Flow Language Reference Manual
PLT 4115 Fall 2015

Mitchell Gouzenko (mag2272), Zachary Gleicher (zjg2012)
Adam Chelminski (apc2142), Hyonjee Joo (hj2339)

1 Introduction
2 Lexical Conventions
2.1 ldentifiers
2.2 Key Words
2.3 Punctuation
2.4 Comments
2.5 Operators
2.5.1 Operator Precedence
2.6 Whitespace
2.7 Literals
3 Types
3.1 Primitive Types
3.1.1 Integer Type
3.1.2 Double Type
3.1.3 Boolean Type
3.1.4 Character Types
3.1.5 Void Type
3.2 Non-Primitive Types
3.2.1 String Type
3.2.2 List Type
3.2.3 Struct Type
3.2.4 Process Type
3.2.5 Channel Type
4 Declarations
4.1 Primitive Type Declaration and Initialization
4.2 Non-Primitive Type Declaration and Initialization
4.2.1 String Declaration and Initialization
4.2.2 List Declaration and Initialization
4.2.3 Structs
4.2.4 Struct Instances
4.2.5 Channel Declaration

5 Expressions
5.0.1 Function call

5.0.2 Casting
5.0.3 Multiplicative Expression

5.0.4 Additive Expression
5.0.5 Shift Expression
5.0.6 Relational Expression
5.0.7 Equality Expression
5.0.8 Logical-Bitwise Expression
5.0.9 Logical Expression
6 Statements
6.0.1 Declaration Statements
6.0.2 Expression Statements
6.0.3 Compound Statements
6.0.4 Selection Statements
6.0.5 lteration Statements
6.0.5.1 While Statement
6.0.5.2 For Statement
6.0.6 Jump Statements
6.0.6.1 Return Statements
6.0.6.2 Continue Statements
6.0.6.3 Break Statement
7 Function and Process Declaration and Definition
7.1 Declaring Arguments to Channels and Processes
7.1.1 Primitive Types. Strings. and Lists as Arguments
7.1.2 Structs as Arguments
7.1.3 Channels as Arguments
7.2 Function Declaration and Definition
7.3 Process Declaration and Definition
8 Scope
9 Program Structure
9.1 The @ and -> Operators
9.2 Binding Processes
9.3 Binding Semantics for Channels and Processes
9.3.1 Mandatory Channel Binding in Functions

1 Introduction

Flow is a language that aims to process streams of input using the Kahn Process Network (KPN)
model through a variety of user-defined transformations. As the name of the language suggests,
the goal of Flow is to enable cascading of data over seamless sequences of operations and
functions. Data passes through processes, each of which have a well-defined input and output
protocol. Using channels, Flow makes it intuitive to connect processes with each other. Flow is
compiled into multithreaded C code.

2 Lexical Conventions

2.1 Identifiers

An identifier is a name, consisting of ASCI| letters, digits, and '_' characters. The first character of
the identifier must be either a letter or'_". Identifiers are case-sensitive. Below are the parsing rules
for an identifier:

IDENTIFIER :=
[la|_lzl ATz l][lal_|zl TAY—tZzr o orQgr_rQgr 1]*

2.2 Key Words

Keywords are reserved; they have syntactic and semantic purposes and thus cannot be used as
identifiers. The keywords in flow are:

int if
double else
char continue
bool return
proc in

for out
while break
channel list
string struct
void true
false

2.3 Punctuation

The punctuators of our language are listed below. Their specific uses will be described in more
detail throughout the manual.

Punctuator | Use Example
, list separator stuff list = [0, 1, 2];
[] list delimiter, indexing stuff list = [1]; 1list[0];

conditional delimiter, function call,
expression grouping

while (bool)

statement block

if (cond) { statements }

: statement end x = 0;
' character literal delimiter x = 'h';
" string literal delimiter x = "hello";

2.4 Comments

The character ' 4 ' introduces a new comment. The rest of the line after ' # ' will be part of a

comment.

