do fifty-two:
A Card Game Language

Final Report

Sinclair Target
Jayson Ng
Josephine Tirtanata
Yichi Liu
Yunfei Wang

Table of Contents

1. Introduction
1.1 Motivation

1.2 Proposal

2. Language Tutorial
2.1 Data Types
2.2. Operators
2.3 Variable Operations
2.4 Function Operations

3. Language Manual
3.1 Data Types
3.2 Lexical Conventions
3.2.1 Identifier
3.2.2 Keywords
3.2.3 Literals
3.2.4 New Line
3.2.5 Whitespace
3.2.6 Punctuations
3.2.7 Comments
3.2.8 Operators
3.3 Control Flow Statements
3.3.1 The if Statement:
3.3.2 The while Statement:
3.3.3 The for Statement:
3.3.4 The { } * N Statement:
3.3.5 The break Statement:
3.4 Procedures
3.5 Expressions
3.5.1 Arithmetic Expressions
3.5.2 Assignment Expressions
3.6 Operators
3.6.1 Relational operators
3.6.2 Logical operators
3.6.3 Field Accessor Operator
3.6.4 Prepend and Append Operators
3.6.5 String Concatenation
3.7 Program Structure and Scope
3.7.1 Program Structure

3.7.2 Scope

3.8 Sample Program

4. Project Plan
4.1 Identify process used for planning, specification, development and testing
4.1.1 Planning
4.1.2 Specification
4.1.3 Development
4.1.4 Testing
4.1.5 Programming style quide used by the team
4.2 General Estimated Project Timeline
4.3 Team Roles and Responsibilities
4.4 Software development environment, tools and languages
4.5 Project log

5. Architectural Design
5.1 Interface between Components
5.2 Code Contribution

6. Test Plan

7. Lessons Learned
7.1 Team Lessons Learned
7.2 Advice for Future Team

8. Appendix
Test Code

Source Code

1. Introduction

do fifty-two is an imperative, procedural, statically typed language. In that sense, it is
like C and its many progeny in the fundamentals of how it works; a do program
consists of a series of statements organized into procedures that act upon variables.
But the syntax of the language attempts to be less cryptic and more intuitive to the
average non-programmer, while simultaneously incorporating several elements that
make programming card games a breeze.

1.1 Motivation

Card game languages have been a popular choice among PLT students in the past. In
2008, one group created a language called “PCGSL,” for Playing Card Game
Simulation Language. In 2009, another group created a language called “AIC,” for All
In the Cards. And in 2012, a third group created a language called “Cardigan,” which
may or may not have been well implemented relative to the others but certainly has
the best name of the three.

Each of these teams tried to simplify the process of programming a card game by
creating a domain-specific language that abstracts away the details common to all
card games. But the problem, as this team sees it, is that these languages have in
most cases hewed too closely to traditional C-style syntax to be useful. Only people
who have already done some programming in a language like C or Java could learn
the language in a reasonable amount of time, yet those same people are also capable
of programming a card game quite easily by themselves, because programming a card
game isn’t that difficult. If you’re using an object-oriented language, all you really need
is a “Card” class with an integer for rank and maybe a string for suit. Put some
instances of that class in an array and you’re ready to go. The effort that a language
like “PCGSL” or “Cardigan” might save is small, and that saved effort is likely going to
be offset by the effort required to learn the language in the first place.

1.2 Proposal

We propose a card game language targeted not at proficient programmers but at
people who have never programmed before. For these people, programming a card
game in something like C or Java would be prohibitively difficult, so it makes sense to
give them an alternative language tailored to their inexperience and to the problem of
creating a card game. The time they invest in learning this language is not time they
might otherwise have spent coding, but rather an opportunity for them to grow more
comfortable with the idiosyncrasies of computer programming. Therefore our language
will be first and foremost a pedagogical tool. It will not try to compete as an “easy”
option for a programmer who could code a card game in dozens of different ways. It
will instead be a way to introduce students to programming as gently as possible in a
familiar domain.

Our goals for the language then are as follows: do fifty-two, as we’ve chosen to call it,
must be intuitive and high-level, so that students can grasp it without feelings of
frustration or despair. But it must also be sufficiently related to more traditional
programming languages to serve as a good stepping-stone to them.

2.Language Tutorial

2.1 Data Types

Primitive Types Meaning

Number Numbers are defined as a 64 bit signed
integer with a range of —2,147,483,648 to
2,147,483,647. \Which is similar to the
integer class found in other languages such
as Java. Due to the nature of card games,
a Number is not allowed to be initialized as
non-negative

String String is a sequence of characters
surrounded by double quotes. A string is
made of an array of characters.

Boolean Booleans are defined by true and false
keywords. Booleans are considered their
own type, thus when an expression is
defined with both a boolean operator and a
non-boolean variable it will create an error.

Composite Types Meaning

Card A data type representing a card.
Fields:

Number rank

Number suit

String desc

Set A data type representing an ordered
collection of cards, whether that collection is
supposed to be a deck, hand, or something
else.

Fields:

Number size

String desc
Card top
Card bottom

Player A data type representing a player, or
possibly a dealer.

Fields:

Set hand

String Desc

2.2. Operators

Operator Meaning
+ - * [| Standard arithmetic operators. Integer
arithmetic only. Division returns floor module. Standard
precedence.

= I= Standard relational operators,

< > except that the equivalence operator is = not ==.
>=<= Standard precedence.
| & ! Logical operators and the unary NOT

operator. No bitwise operators.

Assignment operator

t>b> <t <b Prepend and append operators. Take a Set (see below)and a
Card and either adds the

Card to the front or the back of the Set.

If Card is null, does nothing.

Dot operator, Accesses field within an variable

+ String concatenation operator

2.3 Variable Operations

Declare a new typeName variableName: value
new ie. new Number mylinteger: 0
variable

Add new typeName has fieldType called fieldName
fields to i.e. Player has Number called score
existing now Player has a field “score”
variable

Redefine configure variableName: value

default i.e. configure numberOfPlayers: 2
environment

al variables

2.4 Function Operations

Declare a procedureName with Type parameterName:

function i.e. Sum with Number n1 and Number n2:
<function body>

Call a do procedureName with argumentName

function i.e. do Sum with 5and 6

Quit a do quit

loop/conditio

nal

statement

3.Language Manual

3.1 Data Types

Primitive Types

Meaning

Number Numbers are defined as a 64 bit signed
integer with a range of 0 to 2,147,483,647.
Which is similar to the integer class found in
other languages such as Java. Due to the
nature of card games, a Number is not
allowed to be initialized as non-negative

String String is a sequence of characters
surrounded by double quotes. A string is
made of an array of characters.

Boolean Booleans are defined by true and false
keywords. Booleans are considered their
own type, thus when an expression is
defined with both a boolean operator and a
non-boolean variable it will create an error.

Composite Types Meaning

Card A data type representing a card.
Fields:

Number rank

Number suit

String desc

Set A data type representing an ordered
collection of cards, whether that collection is
supposed to be a deck, hand, or something
else.

Fields:

Number size

String desc

Card top

Card bottom

Player A data type representing a player, or
possibly a dealer.

Fields:

Set hand

String Desc

Data in do-fifty-two is expressed in a finite and well defined set of data types. There
are three primitive types in do, with several composite data types to facilitate the
creation of card games. There are no floating point numbers because the rules of card
games don’t ever -- as far as we know -- call for fractional parts. Each of the composite

data types has a field called desc, which contains a string description of the data it
contains. When an instance of a composite data type is passed as an argument to the
output function (see below), the desc field is what is printed.

New data types cannot be created, but the existing data types can be extended. New
fields can be added to an existing type like so:
typename has typeName called variableName

A type extension is global and should not appear inside a function. Meaning that, all
instances of the first data type have a filled of the second data type with the given
name. For example,

Player has Number called score
would make the field Player_score available throughout a program.

3.2 Lexical Conventions

3.2.1 Identifier

An |dentifier is a sequence of letters, digits or underscores. The first character must be
alphabetic. An underscore (“_”) is not considered to be alphabetic. Upper and lower
case letters are considered to be different.

3.2.2 Keywords

The following identifiers are reserved for use as keywords and may not be used.
if

else if
else
while
for
break
continue
until
true
false

do

quit

with
output
new
configure
setup
int
boolean
String

3.2.3 Literals

Literals are values written in a conventional form with a fixed value.

A Number Literal consists of an optional minus sign, followed by one or more digits
within the range of an Integer.

A Boolean Literal represents boolean values for true or false.

A String Literal represents a series of characters.

3.2.4 New Line

Like in Python, a new line terminates a statement. A program must end with a new
line.

3.2.5 Whitespace

Whitespace consists of any combination of blanks or tab characters. Whitespace is
used like in Python to delimit blocks if it appears at the beginning of a line.

3.2.6 Punctuations

Punctuators, are characters that have their own syntactic and semantic significance;
they are not operators or identifiers

Punctuator Use Example

{} Statement list if (Boolean) {
delimiter statements }

0 Conditional if (Boolean)
parameter delimiter.
(Expression precedence)

3.2.7 Comments

The characters “//” introduce a single line comment. For example:
// Hello World !

3.2.8 Operators

do includes most standard operators found in any programming languages, but
changes a few so that their meaning is more obvious, and adds two specific to card
games. An operator is a token that creates an operation on at least one operand,
which in turn yields a result. the assignment operator is not an equals sign, because
assignment and tests for equality are distinct concepts in programming, yet that fact is
often lost on beginner programmers who—and quite rightly—get confused by the
equals sign. An added benefit here is that the actual equality operator can be a single
equals sign as opposed to two.

Operator

Meaning

+ - */

Standard arithmetic operators.
Integer

arithmetic only. Division returns floor
module.

Standard precedence.

== < > >= <=

Standard relational operators,

except that the equivalence operator
is = not ==.

Standard precedence.

Logical operators and the unary NOT
operator. No bitwise operators.

Assignment operator.

Dot operator. Accesses a field within an
object.

t>b><t<b

Prepend and append operators. Take a Set
(see below)and a Card and either adds the
Card to the front or the back of the Set.

If Card is null, does nothing.

String Concatenation Operator

3.3 Control Flow Statements

do incorporates most of the common control-flow statements with the exception of
switch. In addition, it incorporates an intuitive shorthand for expressing simple loops,
which can be thought of as “multiplying” a series of statements by a number. The
shorthand is redundant, because it could be replaced with a for loop. But in our
experience many algorithms can be expressed using only the shorthand, so it might be
introduced as a simpler form of looping to students not ready for the menacing syntax
of a for loop, or for the bizarreness that is zero-based numbering.

3.3.1 The if Statement:

You can use the if statement to conditionally execute part of your program, based on
the truth value of a given expression. Here is the general form of the if statement:

1f (testl)
then-statementl

else 1f (test?2)
then-statement?2

else
else-statement

If test1 evaluates to true, then then-statement1 is executed. if test? evaluates to false,
but test?2 evaluates to true, then then-statement? is executed and neither
then-statement1 nor else-statement is. If test1 and test? evaluate to false, then
else-statement is executed and then-statement1 or then-statement2 is not. The else if
clause and else clause are optional.

Example:

if (count = 5)
count: count + 1

else 1f (count = 6)
count: 12

else
count: count - 1

If count = 5 evaluates to true, then the statement count: count + 1 is executed. If count
= 5 evaluates to false and count = 6 evaluates to true, then the statement count: count
+ 1 is not executed, but the statement count: count: 12 is executed. If neither count =
5 nor count = 6 is true, then the statement count: count - 1 is executed.

3.3.2 The while Statement:

The while statement is a loop statement with an exit test at the beginning of the loop.
Here is the general form of the while statement:

while (test)
statement

The while statement first evaluates test. If test evaluates to true, statement is
executed, and then test is evaluated again. statement continues to execute repeatedly
as long as test is true after each execution of statement.

This example increments the integer from zero through nine:

new Number counter: 0
while (counter < 10)
counter: counter + 1

3.3.3 The for Statement:

The for statement is a loop statement whose structure allows easy variable
initialization, expression testing, and variable modification. It is very convenient for
making counter-controlled loops. Here is the general form of the for statement:

for (initialize,; test, step)
statement

The for statement first evaluates the expression initialize. Then it evaluates the
expression test. If test is false, then the loop ends and program control resumes after
statement. Otherwise, if test is true, then statement is executed. Finally, step is
evaluated, and the next iteration of the loop begins with evaluating test again.

Most often, initialize assigns values to one or more variables, which are generally used
as counters, fest compares those variables to a predefined expression, and step
modifies those variables' values. Here is another example that prints the integers from
zero through nine:

for (new Number x: 0; x < 10; x: x + 1)
do output with “x = 7 + x

First, it evaluates initialize, which assigns x the value 0. Then, as long as x is less than
10, the value of x is printed (in the body of the loop). Then x is incremented in the step
clause and the test re-evaluated.

