Geo

A geometric solution language

Language Reference Manual

ver 1.0

Group Members
PM (make sure conductible, write-ups):
Qi Wang (qw2197)
Language Guru (design language syntax):
Yuechen Zhao (yz2877)
System Architect (based on syntax, build compiler):

Zichen Chao (zc2321)

Tester (test test test test):

Ziyi Luo (zI12471)

(COMS W4115) Programming Languages and Translators
Fall 2015

Oct. 24, 2015



Contents

Chapter 1 - Introduction
Chapter 2 - Lexical Elements
2.1 Comments
2.2 |dentifiers
2.2 Keywords
2.3 Constants
2.4 Separators
2.5 Operators
Chapter 3 - Data Types
3.1 Basic Types
3.2 Geometric Types
3.3 1list
3.4 model
Chapter 4 - Expressions
4.1 Variables
4.2 Presets
Chapter 5 - Functions
5.1 Function Declarations
5.2 Function Definitions
5.3 Calling Functions

Chapter 6 - Compound Statements

6.1 The if Statement

6.2 The while Statement
6.3 The for Statement
6.4 The run Statement

Chapter 7 - STD Library Reference
Chapter 8 - Typical Program Structure and Examples
8.1 Typical Geo Program Structure

8.2 Geo program example

© O© © W NOOOUGAaO PP OWOWWOLWOWW

T T QG G QS G G (o)
O P = 20 OO O OO



Chapter 1 - Introduction

Geo is an objective-orient geometric solution language that enables students,
physicists, mathematicians, as well as other geometry-interested professionals to solve
spatial problems efficiently. It involves functionalities that computes relationships among
geometric figures, including lines, circles, and rectangles, etc. Users are able to define
figures, set their moving patterns, and perform various analysis (including static and
dynamic analyses) of the interacting figures. If desired, a user can also change the
moving pattern or shape of objects.

Chapter 2 - Lexical Elements
This chapter specifies the lexical elements of Geo programming language.
Geo compiler regards the following char as the characters to separate tokens:
v v v \t v v \n v
At least one of these characters is required to separate otherwise adjacent identifiers,
constants, and certain operator-pairs. Arbitrary combination of such characters to
separate tokens is permitted for the Geo compiler will automatically ignored such
characters when analyzing the program.

2.1 Comments
There are two kinds of comments in Geo:
Multiple-line comment: all the text in /* comments */ is ignored (as in C and Java):
/* text */
Single-line comment: all the text after // to the end of the line is ignored (as in Java):
// text

2.2 |dentifiers
An identifier consists of a sequence of letters, digits and '_', where the first character
must be a letter. Identifiers are case-sensitive in Geo.
The following identifiers are legal:
abc a’7G Foo a b
The following identifiers are illegal:
Ta _a
2.2 Keywords
The following identifiers are reserved as the keywords and cannot be used as

identifiers.
bool break char const dot
elif else end float for



function if import in int
list model return run string
submodel while

2.3 Constants
2.3.1 Integer Constants
An integer constant is a sequence of digits starts with an optional positive/negative
sign.
01 20 +210 -15
2.3.2 Float constants
A float constant consists of an integer part, a decimal part, a fraction part, an e, and
an optionally signed integer exponent. The integer and fraction parts both consist of
a sequence of digits. Either the integer part, or the fraction part (not both) may be
missing; either the decimal point or the e and the exponent (not both) may be
missing.
1.0 .5 2e3 5e-5 2.5e+10

2.3.3 String Constants:
A string constant consists of a sequence of characters enclosed in double quotes.
"Hello world!"™ "1234567890" "Name\tID\tScore\n"

2.3.4 Mathematical Constants
Mathematical constants include some frequently used parameters such as:
PI = 3.14159

2.4 Separators
Several characters are used as the separators:

() &ty o1+,
Note that ' ; ' denotes the end of a sentence. '. ' is the access operator.

2.5 Operators
Following characters are regarded as the operators by Geo compiler:

Operator Usage Associativity
= Assignment Right
== Equal to -
I= Unequal to -




> Greater -
>= Greater or equal to -
< Less -
<= Less or equal to -
& Logic AND -
| Logic OR -
! Logic NOT Right
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left
Access Left
A Exponentiation Left
% Modulo Left

The precedence of operators is as follows:

x /g A
+_
> >= < <=
!
& |

Chapter 3 - Data Types
This chapter introduces all standard data types in Geo.
3.1 Basic Types
Basic Types includes int, float, bool, char and string.
For integer type int, the data ranges from -2147483648 to 2147483648.