2.5 Operators

Operator Use Associativity
Method Application Left

¢ Retrieve item from channel Left

* Multiplication Left

/ Division Left

% Modulo Left

+ Addition Left

- Subtraction Left

== Equal to Non-associative

= Not equal to Non-associative

< Less than Non-associative

> Greater Than Non-associative
<= Less than or equal to Non-associative
>= Greater than or equal to Non-associative
&& short circuit logical AND Left

| short circuit logical OR Left

& bitwise AND Right

\ bitwise inclusive OR Right

8 bitwise XOR Right

<< left shift Right

>> right shift Right

~ bitwise NOT Right

! negation Non-associative
= Assignment Right

-> Send item to channel Left

2.5.1 Operator Precedence

The operators are listed from greatest to least precedence:

R P O 0 Jd o 0w N
A
N
\4
\%

= o .
3
3

2.6 Whitespace

White spaces include blanks, tabs, and newline characters. Flow is not whitespace sensitive.
Blocks of code are delimited by curly braces, not indentation.

2.7 Literals

There are literals for integers, doubles, booleans, characters, and strings. Descriptions of what
these literals can contain are in the next section.

3 Types

The examples in this section assume that the relevant identifiers were previously declared. Read
about declaration in 4 Declarations.

3.1 Primitive Types

3.1.1 Integer Type

An integer is a signed 4 byte sequence of digits. An integer literal is a sequence of digits preceded
by an optional negative sign. A single zero cannot be preceded by a negative sign.

x = 0;
y = -1;
z = 100;

3.1.2 Double Type

A double type is a signed 8 byte double-precision floating point data type consisting. A double
literal contains an optionally signed integer part, a decimal point and a fractional part. Either the
integer part or the fractional part can be missing, but not both.

= 0.1;
= -1.1;
= 1.;

= .2

GO
|

3.1.3 Boolean Type

A boolean literal is either the true keyword or the false keyword, and occupies 1 byte. A
boolean is its own type and cannot be compared to a non-boolean variable. Therefore, evaluating
false == 0, would result in an error.

x = true;
false;

M
Il

3.1.4 Character Types

A character is a 1 byte data type, and encodes ASCII characters as numbers. A character literal is
a single ASCII character enclosed by single quotes.

c = 'x';
d="'d" + 2; # d is equal to 'f'

3.1.5 Void Type

The void type can be used to declare a function that does not return anything. It has no other use
in the Flow language.

3.2 Non-Primitive Types

In Flow there are 5 non-primitive types: strings, lists, structs, channels, and processes.

3.2.1 String Type

A string is a sequence of characters. A string literal is placed between double quotes. String literals
are sequences of ASCII characters, enclosed by double quotes. Strings are immutable. Declared
strings are automatically initialized to the empty string " ";

name = "Steven";

Strings support the following built-in functions:
e length(string a)
o Returns the length of the string as an integer.
e string[index n]
o Returns the character at index n. Returns an error if index is out of bounds.
e strCpy(string a)
o Returns a new copy of the string.

string name;
name = "Steven";

int steven length = length(name); # sets steven length to 6
int sarah length = length("sarah"); # sets sarah length to 5

string name = "Steven";
char ¢ = name[0];

c == 'S' // Evaluates to true

3.2.2 List Type

A list is a mutable, sequential collection of elements of the same type.

Lists support the following built-in functions:

® append(list a, element x)
o Appends an element to the end of the list.
® pop(list a)
o Removes and returns the last element of the list.
® length(list a)
o Returns the length of a list as an integer.
e Lists can be indexed using the [] operator. This returns the element at this index.

char list y = ['a', 'b', 'c]l;

int x = length(y);

char foo = pop(y); # Pops 'c'. Y is now ['a', 'b']

append(y, foo); # Put 'c' back. Y is now ['a', 'b', 'c']

3.2.3 Struct Type

A struct is a data type that allows for a programmer to define a grouping of various primitive and
non-primitive values that can easily be stored into a single variable—the instance of the struct.

Data members in a struct instance be accessed using the '.' operator. Data within a struct does
not need to be initialized.

struct Person = {
string name;
int age;

Person firstPerson;

firstPerson.name = "Steven";
firstPerson.age = 30;

3.2.4 Process Type

In Flow, a process is an independent unit that performs work on zero or more incoming streams of
tokens. The process type allows the programmer to define the work done at a node in the Kahn
Process network.

A process may act as a sender for zero or more channels, as well as a receiver for zero or more
channels. The workflow for deploying a process consists of first defining the process and then
binding it with the necessary arguments. In a compiled Flow program, each process runs on a
separate thread.

