SEAMScript

Language Reference Manual

Sean Inouye (si2281)
Edmund Qiu (ejq2106)
Akira Baruah (akb2158)
Maclyn Brandwein (mgh2163)

October 2015

Contents

2 Fundamental Types| e

9.1 If/Else Statement|.
9.2 While Loop| o e

1 Introduction

SEAMScript is a simple high-level language that focuses on entity-based applications. Applications, primarily
simulations and games, benefit from a built in system for handling running events periodically, and from
built in functionality to simplify the typical I/O expected from these sorts of apps. Simple games, such as
Breakout! or Snake, can be prototyped much more rapidly than in other languages. Other simulations, like
cars interacting at an intersection, can also be written fairly quickly. Compared to real-life, the accuracy
of a SEAMScript program is low due to concerns left to developers such as buffering and interpolating
events between time deltas, but the native support for ‘steps’ saves developers from the hassle of manually
starting/stopping entities.

Throughout this document, “...[a comment]...” will be used to indicate places where code of the type
described in the comment is omitted for brevity but assumed present by the compiler.

”

2 Fundamental Types
SEAMScript is statically typed and supports the following primitive types:

e int - Signed integers with architecture-specific size.

string - ASCII-based strings of arbitrary length and enclosed by a pair of double quotations.

float - 64-bit IEEE floating point numbers.

bool - Boolean data.

texture - Stored image primitives.

entity - Agent primitives. See section

3 Arrays

Every fundamental type can be used with arrays, and array operations. Arrays are indicated by adding
[<# of items>] after the identifier in a given variable declaration. For example, to declare an array of 10
entities, one would write:

entity blocks[10]

To assign an entire array, start with a { token, write the expected number of valid literals (see literals) for
the array type delimited by , tokens, and end with a } token. entity and texture array types cannot be
assigned this way. A trailing comma after the last element in the array is not permitted. For some examples:

int int_array([10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } # Valid #

float float_array[5] = { .50 } # Invalid; only 1 of 5 floats def #
string string_array[2] = { "hello", "world" } # Valid #
boolean bool_array[3] = { true, true, false, } # Invalid; trailing comma #

4 Comments

Only block comments are supported. They are started with the token # and ended with another #, and may
not be nested. Anything in between the comments will not be read by the parser. Comments may not be
nested. For example, # This is a comment # is a comment. # Malformed # comment ## is a malformed
comment (once the parser hits “comment”, a syntax error is indicated).

5 Literals

Literals represent fixed values of ints, strings, floats, and booleans. These values are used in assignment or
often calculation operations. The format and semantics of literals for each type are as follows:

e int - Integers are declared with either a sequence of one or more digits from 0-9, potentially prefixed
with a - to indicate negative numbers. You may have integers of any length, although numeric overflow
may result if you exceed the representable length of an int on your hardware.

Examples:

int a_number = -35 # Valid #
int num = 24. # Invalid #
int a_positive = +5 # Invalid; \+" is assumed #

e float - Floating point values are declared with an optional prefix of - to indicate negative numbers,
a sequence of zero or more digits from 0-9, a mandatory ., and one or more digits from 0-9. Like
integers, you may write out numbers unrepresentable on your hardware, but numeric overflow will
occur. Floating point values will lose a minute amount of precision once run on hardware.

Examples:

float a_float = -35.1 # Valid #

float another_float = -.334 # Valid #
float not_valid = 34. # Invalid; need a decimal portion. #
float also_wrong = . # Invalid #

e string - String literals are defined by ASCII characters within quotes. To include a quotation mark
within a string literal, you must first escape it with a \. String literals may be empty, and there is no
limit to their length.

Example:
string string_beans = \String beans" # Valid #

string a_quote = \Quoth the Raven, \"Hello\"" # Valid #
string bad_quote = \He dictated \here is a dictate"" # Invalid #

e boolean - Boolean literals are defined by true and false.

Example:

boolean bool_type = true # Valid #
boolean wrong = FALSE # Invalid; wrong case #

e entity and texture - These types do not have associated literals.

6 Variables

6.1 Names

Variable names are a combination of lowercase letters, uppercase letters, and underscores. They must begin
and end with a letter (either uppercase or lowercase). For example, Hello, hi_there, and variable_ would
be supported, but _variable, and hello2 would not be.

6.2 Declaration
Variables are declared in the format:
<type> <identifier><optional array specification>

You may optionally assign the newly declared variable a value upon creation, but you must heed the standard
variable assignment rules (see below). Re-declaring variables with any reused name from any scope is
unsupported, except within the scope of the entity. Two entities may have member variables with same
identifier (and often will, in fact), and they may reuse identifiers in the global scope. You may declare
variables in the global scope, within functions, in the body of an entity, and in entity member functions.