All three of the expressions in a for statement are optional, and any combination of the
three is valid. Since the first expression is evaluated only once, it is perhaps the most
commonly omitted expression. You could also write the above example as:

new Number x: 1
for (; x <= 10; x: x + 1)
do output with “x = 7 + x

In this example, x receives its value prior to the beginning of the for statement.
If you leave out the test expression, then the for statement is an infinite loop (unless
you put a break statement somewhere in statement). This is like using 1 as test; it is

never false.

This for statement starts printing numbers at 1 and then continues infinitely, always
printing x incremented by 1:

for (new Number x: 1; ; Xt++)
do output with “x = 7 + x

If you leave out the step expression, then no progress is made toward completing the
loop—at least not as is normally expected with a for statement.

This example prints the number 1 over and over, infinitely:

for (new Number x: 1; x <= 10;)
do output with “x = " + x

3.3.4 The {} * N Statement:

The {} * N Statement execute the statement(s) in the {} for N times. The statements
in { } must be executable, and N must be a positive integer that is greater or equal to 1.
Example:

{
new Number x: 1
do output with “x = 7 + x
}o* 10

This statement executes the statements new Number x: 1 and do output with “x =" + x
for 10 times.

3.3.5 The break Statement:

User can use the break statement to terminate a while, for, { } * N or {} until B
statement. Here is an example:

for (new Number x: 1; x <= 10; x: x + 1)
{
if (x = 8)
break
else
do output with x
}

That example prints numbers from 1 to 7. When x is incremented to 8, x = 8 is true, so
the break statement is executed, terminating the for loop prematurely.

If you put a break statement inside of a loop statement which itself is inside of a loop
statement, the break only terminates the innermost loop statement.

3.3.6 The continue Statement:

User can use the continue statement in loops to terminate an iteration of the loop
and begin the next iteration. Here is an example:

for (new Number x: 0; x < 100; x: x + 1)
{
if (x /5 > 10)
continue
else
do output with “ x = “ + x
}

If you put a continue statement inside a loop which itself is inside a loop, then it
affects only the innermost loop.

3.4 Procedures

In do, functions are called “procedures.” They are not called “functions” for reasons
that will shortly become clear. They might have been called “methods,” except they are
not associated with objects. They might also have been called “subroutines,” but the
term “subroutine”, as I'm sure you’ll agree, is by this point rather passé.

A procedure must be defined in order for a call to the procedure to make sense, but
the definition can come anywhere in a source file outside of a block. This means that a
procedure does not have to be defined before it is called. Procedures are not
first-class objects and they cannot be nested. They do not have to be—and in fact
cannot be—declared.

A procedure consists of a header and a body. The header specifies the name of the
procedure along with the types and names of its parameters. A header has the
following syntax:

procedureName with Type parameterl and Type parameter? and .. :

procedureName is the identifier associated with the procedure. with is a keyword
that separates the identifier from the list of parameters, which consists of an arbitrary
number of variable declarations separated by the keyword and. The colon terminates
the header and begins the block that contains the body of the procedure. If a
procedure takes no arguments, with can be omitted.

A procedure can be called anywhere within a source file. A procedure call looks like
this:

do procedureName with argumentl and argumentZ2

do is a keyword that signals a procedure call. The identifier procedureName tells
the compiler which procedure to call. Everything after the keyword with is part of the
list of arguments. The arguments are separated by the keyword and just as the
parameters are in a procedure header. If the arguments passed to a procedure do not
match the parameter types in the procedure header, the compiler will throw an error.

Arguments are evaluated left to right. Again, if a procedure takes no arguments, with
can be omitted.

You may have noticed that the syntax for a procedure header does not include its
return type. That is because procedures cannot return anything. This is a quirk of do;
there are no functions that map input to output. Procedures can only change the
values of their parameters (which are passed by reference) and the values of global
variables. They are not expressions. Conceptually, a procedure can only do
something—it can only act on data to produce a change in state.

do is thus a hyper-imperative language. A do program consists mostly of statements
with only a few expressions here and there. For large programs, this would become a
nightmare. But while the programs remain simple, we believe that using procedures
instead of functions is a good thing—it better conforms to the layperson’s
understanding of programming as “telling the computer to do things.”

3.5 Expressions

3.5.1 Arithmetic Expressions

An arithmetic expression consists operands and operators. The operands can
be integer constants or variable of the Number type. Only integer arithmetic are
allowed. Example of expressions:

Expressions can be surrounded with parenthesis to indicate order of evaluation.
For example:

2 * (4 +5)

The expression 4 + 5 will be evaluated first, resulting in 9. Then, 2 * 9 will be
evaluated, resulting in 18.

There are 4 types of arithmetic operators.

° +

Adds the two operands together.

. p—

Subtract the right operand from the left operand.
[*

Multiply the two operands together.

° /

Divide the operand on the left by the operand on the right.

3.5.2 Assignment Expressions

The assignment operator : stores the value of its right operand in the variable

specified by the left operand. Example:

Number n : 5

3.6 Operators

*

2

3.6.1 Relational operators

You can use relational operators to determine how two operands relate to one

another. Do Fifty-Two supports 6 types of comparisons.

Relational Description Example
Operator
= Checks for equality if (a=3)
do evaluate
else
quit
= Checks for inequality if (al!=3)
do evaluate
else
quit
< Checks whether left if (a<3)
operand is smaller than do evaluate
the right operand else
quit
> Checks whether left if (a>3)
operand is greater than do evaluate
right operand else
quit
<= Checks whether left if (a<=3)
operand is equal or do evaluate
smaller than right else
operand quit
>= Checks whether left if (a>=3)
operand is equal or do evaluate
greater than right else
operand quit

3.6.2 Logical operators

Logical operators can be used to negate or combine relational expressions.
The logical conjunction operator ¢ tests if two expressions are both true. If the
first expression is false, the second expression is not evaluated and the entire

expression becomes false.

if((a>3)&(a<5))
do output with “a is 47

The logical conjunction operator | test if at least one of the two expressions are
true.

if((a=3)| (a=5))
do output with “a is either 3 or 5”7

The prepend operator ! tests if the logical expression equates to false.

if(!(a=3))
do output with “a is not 3”

3.6.3 Field Accessor Operator

The field accessor operator _ is attached after an object name and fetches the
field whose name is specified on the right side of the underscore. It returns the
value of the field. The type depends on the type that the field is set to initially.
Example:

c.deck top //access the field deck.top of a Card
variable called c

The field accessor operator fetches the field named top in the object deck.
Since the deck consists of Card types, this expression returns a Card type.

3.6.4 Prepend and Append Operators

The prepend and append operators t>, b> and <t, <b respectively takes a
Card and places it to a Set. In both cases, if a Set is taken as the source, the
operators will simply take the top most Card from the set.

The prepend operator t> or b> takes the bottom Card or the top most Card from
the set in the left operand and places it in the back of the Set in the right
operand.

The append operator <t or <b takes the Card at the bootom or the top most
Card from the Set in the right operand and places it in the front of the set in the
left operand.

3.6.5 String Concatenation

The operator + when surrounded with strings will immediately concatenate the
left and right string operands. Example:

do output with winner + “has lost”

3.7 Program Structure and Scope

3.7.1 Program Structure

A do-fifty-two program should be entirely self-contained, i.e. all the program code
should be contained within a single file. No library or code import is supported.

A program should start with environmental variable assignments (by using
configure) and type extensions if any, before any procedures are called or
declared.

3.7.2 Scope

Variable declarations made at the top-level of a program (i.e., not within a
procedure) are visible to the entire program, including from within procedures.
Variable declarations made within procedures are visible only within those
procedures. Variable declarations are not visible to the code that comes before
them.

Procedure declarations can only happen at the top-level of a program. However,
procedures can be called before their declarations.

Also, environmental variables and type extensions are global.

3.8 Sample Program

War! is a simple card game often played between children. The rules can be
found here. What follows is an implementation of War! in do that showcases
most of the features of the language.

// war in do
configure numberOfPlayers: 2
configure highestCard: 11

new Number warCount: 0
Player has Set called table // player table available

setup:
// deal cards
{ playerl hand <t deck top } * (deck size / 2) //loop
{ player2 hand <t deck top } * (deck size / 2) //loop

round:
do turn with player: playerl
do turn with player: player2
do output with "Player 1 played: " + playerl table top
do output with "Player 2 played: " + playerZ table top
do evaluate

turn with Player player:
do output with player + "'s turn."
new var
1f (player hand size = 0)
if (player = playerl)
do output player + " has lost. Player?2
wins!"
do quit
else
do output player + " has lost. Playerl
wins!"
do quit

do output with "Play card?"
do input with new String 1in
if (lfl — nyn)
player hand top t> player table
else
do output with player + " has decided not to play
anymore.” // no backslash needed here
do quit

evaluate:

i1f (playerl table top > playerZ table top)

else

* playerl

* playerZ2

else

do output with "Player 1's card is higher."
{ playerl hand <t playerl table top } \

* playerl table size

{ playerl hand <t player2 table top } \

* player? table size

1f (playerl table top < playerZ table top)
do output with "Player 2's card is higher."
{ player2 hand <t playerl table top } \
table size

{ player2 hand <t player2 table top } \
table size

do output with "It's a tie. That means WAR!"
warCount: warCount + 1

// 1f a set runs out of cards t> and <t won't do

anything

{ playerl hand top t> playerl table }
{ playerZ2 hand top t> playerZz table }
do output with "Player 1 and 2 put down 4 cards."
do evaluate

*
*

4
4

Project Plan

4.1 Identify process used for planning, specification,
development and testing

4.1.1 Planning

Ocaml being a brand new language for all the team members, consumed most of the
time and effort of the team at the early stage of the project. The team started Lexer
successfully before they meet some obstacles when developing Parser, AST and
Semantic Check. The team set the minimum goal of the project and build more feature
upon it. Regarding the deliverables, the team managed to submit all the deliverables
on time as a write-up report closely follows the progress of program development.
During the weekly meeting, five group members are split into 2 or 3 groups to tackle
different problems, and the solutions will be put together to make actual progress of

the project.

4.1.2 Specification

As time limited, our main goal is to be able to compile the “War!” program that is
included in the LRM, and the “War!” program reflects most of the features of Do
Fifty-Two, we concentrated on writing and fixing errors of Parser, AST, SAST and
Semantic Checking, along with other helper files including the Java simulation
program, indentation, cache, stdlib, and Makefile.

4.1.3 Development

Most part of the development was done during the weekly meetings, along with many
individual works during the second half of the semester. Compiler implementation is
done in Ocaml, Target language is Java in a pythonic style.

4.1.4 Testing

Testing cases are mainly done by Jayson Ng with some others’ contributions, Jayson
received program updates from all other group members, wrote the corresponding
testing cases and did all the testings from small,simple cases to more complicated
cases. All the testing logs are recorded and stored in the project folder.

4.1.5 Programming style guide used by the team

The team do not adopt a specific named programming style guide, but we create
and follow the rules below to ensure the progress and cooperation:

1. Always communicate to the team before creating a new file, making major
update and after meeting with TA, assuring the progress made is
acknowledged

2. Keep the code clean and readable; introduction is given at the beginning of
each file; comments are not required but strongly encouraged

3. When a code issue is unsure, always leave a comment before the team makes

a decision regarding this issue.

Always submit a commit message if any change is committed to gitHub

All the tasks are distributed to each team member through Trello to keep track

of each individual’s work

Filenames are readable and reflects the functionalities of the files

All files are classified and store in proper subdirectories (i.e. testing cases are

stored in “test” folder, documentations are stored in “documentation” folder)

o~

NOo

4.2 General Estimated Project Timeline

Time Event

Sep 8 - Sep 15 Project Team Formed

Sep 16 - Sep 24

Topic Selected, Tools Ready, Proposal
Submitted

Sep 25 - Oct 1 Meeting with TA, Proposal Feedback
Returned
Oct2-0ct9 Lexer in Progress, Learning Ocaml

Oct 10 - Oct 27

Keep Studying Ocaml, Meet with TA for
Lexer and Parser development, LRM
Submitted

Oct 27 - Nov 17

More Features Added to Parser & AST,
More Test Cases Added

Nov 17 - Nov 30

Added Sample Program to test cases,
All Leftover Errors Fixed, Printed
outputs by adding Pretty Printing

Dec 1 -Dec 12

Worked on Semantic Checking and
SAST, Compiler Finished, Java Program
Generated, Test Cases Gone Over

Dec 12 - Dec 15

Final Report Written, Presentation Tasks
Distributed, fix all the leftover errors/bugs

Dec 16

Presentation

4.3 Team Roles and Responsibilities

Role

Responsibility

Member

Project Manager

Timely Completion of Yunfei

Deliverables, Coding work

ENV, Coding work

Language Language Design, Coding | Sinclair
work
System Architect Compiler Architecture, Josephine

Verification & Validation

Test Plan, Test Suites, Jason

Coding work

System Integrator

Defines System Platform, | Yichi

Makefile and makes sure
components interoperate,
Coding work

All team members meet every Monday & Wednesday to discuss project plans, project
progress and write code together, all the files are done by multiple team members.

