Jacob Graff - jag2302

Justin Walters - jw3043

Luis “Bert” Ramirez - lar2195
Shruti Kulkarni - sgk2118

PLTree: A Tree Programming Language
Language Reference Manual

Table of Contents

Table of Contents

Introduction

Mechanics

Lexical Conventions
Tokens
Reserved Keywords
Comments
Identifiers

Types
Primitive Types

Expressions
Variable Declaration
Type Inference
Operators
Operator Precedence
Operator Usage
Type Definition
Casting
File Input/Output
Import and Export
Control Flow
Conditional Branching
If/Else
Loops
While
Functions
Built-In Functions
User-Defined Functions
Nested Functions
Program Structure and Scope
Structure

Scope Rules

Compilation
File Extension

Standard Library
Built-In Functions

Examples

References

Introduction

This manual describes the PLTree programming language as submitted on Monday, October
26, 2015. PLTree is a language for usage and manipulation of trees where the main data type is
a tree. Every variable will be treated as a tree; for example, a string in our language would be a
tree with leaves of characters. Every function is also a tree, whose children are statements,
which themselves are trees. The language will make it easy to create and edit trees with
functions such as adding a new item at a certain position in the tree or deleting items. It will also
make it simple to manipulate trees with common tree functions such as pruning, grafting, finding
the root, and searching for an item. A selection of relevant tree functions are provided, and
user-defined functions may also be created for working with trees.

Mechanics

In the PLTree programming language, everything is a tree. Variables may be declared with one
of the given primitive types, or as vo-id, indicating that they have no data member. Every
variable may have some number of branches coming off of them as well. (See also
‘Expressions’ section.) Functions are trees whose children are expressions, which are
themselves trees, and can therefore have children of their own. Function definition can be
thought of as creating a new type of tree with the same name as that function. (See also
‘Functions’ section.) Declaring a new variable of this functionName type and given the value of a
particular tree will execute the body of this function.

(To see demonstrations of PLTree in use, please refer to the ‘Examples’ section.)

Lexical Conventions

Tokens
The classes of tokens are: identifiers, keywords, constants, literals, and operators.

Reserved Keywords
int
double
char
bool
if
ifelse
while
return
void
tree
string
width

typedef
import
file
filesystem

Comments

The characters /* introduce a comment, which terminates with the characters */. Comments do
not nest, and they do not occur within a string or character literals. Comments can span multiple
lines; multi-line comments are written in the same way as single-line comments.

Single line comments are written as follows:
/* this dis a single-line comment x/

Multi line comments are written similarly:
/* this 1s

a

multi-line comment */

Identifiers

An identifier is a sequence of letters and digits, where the underscore (_) is included as a
letter. Identifiers must begin with a letter and may be of any length. Upper and lowercase letters
are different.

Types

All elements, including primitive types and collections, are trees. When a new variable is
declared, a new tree is created. The smallest unit of the language is a single node. A node has
a data member (for example, the integer 5) and may have any number of children. All trees are
built from these nodes. In this manual, we use node when we are not concerned with the
children of that node, and tree elsewhere.

Primitive Types
Literals may be of the following primitive types:

Type Syntax
boolean (true, false) bool
character char
integer int
double double

A primitive type may be the root of a tree

Expressions

Variable Declaration
When a new variable is declared, a tree of a single node is created containing the data that
variable is assigned to hold, of the type that the variable is declared as.

Variables are declared in the following syntax:

(type name literal_value children)
where type is one of the primitive types or void, name is an optional identifier for this tree,
literal_value is either a literal or an expression which evaluates to the appropriate type and
children is an optional argument that takes the same form as that of a typedef structure.
When a variable is declared to be of type void, ifthereisa literal_value and children,
literal_value isignored. If only one argumentis present, it is interpreted as children.

For example:
(int a 5)
(char b ¢h?)
(double c 8.8)
(void t ()) /xempty treex/

There are also unnamed variables, requiring just the type and value, declared as such:
(int 5)
(char ‘B?)

Type Inference
All primitive types can be written as is, without a type declaration or identifier.
For example:

(int 5) canbe writtenas 5

(char ‘a’) canbewrittenas ‘a’

(double 3.5) canbe writtenas 3.5

In addition, strings, which are really trees of char, can be declared in the following manner:
(void (‘h? ‘e’ ‘1’ ‘1’ ‘o0’)) canbe writtenas “hello”
Note the use of double quotes around strings and single quotes around chars.

Operators
Arithmetic operators:

Addition +

Subtraction -

Multiplication *

Division

Modulo

%

Unary Minus (make int negative)

Numerical relational operators:

Is equal to

Is not equal to

Is less than <

Is less than or equal to <=

Is greater than >

Is greater than or equal to >=
Logical operators:

And &&

Or I

Not !
Other operators:

Accessor @

Width #

Branch Accessor

[i]

Operator Precedence

Operator precedence follows standard order of operations for all operators. Innermost
parentheses always come first. Arithmetic operators take precedence over numerical relational
operators. Numerical relational operators take precedence over logical operators.

Operator Usage

Operator functions are also available in addition to the standard operators. Operator functions
are to be used for objects, while standard operators are to be used for primitive types.

All unary operators immediately precede their operand (e.g. -1, !true), except for the one
referred to as Branch Accessor, which immediately follows its operand. Binary operators
separate their operands (e.g 0 - 1, false && true). Operators that act on primitives automatically
access the data member of the operand(s).