3.2.5 Channel Type

Channels are unbounded FIFO structures that connect processes to other processes. At any time,
a channel may contain a buffer of zero or more tokens - elements that have been been sent to that
channel but not removed from it. The tokens that a channel holds must be of a uniform type that is
determined by its declaration.

A channel must be bound to exactly one sending process and one receiving process. Only the
bound sending process may send tokens to the channel, and only the bound receiving process
may receive tokens from the channel. The receiving process is guaranteed to receive tokens in the
order in which they were sent.

Channels may not be queried for size, nor can the next item in a channel be read without removing
it from the channel.

4 Declarations

In Flow, the act of declaration associates an identifier with a particular semantic meaning. In
particular, a declaration can associate an identifier with a primitive type, string, list, function,
process, or channel. Function declaration and process declaration will not be covered here, and
will instead be covered in Section 7.2 and Section 7.3 respectively.

If an identifier has been declared as a primitive type or non-primitive type, initializing it gives that
identifier a concrete initial value. If an identifier has been declared as a function or process,
defining the identifier gives it a body.

For channels, a declaration is simultaneously a definition.

4.1 Primitive Type Declaration and Initialization

All built-in primitive types have associated with them a keyword, which is used to declare an
identifier of that type. The table below enumerates all types and their keywords.

Primitive Type Keyword
Integer int
Double precision floating point v double
Character char
Boolean bool
Void (only for function return type) void

Identifiers associated with primitive types may be declared without being initialized. They may also
be simultaneously declared and initialized using the assignment operator, '='. This pattern is best
summed up as follows:

primitive declaration :=
primitive declarator;
| primitive declarator = expr;

primitive declarator :=
primitive type IDENTIFIER

primitive type :=
int

| double

| char

| bool

| void

In a valid declaration, the type of the expression must match against primitive type. Below
are some valid declarations for primitive types.

int x; # uninitialized integer
int vy = 1; # initialized integer
bool b; # uninitialized boolean

char ¢ = 'a' # initialized char

4.2 Non-Primitive Type Declaration and Initialization

4.2.1 String Declaration and Initialization
Strings are created with the string keyword.
string declaration :=

string declarator;
| string declarator = STRING LITERAL;

string declarator :=
string IDENTIFIER

STRING LITERAL is a valid ascii string enclosed in double quotes. Uninitialized strings are
automatically initialized to the empty string.

String fOO; # foo == ""
string bar = "baz" # initialized string

4.2.2 List Declaration and Initialization

Lists of any type are declared with the 1ist keyword.

list declarator :=
list type list IDENTIFIER

list declaration :=
list declarator;
| list declarator = list initializer;

list type :=
primitive type
| string
| IDENTIFIER

list type can be one of the keywords for a primitive type, the string keyword, or an
identifier for a struct type (discussed in the following two sections). The 1ist initializer

above allows for lists to have initial values. A comma-separated list of initial values may be
assigned to the list inside square brackets.

list initializer :=
[expr list]
Appropriate syntax for list declaration and initialization is:

string list foo; # An empty list of strings
int list bar = [1, 2, 1+2]; # An initialized list of ints

4.2.3 Structs

Structs describe programmer-defined data types, and are declared with the struct keyword:

struct declaration :=
struct IDENTIFIER { struct member list }

struct member list :=
struct member declarator

| struct member list, struct member declarator

The member list is a comma separated list of declarators, which enumerate the members of the
struct. struct member declarator is defined below. Notice that structs can have other structs
as members.

struct member declarator :=
primitive declarator
| string declarator
| list declarator
| struct instance declarator

4.2.4 Struct Instances

After a struct is declared, a number of struct instances can be declared and initialized.

struct instance declarator :=
IDENTIFIER IDENTIFIER

The first IDENTIFIER is an identifier for a struct that was previously declared, whereas the
second IDENTIFIER is the name of the new instance of that struct.

struct instance declaration :=
struct instance declarator;
| struct instance declarator = { dot initializer list }

Adot initializer list can be used to give concrete values to the struct instance
members.

dot initializer list :=
IDENTIFIER = expr
| . IDENTIFIER = expr, dot initializer list

struct dog {
string breed;
int size;

dog yorkie; # uninitialized dog
dog mastiff = { # initialized dog
.breed = "mastiff",
.size = 100;

4.2.5 Channel Declaration

Channel declaration uses the channel keyword:

channel declaration :=
channel type channel IDENTIFIER;

channel type :=
primitive type
| string
| IDENTIFIER

channel type is the type of token the channels will hold, and it can be a primitive type, a string,
or a struct type. An example of a valid declaration is:

char channel x;
int channel vy;

Channels do not have values, and consequently cannot be initialized. When a channel is declared,
Flow creates the corresponding FIFO data structure.

