Senet

Language Reference Manual
26" October 2015

Lilia Nikolova

Maxim Sigalov
Dhruvkumar Motwani
Srihari Sridhar
Richard Mufoz

1. Overview

Past projects for Programming Languages and Translators have included languages for
expressing the setup and flow of playing card games. Inspired by such languages, we propose
to extend the domain to general, two-dimensional board games. Examples of games that
might be expressed in our proposed language are tic-tac-toe, checkers, and chess. A similar
idea has been investigated by Romein, Bal and Grune (1995), who described a language called
Multigame that compiled to a parallel game playing program.! The authors focused their
research on parallelized artificial intelligence to find optimal moving while playing games
created in Multigame. In part due to this research focus, the authors restricted the group of
games that could be described in Multigame to those with fixed-sized boards (thereby
excluding card games) and to those where all players have perfect information.

We propose a similar language focused on simple expression of board games; however, the its
compiler will create games that may be played interactively on the command line. The players
will execute the game program of their choice after which they will be presented with prompts
that navigate them through the game. We have named our new language Senet after one of
the oldest-known board games, which traces its origins back to ancient Egypt. This document
serves as a reference manual for the Senet language.

1.1 Goals

With our proposed language, we aim to provide:

1. Intuitive, relatively high-level expression of the setup and flow of board games;
2. Simple description of boards and pieces; and
3. Static, strong typing, and a mix of C and Python syntax to minimize the learning curve.

2. Lexical Conventions

There are 6 kinds of tokens: identifiers, keywords, integer literals, string literals, expression
operators, and other separators. Blank, tab, and newline characters are only used to separate
tokens, and are discarded by the scanner.

' J. Romein, H. Bal and D. Grune. (1995). Multigame - A Very High Level Language for Describing Board
Games. ASCI 95, pp. 278-287.

2.1 Comments

Lines (or the remainder of a line) can be commented one at a time with #. Senet does not
recognize multiline comments.

2.2 ldentifiers

Identifiers consist of a sequence of letters, digits, and underscores. They must begin with
either a letter or underscore. Senet considers two identifiers differing only by case to be
different.

2.3 Keywords

The following are reserved keywords in Senet and may not be used for any other meaning:

int
str
bool
void
list
group
and

or

not

if
else
while
for
break
continue
return
assert
True
False

None

2.4 Literals

Senet includes four kinds of literals that have fixed values: integer, string, and 1list
literals. Notably, Senet does not support floating point literals.

2.4.1 Integer

An integer-literal is a sequence of digits. All integer literals in Senet are base 10.

2.4.2 String

A string-literal is a sequence of characters enclosed by double quotation marks. A
double quotation mark inside a string must be written as “\””. A newline character inside a
string must be written as “\n”. A backslash character inside a string must be written as “\\”.

2.4 .3 List

A list-literal consists of elements of a common type separated by commas and enclosed
in brackets. In addition,a 1ist-1iteral may be the empty list of length zero ([]).

list-literal -> []
| [list-literal]
| [list-type]

list-type -> integer-literal-list
| str-literal-list

int-lit-1list -> integer-literal
| int-lit-1ist , integer-literal

str-lit-list -> string-literal
| str-lit-list , str-literal

3. Meaning of Identifiers

Since Senet is a strongly-typed language, identifiers are associated with types. There are 5
kinds of identifiers in the language: basic types, derived types, group definitions, function
definitions, and group instances.

3.1 Basic Types

Senet includes a number of basic types inspired from C and Python as shown in the table

below.

Basic Types Meaning

int 32-bit Integer

str String

bool Boolean (True or False)

void type of None, a value used to represent the
absence of a value

3.2 Derived Types

The following table lists Senet types are derivatives (collections) of a basic type. The list type
takes a basic type, T, which indicates the type of its elements.

Derived Types Meaning
list<T> Linked lists; e.g. 1ist<int> a; a =
(1, 2, 31;

3.3 Group Definitions

The language is object-oriented, with inheritance (but no multiple inheritance). New groups
can be defined with the group keyword as described in Section 5. Senet includes the standard
groups shown in the table below built-in and meant to be extended by the programmer.