4.4 Software development environment, tools and languages

- Platform and IDE: Mac OS X, Windows 7, Linux (Ubuntu)l, Vim, Emacs, Javac
Compiler

- Language: Ocaml, Java

- Version Control: GitHub

- Collaboration Tools: Trello, Slack

4.5 Project log

Our complete commit history can be found here, on GitHub:
https://qithub.com/YichiLL/4115PLT

A statistical breakdown of commits can also be found at the following link, which we
are providing with the caveat that it may not be completely accurate. One of us didn’t link his
GitHub account to the repo until late in the semester, which meant that commits he made
weren’t attributed to him. Others contributed in ways that aren’t reflected in the commit
numbers, and some of us liked to commit after even the tiniest of changes.

https://github.com/YichilLL/4115PLT/graphs/contributors

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FYichiLL%2F4115PLT&sa=D&sntz=1&usg=AFQjCNF6Bx283PGTAI8yHrq200NR2hlHvQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FYichiLL%2F4115PLT%2Fgraphs%2Fcontributors&sa=D&sntz=1&usg=AFQjCNFbTQ9g8NAm1kJJJnM7ji0I0AXNvg

5. Architectural Design

Scanner Parser Semantics
sscanner.ml eparser.ml ssemantic.ml

sindent.ml estdlib.ml

Source Program
scache.ml

Abstract Syntax Tree Compiler
sast.ml scompiler.ml

ssast.ml estdlib.ml

Java Program

-

5.1 Interface between Components

The architecture of the Do Fifty-Two compiler consists of several functional stages that
takes a do Fifty-Two source program and produces a Java executable card game. The
relationship of these components is shown in the diagram above.

The scanning stage of the compiler turns the stream of characters from the source
program into recognizable tokens for the parser. Scanner is supported by cache.ml
that caches the number of DEDENT tokens as well as functions from indent.ml that
help implement the python-style indentation-based blocks. By the time scanner is
done, redundant whitespace and comments are removed, meaningful whitespace
indentation are converted to DEDENT and INDENT tokens, and all characters are
converted to tokens.

The parser uses ast.ml to assemble the sequence of tokens from the scanner into an
abstract syntax tree (AST). It is responsible for analyzing the sequence of tokens and
producing a structure that maps out the complete grammar of the language.

In Semantics, the structure of the abstract syntax tree is semantically checked. This
includes attaching type information to the syntax tree and recognizing mismatch type
declarations, input of illegal arguments in default functions, and incomplete setup of a
correct do program. Semantic.ml is supported by stdlib.ml, a list of default functions

and variables that are supported by our language. Semantics allow the compiler to
convert the do program to the equivalent java program and ensuring that the compiler
has a comprehensible and acceptable grammar to work with.

With a semantically checked AST, the compiler is able to match configure declarations
and functions into the correct java functions. With the list of functions and field
declarations in stdlib.ml, the compiler can differentiate between user defined functions
from default functions. This maps out to different java codes. When the compiler’s
work is completed, Game.java and MyPlayer.java are produced.

The architecture of the java class is presented in the following table:

Card

A card
contains a
face
number, a
value, a
suitand a
suit value.

Set Player Game Main
A setis an A player has a The game class The main
ordered group of hand. lists out the function
cards. Set functions that are creates an
functions are defined by the user. | instance of a
fixed: shuffle, The setup () and game and
append, prepend, round () methods invoke
select, and peek. must be defined. setup () .
After setup

Deck MyPlayer Utility completes, it
A deck extends a | My player The utility class calls _
Set and creates a | extends player aids the game class | round() In
deck of French and has by supplying an infinite
Playing cards additional functions for logical | 00P.
(Standard 52 instance operations and I/O
cards with 4 variables that
suits) are defined by

the source

program

Only the classes that are in Italics are modifiable in relation to the abstract syntax tree
that is parsed from the source code.

5.2 Code Contribution

Scanner

scanner.ml Josephine Tirtanata,
Jayson Ng, Yunfei Wang,
Sinclair Target, Ylchi Liu
indent.ml Sinclair Target

cache.ml

Sinclair Target

Parser parser.ml Josephine Tirtanata,
Jayson Ng, Yunfei Wang,
Sinclair Target, Ylchi Liu
Abstract Syntax Tree ast.ml Josephine Tirtanata,
Jayson Ng, Yunfei Wang,
Sinclair Target (pretty
printing), Ylchi Liu
sast.ml Sinclair Target
printer.ml Sinclair Target
Semantic semantic.ml Sinclair Target
stdlib.ml Sinclair Target, Yunfei
Wang
Compiler compiler.ml Sinclair Target, Josephine
Tirtanata
Runtime Files Player.java Josephine Tirtanata
Utility.java Josephine Tirtanata
Card.java Josephine Tirtanata
Deck.java Josephine Tirtanata
Set.java Josephine Tirtanata

Test

Success Test Cases
(*.do, *.gold)

Failure Test Cases (*.do,

*.gold)

Automated Test Scripts

(testLogic.sh,
testParse.sh)

Jayson Ng

6. Test Plan

Test Plan:

The basic test plan involved three phase testing. The first two phases involved the
entire team to test as we included more features to the compiler, while the last phase

involved manual testing. Phase one focused on testing the parser / semantics of
do-fifty-two. Phase two tested the logic of the generated files. Finally, the last phase
tested a fully programmed game in do-fifty-two.

Representative Programs:
Refer to Appendix - Test Code for representative programs written in do that were
used for testing purposes.

Testing:

Test suits were developed in response to the complexities of the language. Each
component was heavily tested to reveal the underlying inconsistencies and
technicalities that were not easily noticeable. Once these issues were identified and
dealt with several more rounds of testing were issued to ensure that all known bugs
have been resolved and identified potential bugs.

Testing followed several stages of the development process. The first stage involved
testing the AST and parser to ensure that the files created are syntactically correct and
are accepted by the compiler. Afterwards logic was heavily tested to determine
whether it translated properly from our language (do-fifty-two) to java. Finally we tested
a fully flushed out “game” written in do-fifty-two is properly translated into java. Shell
scripts were used to run all logic and parsing test cases.

Test Suites:

e Parser
Automated tests created for parsing, scanning and creation of AST.
Tests were chosen based on all features included in the AST and
SAST.

e Logic
Automated tests created to determine whether logic is properly
translated. Tests were chosen based on all features related to logic.

e Game
Created to determine whether a created game in do-fifty-two is as
intended. Since this test case requires human interaction it is difficult to
create an automated test script for it; as such manual testing was
performed.

Tests Cases:

e ADD.do
AND_COMPLEX_FALSE.do
AND_FALSE.do
AND OR_COMPLEX.do
AND_TRUE.do
APPEND.do
BREAK FOR.do
BREAK_ WHILE.do
CARD_COMPARISON.do
COMMENTS.do
COMPLEX_EXPRESSION.do

COMPLEX_EXPRESSION_NO_PAREN.do
CONFIGURE.do
CONTINUE_FOR.do
CONTINUE_FOR_NESTED.do
CONTINUE_WHILE.do
CONTINUE_WHILE_NESTED.do
DIV.do

DIV_INT.do

DOT_OP.do
EMPTY_LINE.do

EQUAL.do

FALSE.do

FIELD DECL.do
FOR_LOOP_ASC.do
FOR_LOOP_DESC.do
GT_FALSE.do
GTE_FALSE.do
HELLO_WORLD.do
IF_BASIC.do
IF_NESTED.do

IF_WITH _PARENTH.do
LT.do

LTE.do

MINUS.do

MULTI_VAR DEC.do
MULTIPLE_INDENT.do
NOT_EQUAL.do

OR.do

OR _TRUE.do
OR_FALSE.do

PLAYER COMPARISON.do
PREPEND.do

TIMES.do

TIMES_LOOP.do
VAR_DEC.do

WHILE.do
WHILE_RUN_ONCE.do
FAIL_COMPLEX_EQUAL.do
FAIL_MULTI_VAR _DEC_MISMATCH_TYPE.do
FAIL_NO_ROUND.do
FAIL_NO_SETUP.do
FAIL_REDECL.do
FAIL_TYPE_CHECK.do
FAIL_UNDECL_ID.do

7.Lessons Learned

7.1 Team Lessons Learned

Yunfei Wang: A compiler is far more than a language parser or token library. Given the
fact that this is the first time of us writing a compiler, choice of topic and target
language is important because you always want to keep a straightforward
understanding of what you do before you do more advanced and complicated
compilers, since putting scanner, parser, semantic checks, ASTs together with the
actual compiler could have more issue than you suppose. Working with group
members is the key of this project, there is always someone who can help you to
understand, and someone who you can help to understand; eventually the team will
put puzzle pieces together little by little. Starting early and keeping in touch with TA
are also very important, since this is a time consuming project, and there’s a chance
that you can get stuck and need directions. Using multiple tools for communications
and version control is very important to keep everybody updated. The other one of the
lessons that | learned is that although not required, having same development
environment will be a great idea, given the fact that | myself had compilation problems
because | was using Clic Machine (Linux) and my team members were using Mac OS
X as files are compiled on Mac while not on Linux. Using integrated platform will
prevent you from the situation that everybody’s files compile while yours do not.

Jayson Ng: Given that it was my first time writing a compiler | found that it was difficult
to properly comprehend the scope of the project without several small trial runs.
Writing the AST, Parser, Scanner proved to be challenging but also rewarding.
Although | did not contribute much to the final coding of the core components of the
compiler | participated at the start of the project to gain a basic understanding of the
overall structure and process. Throughout the entire project, | kept up with the coding
and thought process of the components, in order to develop test cases for the finished
project. From my experience testing is a crucial part of the development process since
it helps identify bugs at an early stage. Scheduling regular meetings to work on this
project was a great strategic move on our part simply because it allowed us to have
regular check points and progress.

Sinclair Target: We had trouble splitting up the work. There were five of us
collaborating on this project, but especially in the beginning, we couldn’t find five
different things for us to do. We wasted time watching others code or dealing with
source control problems when multiple people edited the same file at once. Ideally, we
would have assigned a module to each person and made that person responsible for
it. That would have allowed us to work in parallel rather in series, as we mostly did. To
put it another way, there weren’t enough “black boxes.” Most of us worked on the
same thing at the same time, and most of us had to understand how the whole
compiler worked, not just our part of it.

Josephine Tirtanata: Building a compiler was really hard to start with because | didn’t
have a good understanding of what a compiler is. Furthermore oCaml is a very difficult
language, one that is not similar to any of the languages | know. These issues made it
difficult to start on the project and to divide the project into dividable sections. | also

think that an important aspect of this project is to make sure you have a good idea of
the language you want to make. It would be beneficial if you have a clear
understanding of the language you want to make, so that you’re able to interpret the
source code into a meaningful target program. After completing this project, | believe |
am so much better in functional programming and a lot more comfortable with the idea
of working in a group.

7.2 Advice for Future Team

Start as early as you can, always keep adding code
Version control is important, make sure you use Git/SVN
Communicate with TAs and the professor

Know your language well

Be comfortable with oCaml

Using same environment and IDE is preferable

Team work, help each other on the code and everything
Meet at least twice a week

Write good final report

CoNOO RN~

8. Appendix

Test Code

war.do

configure numberOfPlayers: 2
configure highestCard: ace
configure ascendingOrder: true

Player has Set called table
new Number warCount: 0
setup:
new Number deckSize : deck.size

{ player1.hand <t deck } * (deckSize / 2)
{ player2.hand <t deck } * (deckSize / 2)

round:
do turn with player1
do turn with player2
do output with "Player 1 played: " + player1.table.top.desc
do output with "Player 2 played: " + player2.table.top.desc
do evaluate

turn with Player player:
do output with player.desc + "'s turn."
if player.hand.size = O:
if player = player1:
do output with player.desc + " has lost. Player2 wins!"
do quit
else:
do output with player.desc + " has lost. Player1 wins!"
do quit

do output with "Play card?"
new String in : ""
do input with in
if in ="y":
player.hand t> player.table
else:
do output with player.desc + " has decided not to play anymore."
do quit

evaluate:
new Boolean done : false

while !done:
if player1.table.top > player2.table.top:
do output with "Player 1's card is higher."
{ player1.hand <t player1.table } * player1.table.size
{ player1.hand <t player2.table } * player2.table.size
done : true
else:
if player1.table.top < player2.table.top:
do output with "Player 2's card is higher."
{ player2.hand <t player1.table } * player1.table.size
{ player2.hand <t player2.table } * player2.table.size
done : true

else:
do output with "It's a tie. That means WAR!"
warCount: warCount + 1

{ player1.hand t> player1.table } * 4

{ player2.hand t> player2.table } * 4
do output with "Player 1 and 2 put down 4 cards."

war.do - Game.java

import java.util.Scanner;
import java.util.ArrayList;

public class Game {

ArrayList<MyPlayer> players;