5



For floating point type f1oat, the data ranges from about -3.4E+38 to +3.4E+38.
For boolean type bool, it has two optional value true and false.

For character type char, the data ranges from NUL to DEL, that is, from 0 to 127.
For character string type string, the data consists of zero or more characters
enclosed in double quotes. string is a powerful data type with several build-in
functions in Geo STD library. Please refer to Geo STD library in Chapter 7 for more
information about string.

3.2 Geometric Types
Geometric types includes geometric control type runset and geometric shapes
include dot, 1line, polygons and circle.

3.2.1 runset

Geometric control type runset is a data type to be recognized by the keyword run.
In Geo STD library, runset is defined as:

model runset: runset (times of run:int,

gl:geometric shape, run para gl:char, ...);

times of run denotes the times that the run statement will execute. Note that the
input of runset is not limited. After the first parameter times_of run, the definition of
runset allows unlimited pairs of geometric shape and run para gl. The
parameter of the geometric instant (i.e., run _para gl) must be set with a runstep
using setRunstep function before adding to the runset. Otherwise, compilers will
raise parameter unset error. For more build-in functions of runset, please refer
to Geo STD library in Chapter 7.

3.2.2 dot

Geometric shape dot represents a dot in panel. In Geo STD library, dot is defined
as:

model dot: dot(x:float, y:float);

dot is a very special geometric type. The instantiation of a dot is quite different
from other geometric shapes. Please refer to Section 4.1 for more information. For
more build-in functions of dot, please refer to Geo STD library in Chapter 7.

3.23 1line
Geometric shape 1ine represents a line (either finite or infinite long) in panel. In
Geo STD library, 1ine is defined as:

model line:

line (a:float,b:float) ;

line (dotl:dot,dot2:dot) ;

line(a:float,b:float, endpointxl:float, endpointx2:£float) ;

6



line (dotl:dot,dot2:dot,endpointxl:float,endpointx2:£float) ;
Any of the above four definitions can be used to initialize a 1ine object.

endpointxl and endpointx?2 are the x-coordinates of two endpoints of a 1ine.
For more build-in functions of 1ine, please refer to Geo STD library in Chapter 7.

3.2.4 polygons

Geometric shape polygons is a set of different shapes. Polygons has two special
cases: Triangle Tri and Rectangle Rec. Polygons is defined as:

model polygons: polygons (num of apex:int, apex[]:dot);

Note that apex[] is a 1ist of dots. For 1ist, please refer to Section 3.3. Note that
the length of apex must be exactly as num of apex and the apexes in the list
should be in a reasonable order (i.e., either clockwise or counterclockwise). For
more build-in functions of polygons, please refer to Geo STD library in Chapter 7.

3.25circle
Geometric shape circle represents a circle in panel. In Geo STD library, circle
is defined as:

model circle: circle (center:dot, radius:float);
A circle is defined with a center coordinate and a radius. For more build-in functions

of circle, please refer to Geo STD library in Chapter 7.

3.3 1ist
list is a set of a certain type of objects. A 1ist contains a number of variables.
The number of variables may be zero, in which case the 1ist is said to be empty.
A list named listdemo with length of length of 1list and type of t is
defined as:
listdemo[length_of list]={t :t,t,:t, < , Cicigen or 1:5c: L}
Syntax to get the nth element in listdemo is simple: 1istdemo [n-1];
For more build-in functions of 1ist. For all lists, Geo offers several build-in functions
shown as bellow:

function empty () :bool;

function length() :int;

function insert (ele:type in list);
function remove (order:int) ;

3.4 model



model is a keyword that allows users to define their own data type. Typically a
model is built as follow:

model modelname:

variable declaration;

model initialization function;

function declaration;

end

model initialization function is a special function without return value and function

keyword. The name of the initialization function is the same as name of the model.