Standard groups | Meaning Built-in Methods & Attributes

Object Base object group; all | Object () : default constructor, which
groups extend this contains no statements.

Board Defines board remove (int x):removes the piece at index
geometries, win b
conditions, cleanup
methods owns (int x):returns the number of the

player atindex x of cells

full ():returns True if all spots are occupied,
else False

cells: list of board cells, each element is

either None or the piece at that spot

toi (list<int> 1): takes human-readable
coordinate list, maps it to an internal cell index

tol (int x) : takes aninternal cell index,
and maps to a human-readable coordinate list

Piece Defines possible place (Board b, int x) : places the piece
moves, keeps track of | on board b atindex x ofb.cells

position, owning
player, and other owner: the owner of the piece
needed variables
fixed: whether or not the piece can be
overwritten

3.4 Group Instances

Identifiers with types corresponding to group definitions can be created as:
class identifier identifier (expression-list) ;

expression-list -> expression

| expression-list , expression

If the group’s constructor requires parameters,the number of expressions matching the number
of parameters must be included inside the parentheses.

3.5 Functions

An identifier is bound to a function using syntax described in Section 5. The identifier can then
be used to call the function using a call-expression, which is described further in Section
6.

3.6 Boards Library

Senet comes with a standard library of Board subclasses:

Board Declaration Meaning

Boards.Rect (int x, int y) x by vy size rectangular board

Boards.Loop (int x) Loop-shaped board with x cells

Boards.Line (int x) Linear board with x cells

Boards.Hex (int x) Hexagonal lattice of radius x

4. Expressions

The precedence of expression operators in Senet follows the ordering of the following
subsections 4.1to 4.13, with the highest precedence first. All operators are left associative
unless otherwise specified in the subsections below.

An expression is can be any of the following:

expression -> integer-literal
| string-literal

| list-literal

| identifier

| field-expression

| element-expression

| (expression)

| binop-expression

| call-expression

| no-expression

| assign-expression

There are a number of binary operation (binop-expression) expressions. Because they
have different precedence, the following binary operation productions will be discussed in
separate subsections, along with field-expression, element-expression,
call-expression, and assign-expression.

binop-expression -> multiplicative-expression
additive-expression

relational-expression

|

|

| equality-expression
| log-and-expression
|

log-or-expression

4.1 Primary Expressions

The most basic, and highest precedence expression are literals (integer, string, and
1list), identifiers, and parenthesized expressions. In addition, no-expression represents an
empty expression.

4.2 Field Access

Access to an object’s fields (methods or attributes) is accomplished using a period (Y. ")
between the object’s identifier and the field as shown below. The type of the
field-expression is the type of the accessed field.

field-expression —-> identifier
| field-expression . identifier

4.3 List Element Access

A single element of a list can be accessed using an element-expression. The left expression
must have type 1ist. The right expression (in brackets) must have type int. The return type is
the type of the list’s elements.

element-expression -> expression [expression |

4 .4 Function Call

Functions are called as follows, with return type equal to the called function’s return type. The
identifier must be a function.

call-expression -> identifier (expression-list)

4.5 Unary Minus

The language includes the unary minus (-’) operator that negates the value to its right. The
expression operand must have type int. The operator is described by the following
production rule:

unary-minus-expression -> - expression

4.6 Multiplicative Expressions

Senet also includes operators for multiplication (** "), integer division (' /'), and modulo (*%”).
The language does not support floating point arithmetic. The expression operands must be of
type int. The value has type int.

multiplicative-expression —-> expression * expression

| expression / expression

o)

| expression % expression

4.7 Additive Expressions

Math operations in Senet are purely integral. The language includes operators for addition
(*+7) and subtraction (*-"). The types of the expression operands must be int. The value
has type int.

additive-expression -> expression + expression

| expression - expression

4.8 Relational Operators

Senet includes the following comparison operators: > (greater than), < (less than), >=
(greater than or equal t0), <= (less than or equal to). The operands must of of type int. The
value has type bool.

relational-op -> > | < | >= <=

relational-expression -> expression relational-op expression

4.9 Equality Operators

Senet includes the following equality operators == (equal to), != (notequalto). The types
of the operands must be the same. The value has type bool.