6.3 Access

Variables are considered “accessed” when their identifier is used outside of their initial declaration or assign-
ment. For example, string catdog = cat + dog would access the values stored at cat and dog, but not
catdog because it is being declared. Global variables may be accessed from any portion of code after they’re
declared. Local variables — variables found in function arguments or declared within a given block — may be
accessed within the same or a deeper level of block indentation, but not within shallower indentation. For
example,

for(int i = 0; i < 2; i++):
screen.log(int_to_string(i))
screen.log(int_to_string(i))

would be an invalid block of code because the second screen.log(int_to_string(i)) references i, which
is already out of scope (variables declared in a for loop may not be used outside of the indented code in the
loop.

6.4 Assignment

Variables are assigned to literals, other variables, or the results of built in operators with the = token.

7 Operators

The supported operators are shown in the below table. Note that promotion is not supported — you may
not divide a float by and int, or add a float and an int, and so on and so forth. See built-in functions for
functions that deal provide conversions to get around these sorts of issues.

Operator

Meaning

Supported Types (LHS/RHS)

+

Add the LHS value and the
RHS value and return the result

any pair of int, float, string (concatenation)

Subtract the RHS value from
the LHS value and return the
result

any pair of int, float

multiply the RHS and the LHS
and return the result

any pair of int, float

divide the RHS and the LHS
and return the result

any pair of int, float

Compare the LHS with the RHS
for equality (true if equal,
otherwise false)

any pair of int, float, string, entity, bool

Compare the LHS with the RHS
for inequality (true if not equal,
otherwise false)

any pair of int, float, string, entity, bool

&&

If both the LHS and RHS are
true, return true, otherwise
return false

boolean expressions

If either the LHS or RHS are
true, return true, otherwise
return false

boolean expressions

)

Divide the LHS by RHS and

return the remainder

pair of int

8 Statements and Blocks

Statements are terminated by a newline character. Blocks of code (e.g. what follows control flow or function
declaration) are marked by increasing the level of indentation by one tab. Tabs alone are supported — tabbing
done with other forms of whitespace will not be recognized and will generate syntax errors.

9 Control Flow

Control flow is supported with if/else statements, while loops, and for loops.

9.1 If/Else Statement

If statements start with an if, are followed with a left paren, an expression, a right paren, a colon, an
indented block, optionally all followed by an else, a colon, and another indented block . The indented
blocks must contain code other than comments. For example:

if (score > 100):

score

else:

score + 50

score = score + 100
would be accepted as valid. However,

if (score > 150):
else:
score = 100

or

if (score > 200):
score = 250
else:
score = score + 10

would be considered invalid.

9.2 While Loop

While loops start with a while, are followed with a left paren, an expression that evaluates to true or false,
a right paren, a colon, and an indented block. The indented block must contain code other than comments.
For example:

int i = 5
while(i < 10):
i=1i+1

is considered valid. However,

int 1 = 5
while(true):
i=1+5

is considered invalid.

9.3 For Loop

For loops start with a for, are followed with a left paren, a declaration of any supported variable, a semicolon,
a boolean expression, a semicolon, an operation that runs every time after the for loop completes, a right
paren, a colon, and an indented block. The indented block may be empty. For example:

for(int 1 = 0; i < 5; i =1 + 1):
1 would be 5, but it’s now out of scope

is considered valid. However,

int i = 10
for(; i <5;1i=1i-1):

is considered invalid because there’s no variable declaration. The variable declaration may simply be assign-
ment, however, so:

int i = 10
for(i = 0; 1 < 5; i++):

is considered valid.

10 Entities

Entities are collections of variables and methods, with special methods that are invoked by SEAMScript at
various times if they exist. Conceptually, entities are very close to objects in other object-oriented languages,
although entities lack certain features of objects and possess a bit of extra functionality. Entities may contain
methods, they may contain any number of variables (including other entities).

Entities are started with the keyword spawn, followed by a left parenthesis, an entity’s name, the argu-
ments it takes, and then a right parenthesis. For example,

entity car = spawn(Car, 50, 100) # Car’s start function takes in two integers #

As soon as an entity is spawned, it is considered ‘staged’ to have its step and render functions called in the
pipeline. Entities are stopped with the keyword kill. After an entity is ‘killed’, it may no longer be used.
For example,

kill car # Stops the car

Entities are declared with entity, an identifier that must start with a capital letter, a colon, and followed
by an indented block containing (in order):

e Variable declarations for any variables accessible throughout the entity and to other portions of code
with a reference to the entity. Note assignment with declaration is not allowed here.

e Any user-defined functions. The format for these is the same as other function declarations. Other
code can directly call these functions.

e Functions the language uses. These functions, all of which are optional, but if used must have at least
one statement of executable code, are:

— start - This function is called when an entity is created. start’s arguments are user-defined,
but all must be provided to the language keyword spawn that starts the entity. start can be
considered a sort of constructor.

— stop - This function is called when an entity is destroyed with kill. stop is considered like a
destructor.

— step - Step is called 24 times a second on any entities that have ‘start’ed.

— render - Render is also called 24 times a second, but is called on each entity after every entity
with a step function has had step called (i.e. in a program with 2 entities, SEAMScript will call
step on both first, and then call render on both. Render is highly recommended not to modify
any variable value, and should just be used for drawing/output work, but it is to use render as a
general-purpose function.

