentheses.

6.1.1 Identifiers

An identifier for a variable is a primary expression, provided it has been fully declared and holds a
value. A variable # is a primary expression whose type is the same as the type of a. Likewise, a
trait bisa primary expression whose type is the same as the type of 4. Evaluation of an identifier
actually entails evaluation of the expression bound to that variable. Identifiers are described in

section 3.2.2.

6.1.2 Constants
A constant is a primary expression with the same type as the type of the literal. See 3.2.4 for a

discussion of constants.

6.1.3 Parenthesized Expressions
A parenthesized expression is a primary expression whose type and value are identical to the final

evaluation of an un-parenthesized expression.

6.1.4 Lists

list — [expression, ; ... ; expression,]

where 0 <7< 1.

A list is a primary expression that can contain zero or more expressions. The expressions in a list
must all be of the same type. An undeclared empty list [] holds no type until it stores at least one

expression; at that point, it is assigned the same type as the first expression in the list.

6.2 Postfix Expressions

postfix-expr = primary-expr
list-postfix-excpr [expression]
postfix-expr (optional-list-of-parameters-expr)
Character-or-list-postfix-expr ' s identifier
Character-or-list-postfixc-expr, identifier

The operators in postfix expressions group from left to right.

6.2.1 List Access

A postfix expression followed by an expression in square brackets is a postfix expression denoting a
subscripted list reference. The expression exprl [expr2] denotes the accessing of 1ist
elements. First exprl is evaluated, then expr2, then the [] operator. It returns the value at the
position denoted by expr2 in the 1ist denoted by exprl. Position numbers in the list begin at
1 and end with the length of the list. For instance:

words list pets is ["cat", "dog", "lizard", "dragon", "unicorn"].
pets([1l]. ~~cat, counting from the left

pets[5]. ~~unicorn, last element, counting from the left
pets[-2]. ~~dragon, counting from the right

6.2.2 Character Access
The ' s operator is used to access a Character's traits. The , operator is used to invoke a
Character's Actions.

words monsterName i1s Frankenstein's name.
Frankenstein, scare ("Boo!").

6.2.2 List Functions
List functions are invoked in the same way as Character Actions. The , operator is

used to call the special 1ist functions, which are discussed in section 8.2.
listl, length. ~~evaluates to the length of 1listl

6.2.3 Chapter Invocation

Chapters can be called in the scope in which they were created by the Chapter identifier and the
appropriate arguments.

number result is Sum(l; 2).

~~calls a function called Sum that takes in two number arguments

6.3 Prefix Expressions

The only prefix operator in StoryBook is not, the logical negation expression.

6.3.1 Logical Negation

prefix-expr — not

The operand of the not operator must have a tof type. The result of the prefix expression not
trueis false and the value of not falseis true. Use of not with comparison operators

flips the condition of the comparison and is discussed in section 6.4.3.

6.4 Binary Operator Expressions
binary-expr —> expression, op expression,
The following categories of binary gperators exist in StoryBook, and are listed in order of decreasing

precedence: arithmetic, concatenation, comparison, logical, assighment and sequence.

6.4.1 Arithmetic Operators

Operator | Description Example
* multiply number fifty is 5*10. ~~fifty=50
/ divide number five is 50/10. ~~five=5
s modulo number zero is 50%5. ~~zero=0
+ add number x is 0. ~~x=0

X is x+1. ~~ now x=1
- subtract number six is 10-4. ~~six=6

10

The multiplicative operator *, the division operator / and the remainder operator % are all
grouped left-to-right. The operands must have number type. The binary operator * denotes
multiplication of the two operands. The binary / operator yields the quotient, which is always the
result of floating point division of the first operand by the second. The % operator yields the
remainder of a product of the floating point division. If the second operand is O for the / or %
operator, the result is undefined.

Of lower precedence than the multiplicative operators, the additive operator + and
subtractive operator — also group left-to-right. As long as the operands are of the number type,
the result of the + operator is the sum of the operands. The + operator can also have operands of
other types, in which case the function of the operator changes to concatenation, which is discussed
in the next subsection. The result of the — operator is the difference of the operands. The operands

for subtraction must be of number type.

6.4.2 Concatenation Operator

Pattern Description Example
words-expr + words-expr concatenate words bestLanguageEver 1is
strings "Story" + "Book".
~~pestLanguageEver evaluates to
"StoryBook"

words-expr + number-expr concatenate string | words title is "Alibaba and the

| number-expr + words-expr | and number " + 40 + " thieves".
words-expr + tof-expr concatenate string | "Today you are you! That is " +
| 2of-excpr + words-expr and boolean true + "r than " + true + "!