5 Expressions

An expression can be a combination of literals, primitive types, non-primitive types, operators, and
functions that compute and return a value.

expr list :=
expr
| expr, expr list

INT LITERAL

DOUBLE LITERAL
STRING LITERAL
CHAR LITERAL

BOOL LITERAL
IDENTIFIER
@QIDENTIFIER

expr —-> IDENTIFIER
function call

expr + expr

expr - expr
expr * expr
expr / expr
expr % expr
expr == expr
expr != expr

expr > expr
expr <= expr
expr >= expr
expr << expr
expr >> expr

A

expr expr
expr & expr

expr | expr

expr && expr

expr || expr

IDENTIFIER = expr
IDENTIFIER[INT LITERAL] = expr
IDENTIFIER[INT LITERAL]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| expr < expr
|
|
|
|
|
|
|
|
|
|
|
|
|
| (expr)

| ~expr

| lexpr

5.0.1 Function call

Function calls can be made with the the () punctuator and an optional expression list.

function call:=
IDENTIFIER()
| IDENTIFIER (expr list)

5.0.2 Casting

Integers can be converted into doubles and doubles can be converted into integers using the
following built-in functions:
e to double (expr)
o casts the given expression to a double
o valid expressions evaluate to integer literals
e to int(expr)
o casts the given expression to an int
o valid expressions evaluate to double or character literals
e to char (expr)
o casts the given expression to an character
o valid expressions evaluate to int literals

5.0.3 Multiplicative Expression

Multiplicative operators include multiplication (*), division (/), and modulo (%).

Both expressions in a multiplicative operation must evaluate to the same type, which is either an
integer or double. A multiplicative operator cannot be evaluated between a double and integer. The

arithmetic operator is evaluated on the two expressions and the resulting integer or double is
returned. Note that dividing by O will return an error.

5.0.4 Additive Expression

Additive operators include addition (+) and subtraction (-).

Both expressions in an additive operation must evaluate to the same type, which is either an

integer or double. An additive operator cannot be evaluated between a double and integer. The

additive operator is evaluated on the two expressions and the resulting integer or double is
returned.

5.0.5 Shift Expression
Shift operators include shift left (<<) and shift right (>>).

The left expression should be an integer representing the value to be shifted. The right expression
is an integer representing the shift width.

5.0.6 Relational Expression
Relational operators include less than (<), less than or equal to (<=), greater than (>), greater than

or equal to (>=).

Both expressions must evaluate to the same type, which is either an integer or double. A relational
operator cannot be evaluated between a double and integer. The relational operator is evaluated
on the two expressions and the resulting boolean is returned.

5.0.7 Equality Expression

Equality operators: equal to (==) and not equal to (!=).

Both expressions must evaluate to the same type. The equality operator is evaluated on the two
expressions and the resulting boolean is returned.

5.0.8 Logical-Bitwise Expression

Logical bitwise operators include the bit-wise OR (|) and the bitwise AND (&). The operands of
logical bitwise operators must be integers.

5.0.9 Logical Expression
Logical operators include AND (&&) and OR (||).

The operands to a logical operator must be booleans, and the result of the expression is also a
boolean.

6 Statements

A statement expresses an action to be carried out by the computer. Statements end with the
semicolon punctuator.

stmt:=
expr stmt
compound stmt
selection stmt

|

|

| iteration stmt

| declaration stmt
|

jump stmt

6.0.1 Declaration Statements

declaration stmt:=
primitive declaration
string declaration
list declaration

|

|

| struct declaration

| struct instance declaration
|

channel declaration

6.0.2 Expression Statements

An expression can be a combination of literals, primitive types, non-primitive types operators, and
functions that compute and returns a value.

expr stmt :=

expr;

6.0.3 Compound Statements

Compound statements can be considered as block.