Chapter 4 - Expressions
4.1 Variables
Variable consists of two parts: name and value. Name of a variable must be a legal
identifier mentioned in Section 2.2. value of a variable depends on the data type of
the variable.
4.1.1 Basic type variable declaration and initialization
For basic types, the variable declaration and initialization is quite straightforward:

//Initialize an int named i with value equals 2

i=2;

//Initialize a float named afloat with value equals 3e-5
afloat = 3e-5;

//Initialize a bool named judge with value equals true
judge = true;

//Initialize a char named ¢ with value equals 'c'

c = lcl,.
//Initialize a string named str with value equals "str"
str = "str";

Variables declaration without initialization is also allowed in Geo, the declaration rule
isidentifier:data type:
i:int; afloat:float; judge:bool; c:char; str:string;

4.1.2 Geometric type variable declaration and initialization

For geometric type, the declaration is quite different from the basic type variable
declaration. To declare a dot, the declaration and initialization are shown as follow:
dotl = [1.5,2.2];

A dot is declared with two float parameters within a pair of square brackets. For
other geometric types, the declaration and initialization examples are shown as
follow:

//Declare a line y=3x+2 with x in [0,5.5].

linel = 1ine(3.0,2.0,0,5.5);

//Declare a circle (x-5)"2+(y-10)"2 = 6.2"2



circlel = circle([5,10],6.2);
//Declare a pentagon with apex [0,0][2,0][2,2]([1,5]1[0,3]
apex = {[0,01,12,01,12,21,11,51,10,31};
pentagon = polygons (5, apex) ;
//Declare a line without initialization.
line2:1ine;
//Declare a polygon without initialization.
pentagon:polygon;
4.2 Presets
Presets occur at the beginning of the Geo program (except @end). Basic analyzing
environment is set in presets. Each preset begins with an @ sign.
@panel panelname (essential) defines a panel with a legal identifier panelname.
@mode workingmode (optional) defines the mode that the program will be
executed in. workingmode could be either console or figure. By default it works
in console mode.
@co cosystem (optional) defines the coordinate system to be either cartesian or
polar. By default it works in cartesian coordinate system.
@end (essential) indicates the boundary of a specific panel.

Chapter 5 - Functions

This chapter introduces functions in Geo. Functions are the key of extending the usage
of models and solving geometric problems. Geo provides a powerful STD library for
geometric problem solution while most of the methods in STD library are encapsulation
in functions.
5.1 Function Declarations
A function is declared as the following rule:
function func name (parameter:parameter type,...):return type;
here function is the keyword for function declaration. func_name is the identifier for
this function. input parameters must be in the form of identifieridata type.
return_type is the type of the return value. If the function does not have a return
value, : return type part may be ignored.
Note that when list is used as the return value of a function, the return_type is shown

as : datatype []. For example, when return value is a float list, the return_type is
float(].

5.2 Function Definitions
A typical function definition is shown as below. Note that keyword const in the first
line of the function definition is an optional word; : return val type and return
value (s) ; is not needed when the function do not have a return value(s);
function func name (para:para type const, ...) :return val type:

9



local variable declaration and initialization;

function operations;

return value(s);

end

Note that, local variables are available only in the domain of a function. All local

variables will be terminated as the function ends. All parameters of functions are
reference parameters in default, which means that if the input parameters are
modified in the function, the parameter will keep that change after the execution of
the function. The keyword const is required to avoid modifying input parameters
and is strongly recommended to add in if needed.

5.3 Calling Functions
A function is called as the following rule:

val = func name (paral,para2, ...);
As for the functions in models. The function is called as:
val = model instant identifier.func name (paral,para2, ...);

Chapter 6 - Compound Statements

6.1 The if Statement
A if-elif-else control flow follows the following rule:
if (conditionl):
statementl;
elif (condition2):
statement?2;
else:
statement3;
end
if, elif, else and end are keywords for the control flow. Condition 1 through condition

2 defines conditions to enter the if/elif cases, and statements 1 through 3 defines the
statements to execute in three corresponding cases.
6.2 The while Statement
A while loop follows the following rule:
while (condition) :
statement;

end
while and end are keywords for the while-loop statement. The condition defines the

condition when one continues entering the while-loop. The statement defines the
code to execute inside the loop.
6.3 The for Statement
A for loop follows the following rule:
for element:element data type in set:
statement;

10



end
for and in are keywords in the for-loop statement. The element denotes an element
in the set, and after the execution of a for-loop statement, all elements in set should
be iterated exactly once. The statement denotes the statement to execute when one
enters the loop.

6.4 The run Statement
run is a keyword for dynamic geometric analytics. Each run must correspond to an
instant of runset. Each geometric shape that will be dynamically analyzed in the
run statement must be added into the runset instant at first. A typical run statement
is shown as follows:

run runset name:

dynamic analytics sentences;

change parameters for the next time run;
end

Chapter 7 - STD Library Reference

This chapter introduces the STD library of Geo. STD library (std.glib) is afile
preloaded by Geo compiler before compiling the programs. STD library includes system
functions declaration, geometric types (including build-in functions) declaration.