Entities step and render functions are called in the order the entities are ‘spawned’. When an entity is
removed with kill, the order in which step and render functions are called is not modified, except to
remove the ‘dead’ entity from the list. Neither step nor render should contain infinite loops; this will prevent
the program from running. Some examples of entity definition and use are:

entity Player:
int score
string name

int reverse_direction(int direction):
...a user defined functiom...

function start(int start_score):
...initialization code...

function stop(Q):
...stop code...

function step():
...step code...

function render():
...draw code...

11 Built-In Entities

To facilitate rapid development of certain types of applications, SEAMScript contains a few built-in objects
that behave like entities. These built-ins are:

11.1 screen
e Properties
— width - The width of the display screen. (int)
— height - The height of the display screen. (int)
e Methods

— draw_sprite(texture tex, int x, int y) - returns O - Draw a texture ‘tex’ to the screen at
X, V.

— draw_rect(int color, int x, int y, int width, int height) - returns 0 - Draw a filled
rectangle with no border with the color color, width width, height height, x-position x, and
y-position y.

— log(string to_log) - returns 0 - Logs the string to_log to stdout.

11.2 keyboard
e Properties

— {left,right,up,down,space}.pressed - returns boolean - Whether one of the listed keys has
been pressed. Once checked, subsequent checks will return false until a complete key up/key down
event has been performed again. For example,

if (keyboard.left.pressed == true):
screen.log(\Left pressed!")

would be a valid use of this property.
e Methods
— (NONE)

11.3 loader
e Properties
— (NONE)
e Methods

— load_tex(string filename, int desired_width, int desired_height) - returns a texture
- The only way to load a texture, load_tex takes in a filename, width, and height, and generates
a texture of those parameters. If the given file (expected to be in a directory relative to the
executable) is not found, a runtime error is created and the program will crash.

12 Built-In Functions

Built-in functions provide conversion facilities.
e int_to_string(int i) - Convert i to its string representation.

e int_to_float(int i) - Convert i to its floating-point representation. This may result in a slight loss
of precision.

e int_to_boolean(int i) - Convert i to its boolean representation. 0 will be converted to false, while
everything else will be converted to true.

13

float_to_int(float f) - Convert f to its integer representation. If the floating-point value exceeds
what is representable in integers, or has a decimal portion, a loss of precision will result.

float_to_string(float f) - Convert f to its string representation. Up to 4 decimals places will be
printed.

boolean_to_int(boolean b) - Convert b to its integer representation. false will be converted to O,
while true will be converted to 1.

boolean_to_string(boolean b) - Convert b to its string representation. false will be converted to
false, and true will be converted to true.

Layout

The layout of a SEAMScript program is as follows (in order):

File includes (optional); see file structure

Global variable declarations (optional); assignment here is not supported
Function definitions (optional)

Entity definitions (optional, but necessary for any real work)

Main (required) - A function named main that’s the entry point of the program. Main is responsible for
initially staging all entities. If a program needs to restage entities regularly, developers should consider
creating an entity that does staging in its step function depending on various state values stored in
global variables (e.g. a couple variables called level and is_done, and an entity of type level would
be a canonical way to do it). The main function is called once the program starts and is never called
again. Although the compiler doesn’t check, the main function should not contain an infinite loop.
Since the functions for step and render on entities are not called on a regular basis until after main
concludes, infinite loops will prevent the program from running.

An example layout would be as follows:

include \tilemap.seam"
...more includes...

int level
...more global variables...

int get_current_terrain(int x, int y):
...function definition...
...more user functioms...

entity Player:
...player definition...
...more entity declaratioms...

function main():
player = spawn(Player, 50, 50)
...more init code...

14 File Structure

SEAMScript does not have a robust system of library supports, but it is possible to approximate libraries
by including other files in your program so long as there are no namespace conflicts. To other file in your
program, whose mains will be called before the main of your program, and in the order they are included,
using the following syntax:

include "filename.seam"

15 Function Definitions

Functions must be defined before they are called in SEAMScript. A function declaration must adhere to the
following format:

<return type OR "function" keyword> <identifier> (<argument list>):
...block of statements...

If a function definition begins with the function keyword, it is implied that the function does not return
a value (similar to void in C-like languages). The argument list consists of 0 or more identifiers separated by
commas. The block of statements describing the function’s behavior must be one indentation level past that
of the function declaration itself. If a return type is specified (i.e. the declaration begins with a primitive
type rather than function), the function block must contain a return statement, which returns control to
the calling function and returns the value of the expression following the return keyword.

10

	Introduction
	Fundamental Types
	Arrays
	Comments
	Literals
	Variables
	Names
	Declaration
	Access
	Assignment

	Operators
	Statements and Blocks
	Control Flow
	If/Else Statement
	While Loop
	For Loop

	Entities
	Built-In Entities
	screen
	keyboard
	loader

	Built-In Functions
	Layout
	File Structure
	Function Definitions