Set deck;

int numberOfPlayers = 4;

int highestCard = 12;

boolean ascendingOrder = true;

int warCount = 0;

public Game() {

numberOfPlayers = 2;

highestCard = Card.ACE;

ascendingOrder = true;deck = new Deck(highestCard, ascendingOrder);
deck.shuffle();

players = new ArrayList<MyPlayer>();
for(inti = 0; i < numberOfPlayers; i++) {
players.add(new MyPlayer("Player " + (i+1)));
}

}

public void setup()
{

int deckSize = deck.size();
for (inti=0; i< (deckSize / 2); i++)

{
Set.append(deck, Set. TOP, players.get(0).hand);

}

for (inti=0;i < (deckSize / 2); i++)
{

Set.append(deck, Set. TOP, players.get(1).hand);

}
}

public void round()

{

turn(players.get(0));

turn(players.get(1));

System.out.printin(("Player 1 played: " + players.get(0).table.top().toString()));
System.out.printin(("Player 2 played: " + players.get(1).table.top().toString()));
evaluate();}

private void turn(MyPlayer player)

{

System.out.printin((player.toString() +
if ((player.hand.size() == 0))

{

if ((player == players.get(0)))

{

System.out.printin((player.toString() + " has lost. Player2 wins!"));
System.exit(0);}

else

{

System.out.printin((player.toString() + " has lost. Player1 wins!"));
System.exit(0);}

}

else

{

}

s turn."));

System.out.printin("Play card?");
String in ="";

in = Utility.inputString();

if ((Utility.compareString(in, "y")))

{

Set.prepend(player.hand, Set. TOP, player.table);

}

else

{

System.out.printin((player.toString() + " has decided not to play anymore."));
System.exit(0);}
}

private void evaluate()

{

boolean done = false;
while (done)

{
if ((Utility.cardGreaterThan(players.get(0).table.top(), players.get(1).table.top())))

{

System.out.printin("Player 1's card is higher.");
for (inti=0;i < players.get(0).table.size(); i++)

{
Set.append(players.get(0).table, Set. TOP, players.get(0).hand);

}

for (inti=0;i < players.get(1).table.size(); i++)

{
Set.append(players.get(1).table, Set. TOP, players.get(0).hand);

}

done = true;}
else

{
if ((Utility.cardLessThan(players.get(0).table.top(), players.get(1).table.top())))

{
System.out.printin("Player 2's card is higher.");

for (inti=0;i < players.get(0).table.size(); i++)

{
Set.append(players.get(0).table, Set. TOP, players.get(1).hand);

}

for (inti=0;i < players.get(1).table.size(); i++)

{
Set.append(players.get(1).table, Set. TOP, players.get(1).hand);

}

done = true;}
else

{
System.out.printin("It's a tie. That means WAR!");

warCount = (warCount + 1);

for (inti=0;i<4;i++)

{

Set.prepend(players.get(0).hand, Set. TOP, players.get(0).table);

}

for (inti=0;i<4;i++)
{
Set.prepend(players.get(1).hand, Set. TOP, players.get(1).table);

}

System.out.printin("Player 1 and 2 put down 4 cards.");}
}

}
}
}

war.do - MyPlayer.java

public class MyPlayer extends Player {
Set table;

public MyPlayer(String playerName) {
super(playerName);

table = new Set();}

}

HELLO WORLD.do
setup:
do output with "Hello, World!"

round:
do quit

HELLO_WORLD.do - Game.java

import java.util.Scanner;
import java.util.ArrayList;

public class Game {
ArrayList<MyPlayer> players;
Set deck;

int numberOfPlayers = 4;

int highestCard = 12;
boolean ascendingOrder = true;

public Game() {

deck = new Deck(highestCard, ascendingOrder);
deck.shuffle();

players = new ArrayList<MyPlayer>();

for(inti = 0; i < numberOfPlayers; i++) {
players.add(new MyPlayer("Player " + (i+1)));

}

}

public void setup()

{
System.out.printin("Hello, World!");}

public void round()

{
System.exit(0);}

}

HELLO WORLD.do - MyPlayer.java

public class MyPlayer extends Player {
public MyPlayer(String playerName) {
super(playerName);

}

}

testLogic.sh
#!/bin/sh

DO_FIFTY_TWO="./compile"
JAVA="javac"
RUNTIME="runtime/"
MAIN="main"

Set time limit for all operations
ulimit -t 30

globallog=testLogic.log
globalfaillog=testLogicFAIL.log

rm -f $globallog
rm -f $globalfaillog
error=0
globalerror=0

keep=0

Usage() {
echo "Usage: testLogic.sh [options] [.do files]
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1

}

Compiler(¥{
Run "make"

}

SignalError() {
if [$error -eq 0] ; then
echo "FAILED"
error=1
fi
echo" $1"

}

SignalErrorFail() {
if [$error eq 0] ; then
echo "$1 failed to fail"; else
echo "OK - $* failed"
fi
echo" $1"

}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {
generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2

}

Run <args>
Report the command, run it, and report any errors
Run() {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1

}
}

Run <args>
Report the command, run it, and report any errors
RunFail() {

echo $* 1>&2

eval $* && {

SignalErrorFail "$1 failed on $*"

return O

}
}

CompileRunTime(){
Run "javac -g MyPlayer.java" &&
Run "javac -g Game.java" &&
Run "javac -g Utility.java" &&
Run "javac -g main.java" &&
Run "javac -g Card.java" &&
Run "javac -g Deck.java" &&
Run "javac -g Player.java" &&
Run "javac -g Set.java"

}

Check() {
error=0
basename="echo $1 | sed 's/.*\V//
s/.do//"
reffile="echo $1 | sed 's/.do$//"
basedir=""echo $1 | sed 's/V[*V]*$//"]."
javafile="echo $basename |[sed -e 's/*//g' -e 's/-/_Ig"
ajavafile="echo $javafile | perl -pe 's/\S+\u$&/g"

newjavafile="echo $ajavafile | perl -pe 's/([* 1)_([a-z])/\1\\u\\2/g"

echo 1>&2
echo "##H##H# Testing $basename” 1>&2

generatedfiles="$generatedfiles tests/${newjavafile}.java tests/${basename}.diff
tests/${basename}.out" &&

Run "$DO_FIFTY_TWQO" $1 &&

Run "mv Game.java MyPlayer.java $SRUNTIME" &&

Run "cd runtime/" &&

CompileRunTime &&

Run "java -cp . $MAIN >" . /tests/${basename}.out &&

Run "make clean" &&

Run "cd .." &&

Compare tests/${basename}.out tests/${basename}.gold tests/${basename}.diff

Report the status and clean up the generated files

if [$error -eq 0] ; then
if [$keep -eq 0] ; then
rm -f tests/*.out
fi
echo "OK - $basename succeeds"
echo "###### SUCCESS" 1>&2
else
echo "###### FAILED" 1>&2
globalerror=$error
fi
}

CheckFail() {
error=0
basename="echo $1 | sed 's/.*\V//
s/.do//"
reffile="echo $1 | sed 's/.do$//"
basedir=""echo $1 | sed 's/V[*V]*$//"]."
javafile="echo $basename |[sed -e 's/*//g' -e 's/-/_Ig"
ajavafile="echo $javafile | perl -pe 's/\S+\u$&/g"

"

newjavafile="echo $ajavafile | perl -pe 's/([*])_([a-z])/\1\\u\\2/g

echo 1>&2
echo "###HH#H Testing $basename" 1>&2

generatedfiles="$generatedfiles tests/test_failure/${newjavafile}.java
tests/test_failure/${basename}.diff tests/test_failure/${basename}.out" &&
RunFail "$DO_FIFTY_TWO" $1 ">" tests/test_failure/${basename}.out

Report the status and clean up the generated files

if [$error -It 1] ; then
if [$keep -eq 0] ; then
rm -f tests/test_failure/${basename}.out
fi
echo "OK - $basename succeeds"
echo "#####H# SUCCESS" 1>&2
else
echo "####H#H# FAILED" 1>&2
globalerror=$error
fi

shift “expr SOPTIND - 1°

if [$#-ge 1]
then

files=$@
else

files="tests/*.do"
failfiles="tests/test_failure/*.do"
fi
for file in $files
do
case $file in
*)
Check $file 2>> $globallog
esac
done
for file2 in $failfiles
do
case $file2 in
*)
CheckFail $file2 2>> $globalfaillog

LR

esac

done
exit $globalerror

testParse.sh
#!/bin/sh

DO_FIFTY_TWO="./printer"

Set time limit for all operations
ulimit -t 30

globallog=testParse.log
rm -f $globallog
error=0

globalerror=0

keep=0

Usage() {
echo "Usage: testParse.sh [options] [.do files]
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1

}

SignalError() {
if [$error -eq 0] ; then
echo "FAILED"
error=1
fi
echo" $1"
}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {
generatedfiles="$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2

}

Run <args>
Report the command, run it, and report any errors
Run() {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1

}
}

Run <args>
Report the command, run it, and report any errors
RunFail() {
echo $* 1>&2
eval $* && {
SignalErrorFail "$1 failed on $*"
return O
}
}

Check() {
error=0
basename="echo $1 | sed 's/.*\V//
s/.do//"
reffile="echo $1 | sed 's/.do$//"
basedir=""echo $1 | sed 's/\/[*"V]*$//"]."
javafile="echo $basename |sed -e 's/*//g' -e 's/-/_Ig"
ajavafile="echo $javafile | perl -pe 's\S+\u$&/g"

newjavafile="echo $ajavafile | perl -pe 's/([*])_([a-z])\1\\u\\2/g"

echo 1>&2
echo "##H##H# Testing $basename” 1>&2

generatedfiles="$generatedfiles tests/${newjavafile}.java tests/${basename}.diff
tests/${basename}.out" &&

Run "$DO_FIFTY_TWQO" $1 ">" tests/${basename}.out

#Compare tests/${basename}.gold tests/${basename}.diff

Report the status and clean up the generated files

if [$error -eq 0] ; then
if [$keep -eq 0] ; then
rm -f $generatedfiles
fi
echo "OK - $basename succeeds
echo "#####H# SUCCESS" 1>&2
else
echo "####H#H# FAILED" 1>&2
globalerror=$error
fi
}

while getopts kdpsh c; do
case $cin
k) # Keep intermediate files
keep=1
h) # Help
Usage
esac
done

shift “expr SOPTIND - 1°

if [$#-ge 1]
then
files=$@
else
files="tests/*.do tests/*.do"
fi

for file in $files
do
case $file in
*)
Check $file 2>> $globallog
esac
done

exit $globalerrorexit $globalerror

README. txt

A compiler for Do, a card game programming language designed for
first-time programmers

Final project for COMS 4115, Programming Languages and Translators.

Scanner. ml1

(* scanner.mll groups characters read from input into tokens that are then
* passed to the parser *)

open Parser
open Indent
open Printf

(* Persistent reference cell counter for the current indent depth.)
let cur depth = ref 0

(* This function returns INDENT or DEDENT tokens whenever we change depth.
DEDENT means we’ ve reached the end of a block. INDENT means we’ ve
entered one. In OCaml ”;” has lower precedence than ”“if”, hence all
the begins and ends

If we dedent more than 1 level, we need to produce a token that holds
the number of levels we have dedented. This gets turned into multiple
* dedent tokens later. *)
let eval indent str =
let depth =

Indent. depth count 0 (Indent.explode str)
in

* K K K K X

if depth < !cur depth then begin
let diff = !cur depth - depth in
cur depth := depth;

if diff > 1 then
DEDENT MULT (diff)
else
DEDENT
end
else if depth == !cur depth then
NEWLINE

else begin
cur_depth
INDENT

end

}

(x Complicated Regexes *)
let rgx indent = (C\n’ [
let I‘gX 1d_ [’ bl 7 ,][A, b ”a’ ’Z”O’ b ” ’]*

rule token = parse
(x White Space and Comments *)

AN

| rgx_indent as str

| eof

(* Operators *)

(x Variables *)
‘ ”new”

| “configure”
‘ //haS ”

| “called”

(* Functions *)
” ”

| “do

“with”

”and

”

(x Control Flow

%)

A (/7T

:= depth;

{ token lexbuf }

{ eval indent str }

{ EOF }

{ ADD }

{ MINUS }

{ TIMES }

{ DIVIDE }
{ LT }

{ 6T}

{ LTOE }

{ GTOE }

{ EQUAL }

{ NOTEQUAL}

{DISJ } (¢ i.e.
{ CONJ } (¢ i.e.