equality-expression -> expression == expression

| expression != expression

4.10 Logical NOT

The logical not operator negates its operand, which must be of type bool. The return type is
bool.

log-not-expression —-> not expression

4.11 Logical AND

The logical and operator takes two operands of type boo1l, and has a value of type bool.

log-and-expression -> expression and expression

4.12 Logical OR

The logical or operator takes two operands of type bool, and returns a bool.

log-or-expression -> expression or expression

4.13 Assignment Expressions

The assignment operator in the language ('=") is right associative. The value of an assignment
expression is the value of the rightmost of the expressions it is composed of.

assign-expression -> identifier = expression

| field-expression = expression

5. Declarations

Any given declaration may be one of the following:

declaration -> /* nothing */
| declaration basic-declaration
| declaration group-definition
| declaration func-definition

Basic-typed variables are declared as follows:?
basic-declaration -> type-id identifier ;
type-id -> int | bool | str | wvoid

| identifier

| list<type id>

Group definitions follow, where the identifier in parenthesis must be a group from which the
new groups is extended:

group-definition ->
group identifier (identifier)
{ basic-declaration-list function-list-opt };

2If type-idis an identifier or list<identifier> the identifier has to be a defined group

basic-declaration-1list -> /* nothing */
| basic-declaration-1list basic-declaration

function-list-opt -> /* nothing */
| function-1list

function-1list -> func-definition
| function-list func-definition

Functions can be declared as follows:

func-definition ->
type-id identifier (formals)
{ basic-declaration-list statement-list }
| assert identifier (formals)
{ basic-declaration-list statement-list }

formals -> /* nothing */
| formals-list

formals-list -> type-id identifier
| formals-list , type-id identifier

There is an additional special class of assert functions. This special class of functions
evaluate a list of conditionals sequentially and returns True if all of them evaluate to true. If
any of the statements evaluates to false, it returns a False and breaks immediately.

6. Statements

A statement is singular:

statement -> expression-statement
| selection-statement
| iteration-statement
| jump-statement

| board-mod-statement

A statement sequence allows many statements to be executed in order (left to right):

statement-list -> statement

| statement-1list statement

6.1 Expression Statement

An expression statement executes a single expression. The expression statement has a value
equal to the expression’s value:

expression-statement -> expression ;
6.2 Selection Statements
Branchingon if, elif, and else are described by the following:

selection-statement ->

if (expression) { statement-list }
| if (expression) { statement-list } elif { statement-list }
| if (expression) { statement-list } else { statement-list }

6.3 lteration Statements

An iteration statement may be:

iteration-statement -> while-statement
| for-statement

A while loop statement executes the statement in brackets repeatedly as long as the
expression in parentheses evaluates to True.

while-statement -> while (expression) { statement-list }

A for loop statement executes the statement in brackets repeatedly similarly to the while loop
statement. However, the for loop statement requires a basic-typed variable to be declared,
and it executes (incrementing the declared variable each time) until the variable is greater than
the upper end of the range.

for-statement ->
for (expression in { expression-list }) { statement-list }

expression-list -> expression

| expression-list , expression

6.4 Jump Statements

A jump statement may be one of the following:

Jjump-statement -> break ;
| continue;

| return expression ;

A break statement must be inside of a for or while loop. The effect of this statement is to
terminate the loop and execute the next statement after the loop. A continue statement must
be inside of a for or while loop. The effect of this statement is to jump to the begin of the
next loop iteration. A return statement must be inside of a function block.

6.6 Board State Modification

The place (>>) and remove(<<) operators affect board state. The >> operator takes a Piece
and places it on the board at a coordinate (described by a 1ist<int>). Therefore, it requires
its left operand to be derived from Piece and its right operands to be a Board and a
list<int>, which describe the coordinate(s) on the board upon which to place the piece.
Similarly, the << operator takes a piece off the board and places it into another Board. The left
operand must be of type Board and the right operand must be of type Piece.