There is no one alive who is
you—-er than you!"

words-expr + list-expr concatenate string | [3; 2; 1] + " Here I come!"
| list-excpr + words-expr and list ~~"3, 2, 1, Here I come!"
list-expr + list-excpr concatenate lists | words list colorsOfTheRainbow

is ["red"; "orange"; "yellow"]
+ ["green"; "blue"; "indigo";
"violet"]. ~~full ROYGBIV list

The + operator is distinguished from the other arithmetic operators because its operands do not
have to be of number type, but can also be of words or 1ist type. If the operands are of type
words, the result of the + operator is the concatenated result of the two words. If one operand is

of type words and the other operand is a different data type, the non-words operand is cast to

11

type words; then regular string concatenation takes place, and the final concatenated result is of
type words. If the operands are of the 1ist types, the result of the + operator evaluates to a new

joined 11ist with elements from the two 1ist operands, in the same sequence.

6.4.3 Comparison Operators

Operator | Description Operator | Description

< is less than not < is not less than

> is greater than not > is not greater than

<= is less than or equal to not <= |[isnotless than or equal to
>= is greater than or equal to | not >= [is not greater than or equal to
= tests equality not = tests inequality

The final result of a comparison expression is of type tof. The equality operator and the inequality
operator have lower precedence than the other comparison operators. Thus, apples<oranges
= pears<bananas equals true if both apples<oranges and pears<bananas share
the same tof value. In other words, it is equivalent to (apples<oranges) =
(pears<bananas).

StoryBook allows for comparison between all primitive data types listed in section 4.1. These
operators compare the values of the elements being compared. A comparison of a number and a
letter compares the ascii value of the letter to the number. All other comparisons must be
made between values of the same type. A comparison between two 11ists compares the values at
each index in the 1ist. If a StoryBooker wishes to compare Characters he or she can create a
comparison Action for that Character. For example:

Action compareRobot (Robot a, Robot b) {
if a's model = b's model {
return true;
} else {
return false;

12

6.4.5 Logical Operators

Operator | Description Example
and logical and if (a and b) then {
say "Both true".
}
or logical or if (a or b) then {
say "At least one is true".
}

The logical operators group left-to-right. The operands do not need to have the same type. When
evaluating the operands, a value of 0 or null are both equivalent to false. Subsequently,
discussion of an operand evaluating to false can also signify that the the operand is equal to 0 or
null. Note that the result of a logical expression is always of type tof.

and returns true if both its operands are unequal to false, otherwise it returns false.
It guarantees left-to-right evaluation and adopts short-circuit evaluation. The first operand is
evaluated; if it is equal to false, the value of the entire expression is immediately set to false.
Otherwise, the right operand is evaluated, and if it equal to false, the whole expression is
false, otherwise true.

or returns true if either of its operands are not equal to £alse, otherwise it returns
false. It also guarantees left-to-right evaluation and adopts short-circuit evaluation. The first
operand is evaluated; if it is equal to true, the value of the entire expression is immediately set to
true. Otherwise, the right operand is evaluated, and if it equal to true, the whole expression is

true, otherwise the expression is equal to false.

6.4.6 Assignment Operator

The is assignment operator requires a mutable variable as the left operand. It can be of any of the
primitives types or a Character type, but must not be of type Chapter. The left operand must
be an initialized identifier. The type of an expression is that of its left operand, and the value is the
value stored in the left operand after the assighment has taken place. The operand on the right must

have the same type as the left operand.

number x is 5. ~~x 1is set to 5
x 1is (5+1). ~~x changes to 6

listl1[3] is 23. ~~changes the item at index 3 to 23.

6.4.7 Sequence Operator

Sequence — [expression; expression; |+

13

Expressions separated by semicolons are evaluated left-to-right.

6.5 Control Flow

6.5.1 Conditional Expression

conditional-expr — 1T fof-exprl then expr? [elself tof-expr’ then exprd|* else exprd

Each expression after an 1 £ or after an elseif is an expression that evaluates to true or
false. If the expression evaluates to true then the expression following the subsequent then is
executed. Otherwise, the expression following the subsequent el se is executed. In the case of
multiple 1 f statements preceding an el se clause, then the el se binds to the immediately

preceding 1 £ block. Parentheses around the #f-expr condition are optional.

6.5.2 Loop Expressions

while-loop — repeat while fof-expression

This is the syntax of a StoryBook repeat while loop. The block of code defined in the loop
will be executed while the zof-expression evaluates to true. The parentheses around the zof-excpression

is optional.

repeat while (SleepingBeauty's age not = 100) {
SleepingBeauty, snore.
SleepingBeauty's age is SleepingBeauty's age + 1.

for-loop — repeat for expressionl; expression?; expression3
This is the syntax of a StoryBook repeat for loop. It is equivalent to:
expression].
repeat while expression? {
Statement .
expression3 .
}
The first expression is evaluated only once and initializes the loop. There is no restriction on its type.
The second expression must evaluate to type tof and is typically a condition for the loop continue.
Once the second expression evaluates to false, the loop ends. The third expression is evaluated after
each iteration and specifies a re-initialization for the loop. There is no restriction on its type. The
block of code defined after the repeat for line will be executed as long as the zof-expression
evaluates to true.
The popular pattern used in a for-loop is assignment-expression; tof-expression; arithmetic-expression.