{ NOT }
{ PREPEND TOP }

{ PREPEND BOTTOM }

{ APPEND TOP }
{ APPEND BOTTOM }

{ NEW }

{ CONFIGURE }
{ HAS }

{ CALLED }

{ DO }
{ WITH }
{ AND }

AR JE) ®) +

disjunct *)
conjunct *)

{ OPENPAREN }
{ CLOSEPAREN }
{ OPENBRACE }
’ { CLOSEBRACE }
{
{
{
{

. IF)
ELSE }
“while” WHILE }
“for” FOR }
“break” { BREAK !
”continue” { CONTINUE }

|
|
|
|
|
‘ //else//
|
|
|
|

(x Literals *)

| 09]+ as num { NUMBER LITERAL (int of string(num)) }
N[\ % T\ as str { STRING LITERAL (str) }
| “true” { BOOL LITERAL (true) }
“false” { BOOL LITERAL (false) }
(x Miscellaneous ——————————— *)

(* IDs can be any lowercase letter followed by a combination of numbers,
* letters, or underscores. *)

| rgx id as id { ID(d) }

| ((rgx_id)’.) +(rgx_id) as id { DOT ID(id) }

(* Type IDs can be an uppecase letter followed by a combination of letters. *)
| PN =720 -7a 72]% as _type { TYPE(type) }

(* This triggered if comment starts a program. Otherwise comments taken care of
* in rgx_indent. %)
7//7 7 \n” I% { token lexbuf }

(* Punctuation *)
7 { COLON }
”;” { SEMI }

Parser.mly

% {

(¢ parser.mly takes a sequence of tokens produced by the scanner and assembles
* them into an abstract syntax tree. Each pattern—action rule takes some

* pattern in the thus—far—-assembled input and createse a “higher” type out

* of it. *)

open Ast

(x Splits an id with dots in it into a list of ids *)

let split dot_id dot_id =

Str. split (Str.regexp “[.]7) dot id

%}

%token EOF

%token NEWLINE INDENT DEDENT
%token <int> DEDENT MULT
%token DO WITH AND

%token NEW COLON CONFIGURE

%token IF ELSE WHILE FOR SEMI BREAK CONTINUE

%token OPENPAREN CLOSEPAREN OPENBRACE CLOSEBRACE

%token <bool> BOOL LITERAL

%token <string> STRING_LITERAL ID DOT_ID TYPE

%token <int> NUMBER_LITERAL

%token ADD MINUS TIMES DIVIDE LT LTOE GT GTOE EQUAL NOTEQUAL

%token NOT DISJ CONJ

%token PREPEND_TOP PREPEND BOTTOM APPEND _TOP APPEND_BOTTOM

%token HAS CALLED

/* Lowest Precedence */
%left DISJ CONJ

%left EQUAL NOTEQUAL
%nonassoc LT LTOE GT GTOE
%left ADD MINUS

%left TIMES DIVIDE

%right NOT

/* Highest Precedence %/

%start program
%type <Ast.program> program

%%

program:
| header vdecl list func list EOF

| header func list EOF

header:
| config list

{ { configs = List.rev (fst §1);
field decls = List.rev (snd $1);
vars = List.rev $2;
funcs = List.rev $3; } }

{ { configs = List.rev (fst §1);
field decls = List.rev (snd $1);
vars = [];
funcs = List.rev $2; } }

{ @1, D}

| config list field decl list { (%1, $2) }

config list:

| /% nothing */ {0}
| config list config {$2 :: 81}
| config list NEWLINE { $1}
config:
| CONFIGURE ID COLON expr { { config id = $2; config value = $4 } }
field decl list:
| field decl { [$1] }
| field decl list field decl {$2 :: $1}
| field decl list NEWLINE { $1}
field decl:
| TYPE HAS TYPE CALLED ID { { parent type = $1;
field type = $3;
field id = $5; } }
vdecl list:
| vdecl { [$1] }
| vdecl list vdecl {$2 :: $1}
| vdecl list NEWLINE {$1}
vdecl:
| NEW TYPE ID COLON expr { VarDecl ({ var decl id = $3;
var decl type = $2;:
var decl value = $5 }) }
func_list:
| func { [$11)
| func list func {$2 :: $1}
| func_list NEWLINE { $1}
func:
| ID COLON block { { decl name = §1;
formals = [];
body = $3; } |}
| ID WITH formal 1list COLON block { { decl name = §1;
formals = List.rev $3;
body = $5; } }

formal list:
| formal { [$1] }
| formal list AND formal {$3 :: $1 1}

formal:
| TYPE ID

block:
| INDENT stmt 1ist DEDENT
| INDENT stmt list EOF

stmt_list:
| /% nothing */
| stmt list stmt

| stmt NEWLINE
| update

| DO ID

| DO ID WITH arg list

IF expr COLON block

IF expr COLON block ELSE COLON block

WHILE expr COLON block

FOR update SEMI expr SEMI update
COLON block

| BREAK

| CONTINUE

| OPENBRACE stmt CLOSEBRACE TIMES expr

| expr PREPEND TOP expr

| expr PREPEND BOTTOM expr

| expr APPEND TOP expr

| expr APPEND BOTTOM expr

arg list:
| expr
| arg list AND expr

update:
| vdecl
| var COLON expr

NUMBER_LITERAL
BOOL_LITERAL
STRING_LITERAL
var

expr MINUS expr
expr TIMES expr

|
|
|
|
| expr ADD expr
|
|
| expr DIVIDE expr

{ { formal id = $2; formal type = $1 } }

{ List.rev $2 }
{ List.rev $2 }

{1}
{$2 :: §1}

{ $1}
{ Update($1) }
{ Call({ fname = $2; args = [] }) }
{ Call({ fname = $2;
args = List.rev $4 }) }
{1£(32, $4, [}
{ 1£(32, $4, $7) }
{ While($2, $4) }

{ For($2, $4, $6, $8) }

{ Break }

{ Continue }

{ TimesLoop($2, $5) }

{ Prepend ($1, $3, Top) }

{ Prepend($1, $3, Bottom) }
{ Append($3, $1, Top) }

{ Append($3, $1, Bottom) }

{ [$1]}

{$3 :: 81}

{$1}
{ Assign($1, $3) !}

{ Number ($1) }

{ Boolean($1) }
{ String($1) }

{ var($1) }
{ Binop ($1,
{ Binop ($1,
{ Binop (§1,
{ Binop (§1,

Add, $3) }
Minus, $3) }
Multiply, $3) }
Divide, $3) }

expr LT expr { Binop($1, Lt, $3) }

|
| expr LTOE expr { Binop($1, Ltoe, $3) }
| expr GT expr { Binop($1, Gt, $3) }
| expr GTOE expr { Binop($1, Gtoe, $3) }
| expr EQUAL expr { Binop($1, Equal, $3) }
| expr NOTEQUAL expr { Binop($1, NotEqual, $3) }
| expr DISJ expr { Binop($1, Disj, $3) }
| expr CONJ expr { Binop($1, Conj, $3) }
| NOT expr { Unop (Not, $2) }
| OPENPAREN expr CLOSEPAREN { $2}
var:
| ID { Simpleld($1) }
| DOT ID { DotId(split dot id $1) }
%%
ast.ml

(* ast.ml defines a set of disjoint unions or algebraic types that appear
* in our parse tree. The parser is responsible for assembling a series
* of tokens into our tree, and ultimately specifies the complete grammar
* for our language. But the AST can be thought of as specifying the
higher-
* level structure of our grammar, once all tokens have been parsed into
* a type. ast.ml defines all of those types, i.e. every type that will
appear
in our tree.

* % o

NOTE: In this file a type cannot be used before it has been declared.
* NOTE: If you change anything about a type, please update the matching
pretty
* print function below. *)

*)
(* Standard operations of any arity. *)
type op = Add | Minus | Multiply | Divide | Equal | NotEqual | Lt | Gt |
Ltoe
| Gtoe | Disj | Conj | Not

(* A variable, like "a," "turn count," or "player.hand.top"

* Variables can appear in expressions or as part of assignments. *)
type var =
| SimpleId of string
| DotId of string list

type expr =
Number of int (* Literal
String of string (* Literal *)
*

|
|
| Boolean of bool (* Literal
| Var of wvar
| Unop of op * expr
| Binop of expr * op * expr
(* Record for a configuration declaration, i.e. assignment to environment
* variable. *)
type config decl = {
config id : string;
config value : expr;

}

(* Record for a field declaration.
* e.g. Table has Set called discard ¥*)
type field decl = {
parent type : string;
field type : string;
field id : string;
}

(* The header for a program consists of configure and field declarations.
*)

type header = config decl list * field decl list

(* Record for variable declaration.
* Here we're using " type" because "type" is reserved in OCaml *)
type var decl = {
var decl id : string;
var decl type : string;
var decl value : expr;

}

(* Record for a function call *)
type func call = {

fname : string;

args : expr list;

}

(* An "update" is a kind of statement that you can put in the initial
assignment and update sections of a for-loop:

for (update; condition; update)

b S

An update can only be a variable declaration or an assignment. You
can't

* have other kinds of statements--like if statements or while loops——in
a
* for-loop header. *)
type update =
| Assign of var * expr
| VarDecl of var decl

(* Whether a card is drawn form the top or bottom of a deck. *)
type draw source = Top | Bottom

(* None of our statements are also expressions. They do not evaluate to
* anything; they only have side-effects. *)
type stmt =
| Update of update (* Ensures Assigns and VarDecls are statements *)
| Call of func call
| If of expr * stmt list * stmt list
| While of expr * stmt list
| For of update * expr * update * stmt list
| Break
| Continue
| TimesLoop of stmt * expr
| Prepend of expr * expr * draw_source
| Append of expr * expr * draw_source

(* A formal argument has a type and an ID, but no assigned value. ¥*)
type formal = {

formal id : string;

formal type : string;
}

(* Record for a function declaration. ¥*)
type func decl = {

decl name : string;

formals : formal list;

body : stmt list;
}

(* A program consists of a series of variable declarations followed by a
series
* of function declarations. ¥*)
type program = {
configs : config decl list;
field decls: field decl list;
vars : update list;
funcs: func decl list;

(* Pretty Printing

(*

*)

(* The printed tree has a (<type>, val) tuple for each node in the AST. *)

let string of op = function
| Add -> "+"
Minus -> "-"

Multiply -> "#"
Divide -> "/"

Equal -> "="
NotEqual -> "!="
Lt —-> "<"

Ltoe -> "<="

|

|

|

|

|

|

| Gt —> ""sn
|

| Gtoe -> ">="
|

|

|

Disj -> "|"
Conj -> "&"
Not -> "IV
let string of var = function
| SimpleId id -> "(<Var> " ~ id ~ ")"
| DotId id list -> " (<Var> id:" ~ (String.concat "." id list) ~ ")"

let rec string of expr expr =
let value =
match expr with
| Number num -> " (<Number> " ”~ string of int num ~ ")"
| String str -> " (<String> " "~ str ~ ")"
| Boolean boolean ->

let b =
if boolean then
"true"
else
"false"
in

"(<BOOlean> LU b A ")"
| Var v -> string of var v
| Unop(op, e) -> "(<Unop> " " string of op op * string of expr e

| Binop(el, op, e2) -> "(<Binop> " ~ string of expr el ~ " "
string of op op *~ " " ” string of expr e2

" (<Expr> " ~ value ~ ")"

(* e.g. (<Call> name:foo args:[expr, expr]) *)
let string of call call =
let args s =
String.concat ", " (List.map (fun arg -> string of expr arg)
call.args)
in
"(<Call> id:" ~ call.fname *~ " args:[" ”~ args s ~ "])"

let string of var decl var d =

" (<VarDecl> id:" ~ var d.var decl id © " type:"
» var d.var decl type ~ " value:" *
string of expr var d.var decl value ~ ")"

let string of update update =
let value =
match update with

| Assign(var, e) -> " (<Assign> var:" * string of var var * "
expr:"
* string of expr e ©~ ")"
| VarDecl (var d) -> string of var decl var d
in

" (<Update> " ~ value ~ ")"

let rec string of stmt stmt =
let value =

match stmt with

| Call call -> string of call call

| Update (update) -> string of update update

| If(e, tb, fb) -> (* expr, true-block, false-block *)
"(<If> p:" " string of expr e ~ " t-block:[\n
string of block tb ~ "\n] f-block:[\n " %
string of block fb *~ "\n])"

| While(e, b) -> (* expr, block *)

" AN

"(<While> p:" ”~ string of expr e ©~ " loop:[\n "
string of block b ~ "\n])"

| Break -> " (<Break>)"

| Continue -> " (<Continue>)"

| For(a, e, u, b) -> (* assign, expr, update, block *)
" (<For> assign:" ~ string of update a ~ " p:" *

string of expr e ~ " update:" *
string of update u ~ " loop:[\n "
string of block b ~ "\nl])"

| TimesLoop (stmt, expr) ->
" (<TimesLoop> statement:" ~ string of stmt stmt ~ "

A

times:"
string of expr expr ~ ")"
| Prepend(el, e2, draw_source) -—>
let op =
match draw source with
| Top -> "t>"
| Bottom -> "b>"

in
" (<Prepend> " ~ string of expr el ~ " " ~ op ~ "
string of expr e2 ~ ")"

| Append(el, e2, draw_source) ->

let op =
match draw_source with
| Top -> "<t"
| Bottom -> "<b"

in

" (<Append> " * string of expr el ~ " " ~ op ~ "
string of expr ez ~ ")"
in

" (<Stmt> AL A ValU.e A ") n
and string of block block =
String.concat ",\n " (List.map string of stmt block)

let string of function func =
let formals s =
String.concat ", " (List.map (fun formal -> formal.formal type *
" "~ formal.formal id) func.formals)
in