These operators automatically check to see if the move is legal before performing. If it is not
legal, the statement has value False. Otherwise, it has value True.

board-mod-expression ->

field-expression >> field-expression [list<int>]

field-expression << field-expression [list<int>]

7. Program Structure and Scope

7.1 Structure

A Senet program consists of the following simple structure:

program -> setup-block turns-block EOF

Thus, all games must have two program sections: the setup-block, which contains global
functions, groups, and parameters used to set up the game; and the turns-block, which
contains a function-1ist which describe turn “phases” functions each of which operate as
a “while True” loop but can call other functions in the @turns section. One of the phase
functions must be named begin, this will be called when the game begins.

setup-block -> @setup { declaration-list statement-1list }
turns-block -> @turns { function-list }
declaration-list -> /* nothing */

| declaration-list declaration

7.2 Scope

Identifiers declared in the setup-block are visible to the remainder of the program.
Identifiers declared within functions are visible only to each function. Identifiers declared as
part of groups can be accessed using the field access operator whenever the group instance
can be accessed. Within a function that is within a group definition, other identifiers that are
part of the group can be called via a field-expression using the this keyword. Instances of
group definitions can only be created if the group definition can be accessed.

7.3 Other Built-Ins

A number of library functions are built into the language:

restart ()
exit ()

read (int)
stol(str)

print (str)

To begin the game over, use restart. To quit the program, use exit. To read x number of
integers from standard input, use read (x) . To convert a string s to an integer, use stoi (s)
-- note that s must be a string of one character only. To pass a string s to standard output, use
print(s).

In addition, two variables are built into the language to control the flow of games:

e N PLAYERS
e ON MOVE

N_PLAYERS sets the number of players for the game; default . ON_MOVE begins at 1and at
the end of each turn function, it is incremented up to N_PLAYERS. If it is incremented beyond
N_PLAYERS, it is reset to 1 and the process begins again. ON_MOVE is used to know which
player is currently taking his or her turn.

8. Example Program

Tic-tac-toe is a two-player game that is played on a three row, three column board. The
players take turns placing either an “X” or an “O” in each cell. A player wins if three of their
pieces fall in a line (vertical, horizontal, or diagonal). The game ends in a draw if all cells are full
and no player has won. Below, we describe how our language could be used to create an
interactive tic-tac-toe game.

@setup

{
group b (Boards.Rect(3,3)) {

three in a row(int player) {

for (1 in [[O0,0], [1,0], [2,0]],
(to,11, 11,11, [2,1]]
[ro,21, 11,21, [2,2]]
[ro,o1, 10,11, [0,1]]
(1,01, 1,11, [1,171]
[t2,01, (2,11, [2,1]]
[to,01, 11,11, [2,2]]
(to,21, 11,11, 12,011 A

Tests each line
if (this.owns(b.toi(1[0])) == player and
this.owns (b.toi(1[1])) == player and
this.owns (b.toi(1[2])) == player) {
return True;
}
owns checks the owner of a piece at an index,
and returns -1 if the space is empty
}
return False;

}

bool won (int player) { # checks if the player won
if three in a row(player)
return True;
return False;

}

bool draw () {
if this.full() {
return True;

}

return False;

assert draw () {
this.full();

group Mark (Piece) { # inherits from Piece

fixed = True; # piece cannot be overwritten
str repr () {
if (this.owner == 0) { # this.owner is the id of the owner
return ‘X’;
} else {

return ‘Y’ ;

}i

N PLAYERS = 2; # number of players, this default of 1

while(c != “y” && c != “n”) {
print ("Do you want to continue playing?\n”);
print ("Type y to continue and n to exit\n”);
c = read(l);

}

if(c == “y”) |
restart(); # restarts the game

} else {
exit () ; # exits from the game

@turns
{
begin () {
this is basically just "while True" with only 1 phase
players input moves by typing coordinates, e.g. "11" or "02"
print (“Input coordinates of square to place”)
print (Min i.e. \”722\” or \”10\”.\n”); # prompts the players
int a = stoi(read(l)); # reads one character and converts it to an int
int ¢ = stoi(read(l));

if (Mark >> B [a,c]) {
if (B.won(ON _MOVE)) { #ON MOVE is the index of the player
print ("Player " + itos(ON MOVE + 1) + " wins.\n");

print ("Congratulations!");
reset () ;

}

if (B.draw()) {
print ("Game ends in a draw.\n");
reset () ;

if the move was legal, went through successfully,
and the game is not over, pass the turn to the next player