compound stmt :=
{ stmt_list }

stmt list :=
stmt
| stmt stmt list

6.0.4 Selection Statements

A selection statement executes a list of statements based off the value of expressions. An
expression within an i £ must evaluate to a boolean. An i £ statement does not need to be
accompanied by an el se statement.

selection stmt:=
if (expr) stmt
| 1if (expr) stmt else stmt

6.0.5 lteration Statements

exXpr opt :=
€
| expr

iteration stmt:=
while (expr) stmt
| for (expr opt; expr opt; expr opt) stmt

6.0.5.1 While Statement

The while statement evaluates a boolean expression and executes the list of statements if the
expression evaluates to true. With each iteration the expression in the body of the loop updates. If
the expression evaluates to false, the while statement terminates and the list of statements is not
executed.

6.0.5.2 For Statement

The for statement performs iterations of the block of code. The first expr opt is executed prior
to entering and executing the statement. The second expr opt is the condition that needs to be
met for the statement block to execute. The third and final expr opt is executed at the end of
every iteration. All three expressions are optional.

6.0.6 Jump Statements

Jump statements shift the control of a program to a different part of the code.

jump stmt :=
return expr;
| return;
| continue;
| break;

6.0.6.1 Return Statements

The keyword return can be used in a function to return control of the program to the calling
function or process. If the function has a return type, an expression of that type must come after
the return keyword.

6.0.6.2 Continue Statements

The keyword continue can be added inawhile or for statement to prematurely finish an
iteration of the loop so that the loop can start again.

6.0.6.3 Break Statement

The keyword break can be added in a while or for statement to prematurely terminate and
exit from the loop.

7 Function and Process Declaration and Definition

7.1 Declaring Arguments to Channels and Processes

Functions and processes are both entities that can be invoked with arguments. In this section, we
will thoroughly define arg declaration list, which is a comma separated list of argument
declarations:

arg declaration list :=
arg declaration
| arg declaration list, arg declaration

arg declaration :=

primitive declarator

string declarator

list declarator

IDENTIFIER IDENTIFIER

in channel type IDENTIFIER
out channel type IDENTIFIER

7.1.1 Primitive Types, Strings, and Lists as Arguments

A primitive type, string, or list can be declared as an argument simply with a declarator of that type

7.1.2 Structs as Arguments

A struct can be declared as an argument with the following pattern:
IDENTIFIER IDENTIFIER

The first IDENTIFIER is the identifier associated with the struct type, and the second
IDENTIFIER is the name of the argument.

7.1.3 Channels as Arguments

Channels may be passed as arguments to both processes and functions. The syntax for declaring
channels as arguments differs from that used to simply declare channels. Each channel argument
declaration follows this pattern:

DIRECTION TYPE IDENTIFIER

where DIRECTION is either in or out, TYPE is the type of token the channel holds, and
IDENTIFIER is the channel’s identifier. f DIRECTION is in, the channel may only be read by a
process. Conversely, if DIRECTION is out, the channel may only be written to by a process. To
reiterate: this syntax is valid only in the argument declaration list for functions and processes.

7.2 Function Declaration and Definition

Functions must be declared with a return type and a list of arguments. Functions may only be
declared and defined at the top level. The return type of a function must be a primitive type.

function declaration :=
function declarator;
| function declarator {}
| function declarator {stmt list}

function declarator :=
primitive type IDENTIFIER()
| primitive type IDENTIFIER(arg declaration list)

A function definition can simultaneously act as its declaration; in other words, a function need not
be declared before it is defined, but it must be declared before it is used.

// Function declaration and definition
int sum(int x, int y) {
return x + y;

}

int 1 = sum(1l, 2); # 1 ==

7.3 Process Declaration and Definition

Processes must be declared with a list of arguments. Processes don'’t return anything, so a return
type is not allowed. Processes may only be declared and defined at the top level. A process is
declared with the proc keyword as follows:

process declaration :=
process declarator;
| process declarator { }
| process declarator { proc body }

process declarator :=
proc IDENTIFIER(arg declaration list)

As with functions, processes must be defined, and a process definition can act as its declaration.

proc_body is a list of statements intended to embody the work done by this particular process.
The only difference between proc body anda stmt 1list isthat proc body may notinclude
the declaration of channels, whereas stmt 1ist may. This check is made during semantic
analysis rather than during parsing.