" (<Func> fname:" func.decl name "~ " formals:[" ”~ formals_ s
~ "] body:\n " » string of block func.body ~ "\n)"

let string of config (config : config decl) =
" (<Configure> id:" ~ config.config id ~ " value:"
string of expr config.config value ©~ ")"

A

let string of field decl field decl =
" (<FieldDecl> parent type:" ~ field decl.parent type

A

" field type:"
field decl.field type ~ " id:" ~ field decl.field id ~ ")"

(* List.fold left here instead of String.concat so we can get a \n at the
end
* of the list as well as between the items in the list. *)
let string of program program =
let append nl sl s2 =
sl ~ s2 ~ "\n"
in let configs s =
List.fold left append nl "" (List.map string of config
program.configs)
in let field decls s =
List.fold left append nl ""
(List.map string of field decl program.field decls)
in let vars s =
List.fold left append nl "" (List.map string of update
program.vars)
in let funcs s =

List.fold left append nl "" (List.map string of function
program. funcs)
in
" (<Prgm>\n" ~ configs s ~ field decls s ”~ vars_s * funcs_ s "
")\n"

indent. ml

(* indent.ml contains useful methods used in scanner.mll that help implement
* python—style indentation—-based blocks. Indents can be made using actual
* tab characters or spaces. A mix can even be used, but it would be

* very confusing. *)

(x Converts a string to a list of char %)
let explode str =
let rec exp len ls =
if len < 0 then
1s
else
exp (len — 1) (str.[len] :: 1s)
in
exp (String. length str — 1) []

(¢ Returns the indentation level of the last line in the given string
* i.e., the number of tabs and spaces after the last '\n *)
let rec depth _count count so far = function
| [] => count so far
¢ ::1ls =
match ¢ with
A
| 77 => depth count (count so far + 1) 1s
| ’\n" > depth count 0 1s
|

_ —> depth_count count _so far ls

cache. ml

open Parser

let rec build list num left 1ls =
if num left == 0 then
1s
else

build list (num left — 1) (DEDENT :: 1s)

(* Reads tokens from the scanner and passes them on to the parser. If a
* DEDENT MULT token is read, caches a number of DEDENT tokens equal to the

* depth change, which are then each passed to the parser before going back
* to getting tokens from the scanner. *)
let process =

let cache = ref [] in (k This will be like a static var in the function. *)
fun lexbuf —>

match !cache with
| tok::1s -> cache := ls: tok
| [J => match Scanner. token lexbuf with

| DEDENT MULT(diff) -> cache := build list (diff — 1) [J]; DEDENT
| tok —> tok

stdlib. ml

—~
*

stdlib.ml contains the API for our runtime system. You can think of it as
do’s stdlib.h or stdio.h. It allows programmers to interact with the runtime
system we ve set up with our java classes

This API is in the form of a whole bunch of different declaration types

In C, this is accomplished by including a C header file full of declarations
in C. We aren’ t using include statements, so we just need a list of all

the declarations to pre—-load into our environment as if they had actually
been declared. That way different variables and functions can be set and
called in a do program without confusing the semantic analyzer.

See check prgm in semantic.ml. That’s where these lists are loaded into the
type—checking environment.)

S R R I SHE CHE SR CHE S SR

open Sast

(x A list of var decls that correspond to variables in our environment. The
* list has the form [(var decl, java) ...], i.e. it’s a list of tuples with
* the equivalent java code that a reference to a var will be converted to
* at compile time. All of the var decl value fields are 0 because we don’ t
% need them. *)
let vars = [
({ var decl id = “playerl”;
var decl type = PlayerType;
var decl value = (Sast.Number (0), NumberType):; }
"players. get (0)”) ;
({ var decl id = “player2”;
var _decl type = PlayerType;
var decl value = (Sast.Number (0), NumberType):; }
“players. get(1)”) ;
({ var decl id = “playerd”;
var _decl type = PlayerType;
var decl value = (Sast.Number (0), NumberType):; }
"players. get(2)”) ;
({ var decl id = “playerd”;
var _decl type = PlayerType;
var decl value = (Sast.Number(0), NumberType); }
"players. get(3)”) ;
({ var decl id = ”jack”;
var decl type = NumberType;

var decl value = (Sast.Number (0), NumberType): },
”Card. JACK”) :
({ var decl id = “queen”;
var_decl type = NumberType;
var decl value = (Sast.Number (0), NumberType): },
”Card. QUEEN”) :
({ var decl id = "king”;
var_decl type = NumberType;
var decl value = (Sast.Number (0), NumberType): },
”Card. KING”) :
({ var decl id = "ace”;
var_decl type = NumberType;
var decl value = (Sast.Number (0), NumberType): },
“Card. ACE”) ;
({ var decl id = “diamond”;
var_decl type = NumberType;
var decl value = (Sast.Number (0), NumberType): },
”Card. DIAMOND”) ;
({ var decl id = “club”;
var_decl type = NumberType;
var decl value = (Sast.Number (0), NumberType): },
”Card. CLUB”) ;
({ var decl id = "heart”;
var_decl type = NumberType;
var decl value = (Sast.Number(0), NumberType); }
“Card. HEART”) ;
({ var decl id = ”spade”;
var_decl type = NumberType;
var decl value = (Sast.Number(0), NumberType); }
”Card. SPADE”) ;
({ var decl id = "deck”;
var_decl type = SetType;
var decl value = (Sast.Number(0), NumberType); },
"deck”) :

(x A list of config decls that correspond to configurable environment variables
* in our runtime environment. Here config value also doesn’t matter. *)
let configs = [
{ config id = “numberOfPlayers”:
config value = (Sast.Number (0), NumberType) ;
config type = NumberType; }:
{ config id = “highestCard”;
config value = (Sast.Number (0), NumberType) ;
config type = NumberType; };
{ config id = “ascendingOrder”;
config value = (Sast.Boolean(false), BooleanType) :

config type = BooleanType; }

(k A list of fields for each of our aggregate types. IDs containing dots get
* checked against this list to make sure they are valid. See check fields
% in semantic.ml *)
let fields = [
({ parent type = CardType; field type = NumberType; field id = “rank”; },

,,Val’,) ;

({ parent type = CardType; field type = NumberType; field id = "suit”; },
”suit”) ,

({ parent type = CardType; field type = StringType; field id = “desc”; },

“toString()”) ;
({ parent type = SetType; field type = NumberType; field id = “size” },
”size () //) :

({ parent type = SetType; field type = CardType; field id = “top” },
“top (") ;

({ parent type = SetType; field type = CardType; field id = “bottom” },
“bottom()”) :

({ parent_type = SetType; field type = StringType; field id = “desc”; },
“toString()”) ;

({ parent type = PlayerType; field type = SetType; field id = “hand” },

”hand”) ’
({ parent type = PlayerType; field type = StringType; field id = “desc”; },
“toString()”) ;

(x a list of tuples: ((funcs:Sast.func decl), (java:java call)) *)
let funcs = [

(* *)
(Main Functions *)
(% *)

(¢ Print a line *)
{ decl name = “output”;
formals = [];

body = []; };

(k Print a string *)
{ decl name = “output”;
formals = [{ formal id = “str”;
formal type = Sast.StringType; } 1;
body = []; };

(* Print a number *)
{ decl name = “output”;
formals = [{ formal id = “number”;
formal type = Sast.NumberType; }]:

body = []; };

(¢ Print a boolean *)

“output”;

[{ formal id =
formal type

body = [J; };

{ decl name =
formals =

(x Print a card *)
{ decl name = “output”;
formals = [{ formal id =
formal type

body = []; };

(¢ Print a set *)

{ decl name = “output”;

[{ formal id =
formal type

body = [J; };

formals =

(x Print a player *)
{ decl name = “output”;
formals = [{ formal id =
formal type
body = [1; };

(* Input Bool *)
{ decl name = “input”;
formals = [{ formal id =
formal type

body = []; };

(k Input Int *)
{ decl name = “input”;
formals = [{ formal id =
formal type

body = [1; };

(x Input String *)
{ decl name = “input”;

formals = [{ formal id =
formal type
body = [J; };
(* Quit *)

{ decl name = “quit”;
formals = [];

"boolean”;
= Sast. BooleanType; } 1:

”card”;
= Sast. CardType; } 1:

” ”

set ;
= Sast. SetType: } 1;

"player”;
= Sast. PlayerType: } 1;

”bOOl”;

= Sast. BooleanType; } 1;

” ”

num” ;
= Sast. NumberType: } 1;

” ”

str;
= Sast. StringType; } 1;

body = []; };

(x
(% %)
(x MyPlayer type functions *)
(% *)

e

({ decl name =
formals =
[{ formal id = “card”;
formal type = CardType; }; 1;
body = []; 1},
”drawCard (card)”)
({ decl name = 77;
formals =
[{ formal id = "set”;
formal type = SetType; }];
body = []; },
“drawCard (set)”) :
({ decl name = "7;
formals =
[{ formal id = "i”;
formal type = NumberType; }];
body = []; 1},
"playCard(i)”)
({ decl name = 7”;
formals = [];
body = []; 1},
"getScore()”)
({ decl name = "”
formals = [];

body = []; 1},
"selectCard()”)
(% *)
(x Set type functions *)
(x *)

e

({ decl name =
formals = [];
body = []; 1,
“shuffle()”)
({ decl name =
formals = List.concat ({ formal id = “card”; formal type = CardType; } list)
[{ formal id = ”7i”; formal type = NumberType; };
{ formal id = ”j”; formal type = NumberType; }]
body = []; },
”swap (deck, i ,3)”)

e

e

({ decl name =
formals = [];
body = []; 1},
“draw()”)

({ decl name = 7"

formals =

[{ formal id = "n”;

formal type = NumberType; }];

body = []; 1},
“draw hand(n)”) ;
*)

]

print.ml

(x printer.ml prints the AST for a program using the pretty print functions
* defined in ast.ml
%

* USAGE: . /printer test file.do *)
open Ast

let print_tree lexbuf =
let program =
Parser. program Cache. process lexbuf
in
print string (string of program program)

let =
let file =
open in Sys. argv. (1)
in
print tree (Lexing. from channel file)

sast.ml

(*x sast.ml contains our semantically analyzed abstract syntax tree. Basically,
it is our ast but with type information attached.

Many of the AST types have to redeclared here even if they haven’t
changed. If they incorporate a type that has itself changed, the whole
type has to reclared so that the new version is incorporated rather than
* the old version. %)

open Ast

EE

type datatype = BooleanType | NumberType | StringType | CardType | SetType
| PlayerType

type simple expr =

| Number of int

| String of string

| Boolean of bool

| Var of string

| Unop of op * expr

| Binop of expr * op * expr
and expr = simple expr * datatype

type config decl = {
config id : string;
config value : expr;
config type : datatype;

type field decl = {
parent type : datatype;
field type : datatype;
field id : string;

type var decl = {
var_decl id : string;
var_decl type : datatype;
var decl value : expr;

type update =
| Assign of string * expr
| VarDecl of var decl

type func call = {
fname : string;
args : expr list;

type stmt =
| Update of update
| Call of func call
| If of expr * stmt list * stmt list
| While of expr * stmt list
| For of update * expr * update * stmt list
| Break

| Continue

| TimesLoop of stmt * expr

| Prepend of expr * expr * draw source
| Append of expr * expr * draw source

type formal = {
formal id : string;
formal type : datatype;

type func decl = {
decl name : string;
formals : formal list;
body : stmt list;

type program = {
configs : config decl list;
field decls : field decl list;
vars : update list;
funcs : func_decl list;

(* For use with exceptions *)
let string of type = function
| BooleanType —> “Boolean”
| NumberType —> “Number”
| StringType —> “String”
| CardType —> “Card”
| SetType —> “Set”
| PlayerType —> “Player”

semantic. ml

(* semantic.ml creates an sast from our ast. It basically resolves each item
* in the tree to a type and raises errors if there is a type mismatch

% or unknown ID reference. %)

open Ast

open Sast

(Context *)
(x A symbol table maps ids —> var decls and allows us to verify that a variable
* has been declared and that it is the right type. *)

type symbol table = {

parent : symbol table option;
mutable vars: Sast.var decl list;

(¢ An environment represents the current context for a particular node in our

* tree. *)
type environment = {
configs: Sast.config decl list;
mutable fields: Sast. field decl list;
scope : symbol table;
mutable unchecked calls: Sast. func call list;
mutable func decls: Sast.func decl list;
can break : bool; (k If a break statement makes sense. *)
can continue: bool; (* If a continue statement makes sense.)

(x Exceptions
exception UnknownType of string
exception UndeclaredID of string
exception TypeMismatch of string
exception WrongType of string

exception Redeclaration of string
exception BadProgram of string (¢ No setup or round procedures.)