In the initial declaration, an identifier is assigned to an initial number value. This is followed by the

14

tof-expression to be tested on each run through the loop. Last is whether to increment or decrement

the number identifier on each loop. A typical example:

repeat for number x is 5; x < 10; x = x + 1 {
~~this will print "hello" 5 times
say ("hello") .

7 Declarations and Types

7.1 Type Signatures

hipe-signature —> type identifier
type — number

letter
words

tof

words
Character-identifier

When declaring a variable prepend each declaration with the data type.

number age.

letter initials.
words dialogue.
tof asleepOrNot.

7.2 Declarations

7.2.1 List Declarations

list-signature — type 11 st identifier

Lists are treated as objects in the compiler but can be declared as a regular data type by the user.
Lists can only contain one type of data type so that data type should prepends the list declaration.
A 1ist can be declared empty or with values.

number list dwarfAges is []. ~declares an empty list of numbers

called dwarfAges~
number list dwarfAges. ~~equivalent to above expression

15

7.1.2 Character Declaration and Instantiation

Character-signature — Character identifier

Character variable names are capitalized. Inside the braces of a Character declaration the
user can declare zero or more traitsand Actions. To create an instance of a Character the
Character identifier is prepended to the instance zdentifier and assigned to a new Character of

that type. Traits are defined during instantiation by passing the values in as arguments.

Character Monster {
words trait name.

number trait size.

Action scare (words scream)returns null {

Say SscCream.

Monster Frank is new Monster (name is "Frankenstein"; size is 99).
say (Frank’s name). ~~prints Frankenstein
Frank, scare ("AHHHHHH"). ~~prints AHHHHHH

7.1.3 Character Subtype Declaration
Subtypes are declared with the same syntax as a normal Character with the addition of the subtype.

Character Giant is Monster { ~~can also call scare on Giant
Action Capture (words list names) returns words list {
repeat for number i is 1; 1 < names’s length; 1 is i+1 {
if names[i] = "Jack" {
names|[i] = null.

}

endwith names.

7.1.4 Chapter Declarations
Chapter-signature — Chapter identifier ([arg;]*¥) returns fpe

Chapters are declared with zero or more parameters, separated by semicolons, and a return value

preceded by the keyword returns.
Chapter sum (number x; words y) returns number { Chapter body }

16

7.1.5 Action Declarations
Action-signature — Action identifier([arg;]¥) returns #pe
Actions are declared with zero or more parameters, separated by semicolons, and a return value

preceded by the keyword returns.

Action makeMoney (number initialAmnt, number salaryPerMonth,

number monthsWorked) returns number { Action body }

7.1.6 Plot Declarations

plot-signature = Plot(lword list args]?)

The main function of a StoryBook program is called the P1ot. The P1ot can either have no
arguments or it can take a 1ist of command line arguments. When a StoryBooker runs a

Storybook program, the first function that is called is the P1ot.

~~Plot with command line args
Plot (words list args){ ~Plot body~ }

~~Plot without command line args
Plot () { ~Plot body~ }

8 Library Functions

Below are the library functions defined for all StoryBookers to use.

8.1 Say

Prints words or numbers to standard output.

words pirateName = "Captain Jack Sparrow".
say ("Ahoy " + pirateName). ~~prints "Ahoy Captain Jack Sparrow"

8.2 List Functions

These are functions that can only be invoked on 1ists.

8.2.1 Append
Used to add values to the end of a list.

number list ages is [20; 23; 26; 61].
ages, append(63). ~~ages 1s now [20; 23; 26; 61; 63].

17

8.2.2 Insert

Used to add values at specified positions in a list, shifting the elements in the list if necessary. The
first argument of the function is the value to add to the list. The second argument is the position at
which to add the value.

words list names is ["Woody"; "Buzz"; "Nemo"].
names, insert ("Dory"; 3). ~~names 1is now ["Woody"; "Buzz";
"Dory"; "Nemo"].

8.2.3 Remove
Used to remove values at specified positions in a list, shifting the elements in the list if necessary.

The function argument indicates the position at which to remove the value.

words list guestList is ["Cinderella"™; "Jasmine"; "Belle";
"mouse"; "Pocohontas"; "Elsa"; "Mulan"].
guestList, remove (4).

8.2.4 Length
Used to determine the length of a list.

letter list alphabet is ['a'; 'b'; 'c'; 'd'; 'e'; 'f'].
alphabet, length. ~~this will return 6

8.3 Character Functions

Special function that can only be invoked by a Character.

8.3.1 WhoAmlI

Calling whoAmlI on a Character returns a string description of that Character. This
description will include the identifier of the Character of which it is an instance and all of the
Character's traits.

Character Soldier {

word trait name.

number trait age.
}
Soldier Jack is new Soldier (name is "Jack"; age is 18).
Jack, whoAmI. ~~This will return the string "Jack: I am a
Soldier. My name is Jack. My age is 18."

18