As an example, here is the definition of a process that interleaves two input streams and produces

one output stream. This example uses the @ and -> operators, which are discussed in 11 Program
Structure.

proc interleaver(in int inchanl, in int inchan2, out int ochan) {
int current token;
bool i = false;
for (;;){
if (i) @inchanl -> ochan;
else (@inchan2 -> ochan;

i=11i;

The interleaver process has three arguments, all of which are channels. The first two,
inchanl and inchan2, are input channels. That means that interleaver can only fetch items
from these channels, and never send items down them. The last stream, ochan, is an output
channel, meaning that interleaver can only send items to this channel, and never fetch items
from it.

8 Scope

Scope in Flow follows the same semantics as C. There exists global scope and block scope.
Globally scoped variables can be accessed anywhere in a program. Block scoped variables exists

in blocks (compound statements) such that variables declared within a block are accessible within
the block and any inner blocks. If a variable from an inner block declares the same name as a
variable in an outer block, the visibility of the outer variable within that block ends at the point of
declaration of the inner variable.

9 Program Structure

At the top level, a Flow program consists of global variable declarations, function declarations, and
process declarations.

program :=
decls EOF

decls :=
decls declaration stmt
| decls function declaration
| decls process declaration

The entry point into a flow program is the function main. The body of this function may call a series
of procedures, perform computations, and, most importantly, define channels and binds processes
to those channels. Binding processes to channels establishes concrete links between processes,
creating the Kahn Process Network.

When a Flow program is run, the main routine is called. After the ma in routine terminates, a Kahn
Process Network is constructed and set into motion according to the bindings that were made in
the program. Control of execution is turned over to this network. A Flow process terminates when
all channels are empty.

9.1 The @ and -> Operators

The @ and -> operators may only be used from within the body of a process. They are used to
retrieve and send tokens to a channel, respectively.

The @ operator is a unary operator on channel identifiers. Specifically, @ can only operate on
channels with direction in. The @ operator returns the next token in the channel, and blocks if the
channel is empty.

The -> operator expects an expression on the left side, and an out channel identifier on the right
side. The expression on the left side is evaluated, and the result is sent to the channel. An
expression formed with the -> operator evaluates to the result of the the expression on the left
side.

Let us revisit the interleaver process, introduced in 7.3 Process Declaration and Definition:

proc interleaver(in int inchanl, in int inchan2, out int ochan) {
int current token;
bool i = false;
for (;;){
if (i) @inchanl -> ochan;
else (@inchan2 -> ochan;

i=11i;

The expression @inchanl -> ochan fetches a token from inchanl, and then sends it to
ochan.

9.2 Binding Processes

Binding a process amounts to passing it the appropriate arguments enclosed in (). The action of
binding a process creates a single node in the resulting Kahn Process Network. A process may be
bound an arbitrary amount of times, producing a corresponding number of nodes. Process binding
can occur in any block of code. When a bound process finishes and returns, it terminates and will
cease to perform work on its channels.

Suppose process foo takes a single out int channel argument, and process bar takes a
single in int channel argument. Then, these two processes can be bound with interleaver
to create the KPN pictured on the right:

Foo

int channel a, b, c; \
foo(a); D\\
foo(b) s b Interleaver © Bar
interleaver(a, b, c); f
bar (c) ; aff

/

/

Foo

9.3 Binding Semantics for Channels and Processes

Since channels must be connected to exactly one receiving process and one sending process, a
declared channel must have two such processes bound to it before its identifier goes out of scope.
If a channel has just one process bound to it, and its identifier goes out of scope, no other portion
of the program will be able to bind the second process to the identifier. This notion leads to several
programming patterns that must be observed when using the Flow language.

9.3.1 Mandatory Channel Binding in Functions

If a function accepts a channel as an argument (see 5.2.1.2 Declaring Channels as Arguments),
then it must bind a process to that channel in the body of its routine. The reasoning for this is as
follows: suppose a function can accept a channel as an argument, and conditionally bind a process
to that channel. Then, a routine that calls this function will not know whether the channel specified
as an argument had a process bound to it by the function. The calling routine will consequently not
know if it should bind a process to this channel before it goes out of scope. Therefore, it is the
responsibility of the function to ensure that it binds a process to every channel that it accepts an
argument. Failure to do so is a semantic error and results in undefined behavior.