(* For syntax—ish errors that we re only catching now. *)
exception IllegalUsage of string

(Helper Functions

(k Converts a string representing a type to a type, or throws an error if the

* type is unrecognized. *)

let type of string type str =
match type str with

| “Boolean” —> BooleanType

| “Number” —> NumberType

| “String” -> StringType

| “Card” -> CardType

| “Set” > SetType

| “Player” -> PlayerType

|

(* Looks for a matching config decl and returns it. *)

let find config env id =

List. find (fun config decl —> id = config decl.config id) env.configs

(* Looks for a var in the current scope. If it isn’t there, checks the next

~ —> raise (UnknownType (“The type \”” = type str ~ ”\” is not valid.”))

%)

*)

* scope. If we’ve reach global scope and we still haven’t found the var, throw

* an error. *)

let rec find var scope id =
try
List. find (fun vdecl -> id = vdecl.var decl id) scope.vars
with Not found ->
match scope. parent with
| Some (parent) —> find var parent id
| > raise Not found

(* Checks to see if a var is in the current local scope. *)
let exists var local scope id =

List. exists (fun vdecl —> id = vdecl.var decl id) scope. vars

(* Checks if a type has a field called id by looking through the fields
* available in the current program. *)
let find field env (type, id) =
List. find (fun field decl —>
((type, id) = (field decl.parent type, field decl.field id)))
env. fields

(¢ Checks to see if a field called id exists in the type type. *)
let exists field env (type, id) =
List. exists (fun field decl —>
((type, id) = (field decl.parent type, field decl.field id)))
env. fields

(k Checks if each arg matches its formal. *)
let rec match args args formals =
match args, formals with
| (arg :: args rest), (formal :: formals rest) —>
let , arg type = arg
in let form type = formal. formal type
in if (arg type = form type) then
match args args rest formals rest

else
false
e), [
[0, (i) —> false
C[1, [1 = true

(x Tries to match a function call to a func decl in the environment. Matches
* with both id and arg types so our overloaded output function works. *)
let find func decl env fname args =
List. find (fun func decl —> (fname = func decl.decl name) &&
(match args args func decl. formals))
env. func_decls

(* Checks if a function already exists using an ID only. So programmers using

* our language cannot overload functions themselves. %)
let exists func decl env fname =
List. exists (fun func decl —> (fname = func decl. decl name)) env.func decls

(k %)
(% Semantic Analysis *)
(x %)

(% Recursively checks each ID in a Dotld node after the first
* We need to check each ID to verify it’s a valid field
* in the type of the previous ID. *)
let rec check fields env last type id 1s =
match id Is with
| id :: 1s =
let id = List.hd id Is
in let field decl =
try
find field env (last type, id)
with Not found ->
raise (UndeclaredID("Undeclared field: \”” = id =~ 7.\""))
in
check fields env field decl. field type 1s
| [] - last_type

(* Takes a node of type var in our AST and checks to make sure it refers
* to something in the current scope. Then returns a node of type simple expr
* in our SAST, basically a normal var with attached type information retrieved
* from the current scope or environment.)
let check var env = function
| Ast.Simpleld(id) —>
let vdecl =
try
find var env. scope id
with Not found —>
raise (UndeclaredID(“Undeclared identifier: \”” ~ id = 7.\""))
in
(id, vdecl.var decl type)
| Ast.Dotld(id list) —>
(* Check if the first id is a valid var, then check if subsequent ids
* are valid fields. Final type is type of last field. *)
let first id = List.hd id list
in let vdecl =
try
find var env. scope first id
with Not found ->
raise (UndeclaredID(“Undeclared identifier: \”” = first id ~
“A\""))

in let final id =

String. concat ”.” id list
in
(final id, check fields env vdecl.var decl type (List.tl id list))

(* Takes a node of type Ast.expr and converts to Sast.expr, i.e. an expr
* with an associated type. Also checks to make sure than all ops are used
* with appropriate and matching types. %)
let rec check expr env = function
| Ast. Number (num) —> Sast. Number (num), NumberType
| Ast.String(str) —> Sast.String(str), StringType
| Ast.Boolean(b) —> Sast.Boolean(b), BooleanType
| Ast.Var(var) —>
let id, _type =
check var env var
in
Var (id), type
| Ast.Unop (op, expr) —>
let checked expr =
check _expr env expr
in let , type =
checked expr
in begin match type with
| BooleanType —> Sast.Unop(op, checked expr), type
| -> raise (WrongType (string of type type = ” cannot be used with” ~
” the \”” ~ string of op op ~ ”\” operator.”)) end
| Ast.Binop (exprl, op, expr2) —>
let checked exprl =
check expr env exprl
in let , typel =
checked exprl
in let checked expr2 =
check expr env expr2
in let , type2 =
checked expr2
in
if (not (typel = type2)) then
raise (TypeMismatch(string of type typel ~ ” does not match ”
" string of type type2 = ”.”))
else
let raise error type op =
raise (WrongType (string of type type =~ ” cannot ” ~
"be used with the \”” ~ string of op op ~
”\” operator.”))
in let type =
match op with
| Add —>
begin match typel with

| NumberType | StringType —> typel
| > raise error typel op end
| Minus | Multiply | Divide —>
begin match typel with
| NumberType —> typel
| > raise error typel op end
| Equal | NotEqual —>
BooleanType
| Lt | Gt | Ltoe | Gtoe —>
begin match typel with
| NumberType | CardType —> BooleanType
| => raise error typel op end
| Disj | Conj —>
begin match typel with
| BooleanType —> BooleanType
| => raise error typel op end
| —> raise (Failure(”Illegal operator.”))
in
Sast. Binop (checked exprl, op, checked expr2), type

(* Takes a var decl node and checks to see if the var has already been declared
* in the current scope. Raise an error if it has. Then checks to make sure
* the var decl has the type that it is supposed to have. If it does, we then
* add it to the current scope and return an Sast.var decl. *)
let check var decl env (vdecl : Ast.var decl) =
if exists var local env. scope vdecl.var decl id then
raise (Redeclaration("The variable \”” = vdecl.var decl id =~ ”\” has”
” already been declared in its scope.”))

else
let checked expr =
check expr env vdecl.var decl value
in let , type =
checked expr
in
if ((type of string vdecl.var decl type) = type) then
let checked vdecl =
{ var_decl id = vdecl.var decl id;
var decl type = type;
var decl value = checked expr; }

in
(* Add to scope then return *)
env. scope. vars <— checked vdecl :: env. scope. vars;
checked vdecl
else

raise (TypeMismatch(”You have assigned an expression of type” ~
“\”” " string of type type ~ “\” to a variable of 7 ~
“type \”” " vdecl.var decl type =~ 7.\"))

(x Header var decls get parsed as updates, but we need a function to check them
* that always returns a var_decl so that they can be put into scope. See
* check pgrm below. *)
let check update header env update =
match update with
| Ast.Assign(,) —> raise (WrongType (“You cannot assign in the header.”))
| Ast.VarDecl (vdecl) —>
check var decl env vdecl

(* Checks an update by checking its subtypes. Also makes sure assignments
* are valid. %)
let check update env = function
| Ast.Assign(var, expr) —>
let var_id, var type =
check var env var
in let checked expr =
check _expr env expr
in let , expr type =
checked expr
in
if (var type = expr type) then
Sast. Assign(var id, checked expr)
else
raise (TypeMismatch(”Cannot assign an expression of type \
string of type expr type = ”“\” to a variable of 7 ~
“type \ string of type var type = “.\""))
| Ast.VarDecl (vdecl) —>
Sast. VarDecl (check var decl env vdecl)

nwy o~

nw o~

(* Takes a call and adds it to the environment to be checked later —
* see check call and check prgm. Also checks the arguments to the call. *)
let add call env (call : Ast.func call) =
let unchecked call =
{ fname = call. fname;
args = List.map (check expr env) call.args }
in
env. unchecked calls <- unchecked call :: env.unchecked calls;
unchecked call

(k Checks statements for semantic errors. Statements themselves don’t have
* types. Scoping largely implemented here. *)
let rec check stmt env = function
| Ast.Update (update) —> Sast.Update (check update env update)
| Ast.Call(call) —> Sast.Call(add call env call)
| Ast. If(expr, tblock, fblock) —>
let checked expr, expr type = check expr env expr in

begin match expr type with
| NumberType | BooleanType —>
let new_scope =
{ parent = Some (env. scope) ;
vars = []; }
in let new env =
{ configs = env. configs:
fields = env. fields;
scope = new_scope;
unchecked calls = env.unchecked calls;
func_decls = env. func_decls;
can_break = env.can _break;
can continue = env.can continue; }
in
let checked tblock =
check block new _env tblock
in let checked fblock =
check block new env fblock
in
Sast. If ((checked expr, expr type), checked tblock,
checked fblock)
| > raise (WrongType(“The type \”” ~ string of type expr type ~
”\” cannot appear in the predicate of an if statement.”))
end
| Ast.While(expr, block) —>
let checked expr, expr type = check expr env expr in
begin match expr type with
| NumberType | BooleanType —>
let new scope =
{ parent = Some (env. scope) ;
vars = []; }
in let new env =
{ configs = env. configs;
fields = env. fields;
scope = new scope;
unchecked calls = env.unchecked calls;
func decls = env. func decls;
can_break = true;
can_continue = true; }
in
let checked block =
check block new env block
in
Sast. While ((checked expr, expr type), checked block)
| => raise (WrongType(“The type \”” ~ string of type expr type ~
”\” cannot appear in the predicate of an if statement.”))
end

| Ast.For (setup, expr, update, block) —>
let checked setup = check update env setup in
let checked expr, expr type = check expr env expr in
let checked update = check update env update in
begin match expr type with
| NumberType | BooleanType —>
begin match checked update with
| Sast.Assign(,) —>
let new_scope =
match checked setup with
| Sast.VarDecl (var decl) —>
{ parent = Some (env. scope) ;
vars = [var decl]; }
>
{ parent = Some (env. scope) ;
vars = []; }
in let new env =
{ configs = env.configs;
fields = env. fields;
scope = new_scope;
unchecked calls = env. unchecked calls;
func decls = env. func decls;
can_break = true;
can continue = true; }
in
let checked block =
check block new env block
in
Sast. For (checked setup, (checked expr, expr type),
checked update, checked block)
| => raise (I1legalUsage(”"You cannot declare a variable in the”
" 7 update section of a for loop header.”)) end
| —> raise (WrongType (“The type \”” ~ string of type expr type ~
”\” cannot appear in the predicate of an if statement.”))
end
| Ast.Break —>
if env. can break then
Sast. Break
else
raise (IllegalUsage(“You can only use a break statement ” ~
”inside of a while or for loop.”))
| Ast.Continue —>
if env.can continue then
Sast. Continue
else
raise (IllegalUsage("You can only use a continue statement ” ~
”inside of a while or for loop.”))

| Ast. TimesLoop (stmt, expr) —>
let checked stmt =
check stmt env stmt
in let checked expr, expr type =
check _expr env expr
in
begin match expr_ type with
| NumberType —>
Sast. (TimesLoop (checked stmt, (checked expr, expr type)))
>
raise (WrongType ("You can only use expressions of type ”

“Number to repeat a statement.”))
end

| Ast.Prepend(el, e2, draw source) —>
let checked exprl, expr typel =
check expr env el
in let checked expr2, expr type2 =
check _expr env e2
in begin match expr_typel, expr_ type2 with
| SetType, SetType —>
Sast. Prepend ((checked exprl, expr typel),
(checked expr2, expr type2), draw source)
| => raise (WrongType (“The prepend operator can only be used with ” ~
“variables of type Set.”))
end
| Ast. Append(el, €2, draw source) —>
let checked exprl, expr typel =
check expr env el
in let checked expr2, expr type2 =
check expr env e2
in match expr typel, expr type2 with
| SetType, SetType —>
Sast. Append ((checked exprl, expr typel),
(checked expr2, expr type2), draw source)
| => raise (WrongType (“"The append operator can only be used with ” ~

“variables of type Set.”))
and check block env block =

List.map (check stmt env) block

(x Checks that a config decl refers to an existing configurable variable and
* that the expression is of the right type. *)
let check config env (config decl : Ast.config decl) =
let real config = (* i.e. the existing config *)
try
find config env config decl. config id
with Not found ->

raise (UndeclaredID(”"There is no configurable variable with the ” ~

”id \”” ~ config decl.config id =~ 7.\""))
in let checked expr =
check expr env config decl. config value
in let , expr_type =
checked expr
in
if (expr type = real config.config type) then
{ config id = config decl.config id;
config value = checked expr;
config type = expr type; } (* Returning Sast.config decl *)
else
raise (TypeMismatch(”"The configurable \”” =~ config decl.config id ~
"\ 7 has type \77 7
string of type real config.config type ~ ”\” and cannot
"be configured with an expression of type \”” ~
string of type expr type =~ 7.\”"))