Part A: System constant declaration.

PI = 3.14159;

Part B: System function declaration.

function print (info:int const, ...);
function print (info:float const, ...);
function print (info:char const, ...);
function print (info:bool const, ...);
function print (info:string const, ...);

function int to string(input:int const) :string;
function float to string(input:float const) :string;
function bool to string(input:bool const) :string;
function char to string(input:char const) :string;

Part C: Geometric types declaration.

//controltype runset

model runset:
runkEnable:bool;
times of run:int;
shape[] :geometricShape;
runparal[] :char;

11



end

runset (times of run:int, gl:geometricShape,

run _para gl:char, ...);

function refresh () ;

function addElement () :bool;

function removeElement (g:geometricShape, para

function enableRun () ;
function disableRun /() ;

model geometricShape:

end

stepl[] :float;
stepSet|[] :bool;
geometricShape () ;

//geometricShape submodel: dot
//dot parameter name: 'x' 'y'
model dot:

topmodel (geometricShape) ;

step[2] :float;
stepSet[2] :bool;

dot (x:float, y:float);

function getX () : float;
function getY () : float;

function distance (dotl:dot const) :float;
function distance(linel:line const) :float;

function setRunstep (val:float, pos:char) ;
function getRunstep (pos:char const) :float;

end
//geometricShape submodel: line
//1line parameter name: 'a' 'b'

//line formula y = ax + b
model line:

topmodel (geometricShape) ;

12

:char) :bool;



step[2] :float;
stepSet[2] :bool;

endPoint[2] :dot;
endPointset :bool;

a:float;
b:float;

line (a:float,b:£float) ;

line (dotl:dot,dot2:dot) ;

line (a:float,b:float, endpointxl:float,endpointx2:£float) ;
line (dotl:dot,dot2:dot,endpointxl:float,endpointx2:float) ;

function getPara (pos:char const) :float;
function getY (x:float const) :float; //Exception may occur.

//If endPointset = false, return [0,0]
function getMidpoint () :dot;

function setRunstep (val:float, pos:char) ;
function getRunstep (pos:char char) :float;

function intersect (polygonl:polygon const) :dot([];
function intersect (circlel:circle const) :dot[];
end

//geometricShape submodel: circle
//circle parameter name: 'a' 'b' 'r'
//circle formula r*2 = (x-a)”"2 + (y-b)"2
model circle:

topmodel (geometricShape) ;

step[3] :float;
stepSet[3] :bool;
a:float;
b:float;
r:float;

circle (center:dot, radius:float) ;

function setRunstep (val:float, pos:char) ;
function getRunstep (pos:char) : float;

13



function getCenter () :dot;

function getRadius () : float;

//0ut_of range Exception may occur.

function getY (x:float const) :float[];

function intersect (polygonl:polygon const) :dot([];

function intersect (circlel:circle const) :dot[];
end

//geometricShape submodel: polygons
//polygons parameter name: 'a' 'b'
//polygons formula: A set of dots
model polygons:

topmodel (geometricShape) ;

step[]:float;
stepSet|[] :bool;

apexs|[] :dot;
polygons (num of apex:int,apex[]:dot);

function setRunstep (val:float, pos:char) ;
function getRunstep (pos:char) : float;

function getCenter () :dot;

function getRadius () : float;

//0ut_of range Exception may occur.

function getY (x:float const) :float[];

function intersect (polygonl:polygon) :dot([];
end

Chapter 8 - Typical Program Structure and Examples
In this chapter, a typical Geo program is introduced for better understanding of Geo.
8.1 Typical Geo Program Structure
A typical Geo program includes:
panel presets;
function declaration and definition;
geometric shape declaration and initialization;
runset declaration and initialization;
run statement description.

aRrwbd -~

14



8.2 Geo program example
An example followed the structure description in Section 8.1 will be shown as below.

//panel presets
@panel panel demo
@mode figure

//function declaration and definition
function print dot list (dots[]:dot):
for d:dot in dots:
print (d.getX(),"' ',d.getY(),'\n");
end
end

//geometric shape declaration and initialization
linel = 1ine(2.0,3.0);
circlel = circle([3,4]1, 5);

//runset declaration and initialization
linel.setRunstep(-0.5, 'a");
circlel.setRunstep (0.1, 'b");

rs = runset (50, linel, 'a', circlel, 'a');

//run statement description

run rs:

set = linel.intersect (circlel);

if (!set.empty())
print dot list (set);

end

@end

-- End of GEO LRM --

15