For all binary operators, both operands must be of the same type. All arithmetic operators
expect Unary Minus are binary. They are all (including Unary Minus) to be used for either ints
or doubles. The same type will be returned. Numerical relational operators are to be used for
either ints or doub'les. A boolean value will be returned. The logical operators may only be
used for boo'ls. A boolean value will be returned. The operator referred to as Not (!) is a unary
operator. The other logical operators are binary. The operator referred to as Accessor (@) is a
unary operator whose operand is a node. The node’s data member, which may be of any type,
will be returned. If the node has no data member, that is of type void, the empty character
string (") will be returned. Width (#) is a unary operator, shorthand for the function width. Its
operand is a tree of any type. It returns an int equal to the number of branches, also known as
the degree, of that tree. The Branch Accessor Operator ([i]) is used to access the ith branch of
its operand where i is an integer. Branches are 0-indexed. Attempting to access a branch that
does not exist will return the empty character string (”).

Type Definition

Type definition is declared in the following format:

(typedef type_name structure)

where typedef is a keyword, type_name is a valid identifier, and structure is made up of
nodes and ranges. A node is designated by a pair of parentheses, and optionally contains a
combination of nodes and ranges. A range is designated by an opening curly brace, an integer
literal, a comma, an optional integer literal, and a closing curly brace. The first number
represents a minimum, while the second represents a maximum, both inclusive.

A range immediately following a node defines the number of siblings that node can have,
including itself. Otherwise, a range defines the depth of its containing node. A node can contain
at most one of this type of range. If the second number of a range is omitted, there is no upper
bound. The omission of a range is equivalent to defining a range with a lower bound of 0 and no
upper bound.

(typedef string ((char {0,}){0,}))

Casting
Casting from one type to another type is done like this:
((new-type) name-of-object)

As all items in PLTree are trees, the original object is a tree of a particular type, and the new
type that casting will provide also results in a tree of a particular type. Casting therefore
changes, in essence, the format of the tree to another tree format.

Casting is required to pass a variable value of one type into a variable or function argument
expecting another type. If casting is not done properly, an error occurs.

From/To bool char int double
bool unchanged ‘t" if true, f 1 if true, O 1.0 if true, 0.0
otherwise otherwise otherwise
char true if ‘t, false unchanged convert to ASCIIl | convert to ASCII
otherwise value as int value as double
int false if O, true convert to ASCII | unchanged add decimal
otherwise character point: [int].0
double false if 0.0, true | convert to ASCIl | remove decimal | unchanged
otherwise character point and all
digits after
decimal point

File Input/Output

The file system is always available as the variable filesystem, representing a pseudo-tree
whose root is the same of that as the file system. Subdirectories and files are accessed in a
syntax similar to that of branch access, except using double-quoted strings or trees whose
leaves are of type char instead of ints. For example:
filesystem[“hello”] [“wor1ld”] or filesystem[“hello/world”] or

filesystem[“hello”] [(void (‘w’

Accesses the file
“/hello/world”

in UNIX.

Import and Export

All PLTree source code files are importable. They may be imported like this:

(O, ‘r’ ('L,

‘d’))]

import filesystem[“path”][“to”][“name-of-file.tree”]

Libraries may be imported like this:
import name-of-library

Control Flow

Support for conditional branching in the form of if-statements and if-else statements, as
well as loops in the form of while loops, are included.

Conditional Branching
If
If statements are written like this:
(if (condition) (
/* code here x/

If/Else
Iffelse statements are written like this:
(ifelse (condition) (
/* condition met; do something x/

/* condition not met; do something x/

Loops
While
While loops are written like this:
(while (condition) (
/* condition met; do something x/

Functions

Functions are actually a specialized type of tree. Execution of a function always proceeds in
depth-first search order through the function tree.

Built-In Functions
Built in functions are provided to all files by the standard library.

User-Defined Functions
All functions accept as an argument either zero or one trees, which may itself contain additional
arguments as its children. A function is declared in the following syntax:

(type name (void t) (
/* do something */
(return value)

))

Where type is the return type, name is the name of the function, (void t) is the input
argument, and the last parentheses (/*do something */) surround an execution
statement consisting of any number of statements. A function may return any valid type. A
function must always return a value of the appropriate type. If a function never returns, its return
type should be declared as void.

Nested Functions
Functions may be defined within functions; these are known as nested functions. As functions
are trees in PLTree, nested functions further extend the tree with additional branching.

Program Structure and Scope

Structure

A PLTree program may exist entirely within a single source file or within multiple source files. A
source file may include and link with files from existing libraries or other files. By convention
import statements are typically to be included in the header of a source code file.

Scope Rules
If there is data in the node that you are in and it is above you, then you can see that. You can
see your parents’/ancestors’ data on the branch that you are on. Same scoping rules as C.

Compilation
A compiler is provided for source code written in PLTree. Source code compiles to LLVM.

File Extension
File extension for all PLTree programs shall be . tree

Standard Library

Built-In Functions
[Please refer to the Standard Library document for a current list.]

Examples
/* factorial function x/
(int factorial (void {int n}) (
(ifelse (n > 0)
(return (n *x (factorial n - 1)))

(return 1)

))

/* diagram of factorial function tree

- not part of code or output */

factorial 1

)

ifelse

. return return
0 o

r-l‘.'.'
factorial 1

(=13

/* print implementation x/

/*type name argument x/

(void print (void instring) (
/* variable declaration x*/
(int i 0)

/*Lloop comparison */
(while (i < (width dinstring)) (
/* variable declaration x*/

(void node tdinstring[i])

/x if condition */
(ifelse (isleaf node)
/* if branch x/

(
(putchar node)

/* else branch x/

(

(print node)

/* increment */
(i (i+1))
)
)

/* an example of type inference %/
(print “Hello, World!\n”)

References
B.W. Kernighan and D.M. Ritchie. "Appendix A - Reference Manual," in The C Programming
Language, 2nd edition. Murray Hill, NJ: AT&T Bell Laboratories.