” o~

(¢ Checks that a field decl is adding to type Player, since we decided that
* it didn’ t make sense to extend Card or Set. Then makes sure that the
% ID doesn’ t match a field that already exists. Finally, adds the field
* to the environment. %)
let check field decl env (field decl : Ast.field decl) =
match (type of string field decl.parent type) with
| PlayerType —>
begin match (type of string field decl. field type) with
| NumberType | BooleanType | StringType | SetType —>
if (not (exists field env (PlayerType, field decl.field id))) then
let checked field
{ parent type = type of string field decl.parent type;
field type = type of string field decl. field type;
field id = field decl. field id; }

in
env. fields <- checked field :: env. fields;
checked field (* Returning Sast.field decl *)
else
raise (Redeclaration(“You cannot add the field \
field decl. field id = ” to Player, because Player ” ~
"already has a field by that name.”))
| => raise (WrongType (“You cannot add a field of type \
field decl. field type =~ ”\” to Player.”))
end
| —> raise (WrongType(“"You cannot add a field to any type except Player.”))

nnr o~

nn

(k Converts an Ast.formal to an Sast.formal. This won’t be necessary if we
* decided to parse type strings into proper types in the first place. *)
let check formal (formal : Ast.formal) =

{ formal id = formal. formal id;

formal type = (type of string formal.formal type); }

(x Converts a formal parameter to a variable declaration.)
let var _of formal formal =
{ var decl id = formal. formal id;
var_decl type = formal. formal type;
var decl value = (Sast.Number(0), NumberType); } (k This shouldn’t ever be
accessed. *)

(* Checks the body of a function declaration before adding the function to the
* environment. Also checks to make sure we aren’ t redeclaring a function.
* This check is performed simpy with IDs, so overloading is not possible. *)
let check func decl env (func decl : Ast.func decl) =
if (not (exists func decl env func decl.decl name)) then begin
(* Adds formals to scope before checking body. %)
let checked formals =
List.map check formal func decl. formals
in let new scope =
{ parent = Some (env. scope) ;
vars = List.map var of formal checked formals; }
in let new env =
{ configs = env.configs;
fields = env. fields;
scope = new _scope;
unchecked calls = env.unchecked calls;
func decls = env. func decls;
can_break = false;
can continue = false; }
in let checked fdecl =
{ decl name = func decl. decl name;
formals = List.map check formal func decl. formals;
body = List.map (check stmt new env) func decl.body; }
in
env. func decls <- checked fdecl :: env. func decls;
checked fdecl
end
else
raise (Redeclaration(”“The procedure \”” ~ func decl.decl name
" ”\” already exists and cannot be redeclared.”))

(k¢ Checks to see if setup and round are declared in a program. %)
let rec has setup and round has setup has round func decls =
match func decls with
| [] => has setup && has round
| fdecl :: rest —>
match (fdecl.decl name, List.length fdecl. formals) with
| “setup”, 0 —> has setup and round true has round rest

(x
*
%
%

| “round”, 0 -> has setup and round has setup true rest
| —> has setup and round has setup has round rest

Checks to see if a call corresponds to a declared function. If not, throw
an error. Since a call only matches if it has been given the right args

a call using the correct ID but wrong arg types will not work.

This function has type unit. *)

let check call env (call : Sast.func call) =

(

EE R R S

*

let =
try
find func decl env call. fname call. args
with Not found ->
raise (UndeclaredID(”"The procedure \”” = call.fname ~ ”\” has 7~ ~
“not been declared with the given parameters..”))
in

match call. fname with
| “input” ->
(% Input only ever takes one arg. *)
let expr, =
List. hd call. args
in
begin match expr with
| Var () —> 0
| —> raise (I1legalUsage(”You can only use a variable ” ~
“expression with \”input.\””))
end
| > (O (¢ Returns unit. *)

Performs semantic analysis on a program. Also makes sure that a program
has a setup and a round procedure. Finally, ensures that all calls are
matched with a func decl.

In other words, takes an AST and makes an SAST.

The variables, configurations, fields, and functions provided by stdlib.ml
are added to the environment here. *)

let check prgm (prgm : Ast.program) =

let std vars =
List.map fst Stdlib. vars
in let std fields =
List.map fst Stdlib. fields
in let header scope =
{ parent = None:
vars = std vars; }
in let header env =
{ configs = Stdlib. configs;
fields = std fields;

scope = header_ scope;

unchecked calls = [];

in

in

in

in

in

in

in

in

func decls = [];
can_break = false;
can_continue = false; }

let added fields =

List.map (check field decl header env) prgm. field decls

let all fields =

List. append std fields added fields

let (added vars : var decl list) =

List.map (check update header header env) prgm.vars

let (added vars update : update list) =

List.map (fun var decl —-> Sast.VarDecl (var decl)) added vars

let all vars =

List. append std vars added vars

let global scope =

{ parent = None;

vars = all vars; }

let env =

{ configs = Stdlib. configs;

fields = all fields;
scope = global scope;
unchecked calls = [];
func decls = [];
can_break = false;
can continue = false; }

let checked prgm =
{ configs = List.map (check config header env) prgm. configs;
field decls = added fields;
vars = added vars update;
funcs = List.map (check func decl env) prgm. funcs; }
in
if (has _setup_and round false false checked prgm. funcs) then begin
List.iter (check call env) env.unchecked calls;
checked prgm
end
else
raise (BadProgram(”You must have a setup and round procedure” ~
” in your program. They must both take 0 arguments.”))

compile. ml

(x compile.ml produces an AST and prints it as a java Game class

*
* Usage: ./compile program.do *)

open Sast

(% *)
(x Helper Functions *)
(k %)

exception CompilerError of string

(* Finds the java code for a given variable ID from stdlib. If the ID isn’t
* in stdlib, just returns the id. *)
let find java for var var id =

let java code =

try
let , java =
List. find (fun (vdecl,) -> (vdecl.var decl id = var id))
Stdlib. vars
in
java
with Not found ->
var_id
in
java_code

(¢ Returns the java equivalent of a field access. *)
let find java for field field id =
let java code =

try
let , java =
List. find (fun (field decl,) ->
(field decl. field id = field id)) Stdlib. fields
in
java
with Not found —>
field id
in
java code
(*)
(x Java Printing *)
(% %)

(x This is basically a reimplementation of the pretty print functions in
* ast.ml, except now we re printing in Java' s syntax rather than our own
made—up “pretty” syntax.

The resulting program will be ugly because we don’ t have information about

% spacing or indentation in the SAST. We could maybe keep track of depth and
% space things that way, but it’s not really worth it because nobody is meant
% to see the java code and java ignores whitespace anyway. *)

(* Converts a type to a string representation of a java type. *)
let java of type = function

| BooleanType —> “boolean”

| NumberType —> “int”
| StringType —> “String”
| CardType —> “Card”
|
|

SetType —> ”“Set”
PlayerType —> “MyPlayer”

(% Converts an op to the Java equivalent. *)
let java _of op = function
| Ast.Add —> “+”
Ast.Minus —>

” ”

” ”

|

| Ast.Multiply —> "%
| Ast.Divide —> 7/

| Ast.Equal -> 7=="

| Ast.NotEqual -> ”1="
| Ast.Lt = "<~

| Ast.Gt > 77

| Ast.Ltoe —> "<="

| Ast.Gtoe —> ">="

|
|
|

”

Ast.Disj —> 7
Ast.Conj —> "&&”
Ast.Not —> 71”7

(¢ Returns the proper java field names concatenated together. *)
let rec java of field vars field vars =

match field vars with

‘ [] _> ””n

| => 7.7 7 (String.concat ”.” (List.map find java for field field vars))

(* Returns the java code for a var. Vars in the stdlib have special java
* representations, most vars just use the var id. *)
let java of var var id =
let id list =
Str.split (Str.regexp(“[.]7)) var id
in
match id list with
| [J => raise (CompilerError(“No id given to java of var.”))
| hd :: t1 -=> find java for var hd ~ java of field vars tl

(x Converts a simple expression in our SAST to java code, checking the stdlib
* for special java code representations.)

let rec java of expr = function

| Number (num), —> string of int num
| String(str), —> str
| Boolean(boolean), —>
if boolean then
“true”
else
"false”
| Var(var), -> java of var var
| Unop(op, e), —> java of op op = java of expr e
| Binop(el, op, e2), = —>
let , expr_types =
el
in

begin match expr_types with
| NumberType | BooleanType —>
“(” " java of expr el =7 7~
java of expr e2 ~)7
| StringType —>
begin match op with
| Ast.Add —>
”(” " java of expr el = 7 ” " java of op op
java of expr e2 = 7)”
| Ast.Equal ->
7 (Utility. compareString(” ~ java of expr el ~ 7, 7 ~
java of expr e2 = 7))”
| Ast.NotEqual ->
7 (1Utility. compareString (" =~ java of expr el =~ 7, 7~
java of expr e2 = 7))”
| —> raise (CompilerError(”Invalid Op.”))
end
| CardType —>
begin match op with

~r r

java_of op op

~n n -

| Ast.Equal —> 7 (Utility.cardEqual (” ~ java of expr el
77 7 java of expr e2 = 7))”
| Ast.NotEqual -> ”(Utility. cardNotEqual(” "~ java of expr el

” ” o~

, java of expr e2 = 7))”
| Ast.Lt —> “(Utility. cardLessThan(” = java of expr el

” ”

, " java of expr e2 = 7))”
| Ast.Gt —> “(Utility. cardGreaterThan(” ~ java of expr el
77 7 java of expr e2 = 7))”
| Ast.Ltoe —> 7 (Utility. cardLessOrEqualThan(” ~ java of expr el

, " java of expr e2 ~ 7))”
| Ast.Gtoe —> “(Utility. cardGreaterOrEqualThan(” ~

java of expr el ~ 7, 7~
java of expr e2 = 7))”

| > raise (CompilerError(“Invalid Op.”))

end
| SetType | PlayerType —>
begin match op with
| Ast.Equal | Ast.NotEqual ->

~ v nr ~n v ~

(" " java of expr el java of op op
java of expr e2 = 7)”

| > raise (CompilerError(“Invalid Op.”))

end

end

(% Converts a config decl to a java assignment. Only numbers, booleans, or
* variables can be used for configure statements. %)
let java of config config =

match config. config value with

| Number (n), —>
let num =
if (config.config id = “highestCard”) then
n-1
else
n
in

” _”

config. config id =~ 7 =" 7 string of int (num) =~ 7;
| Boolean(b), _ -> config.config id =~ ” =" " string of bool b ~ ”;”
| Var(var), > config.config id =~ ” =" " java of var var ~ ”;”

| —> raise (CompilerError(“Invalid type used for configure statement.”))

(* Converts a field decl to a java instance var declaration. *)
let java of field decl field decl =
(string of type field decl.field type) ~ 7 7 ~ field decl.field id ~ ”;\n”

(* Converts a field decl to a java var assignment, which will appear in the
* constructor of the MyPlayer class. *)
let java of field decl assign field decl =

match field decl. field type with

| SetType —> field decl. field id = ” = new Set();”

| StringType —> field decl. field id =~ 7 = \"\";”

| BooleanType —> field decl.field id =~ ” = false;”

| NumberType —> field decl.field id =~ = 0;”

(*x Should be caught by semantic analysis, here to prevent warning.)

| —> raise (CompilerError(“You can’t have a field declaration with type

" ”\”” " string of type field decl.field type =~ 7.\""))

”

(x Takes a list of field decls and converts them to a MyPlayer class. *)
let java of player field decls =
let instance vars =
String. concat “\n” (List.map java of field decl field decls)
in let assigns =

String. concat “\n” (List.map java of field decl assign field decls)
in

“public class MyPlayer extends Player {\n” ~

instance vars

“public MyPlayer (String playerName) {\n”

" ”super (playerName) ; \n” ~

assigns

K

let java of args args =
String. concat 7, 7 (List.map java of expr args)

let java of call call =
match call. fname with
| “output” —> “System. out.println(” = java of args call.args = ”)”
| “input” —>
let expr, type =
List.hd call. args
in let var id =
begin match expr with
| Var(id) —> id
| > raise (CompilerError(“Bad type passed to input().”))

end
in

begin match type with
| BooleanType —> var id ~ ” = Utility. inputBool)”
| NumberType —> var id ~ 7 = Utility. inputInt()”
| StringType —> var id = 7 = Utility. inputString()”
| —> raise (CompilerError (“Bad type passed to input().”))
end

| “quit” >

”System. exit (0)”
| —> call.fname ~ “(” " java of args call.args ~)"

let java of update = function
| Assign(id, e) -> java of var id =~ 7 = ” = java of expr e
| VarDecl (var) —> java of type var.var decl type ~ 7 7~

var.var decl id =~ 7 =
java of expr var.var decl value

let rec java of stmt stmt =
match stmt with
| Call(call) —> java of call call =~ ”:”
| Update (update) —> java of update update =~ ”;”
| If(e, tb, fb) —> “if (© ~ java of expr e = “)\n” ~ java of block tb
" ”7else\n” = java of block fb
| While(e, b) —> “while (© = java of expr e = ”)\n” ~ java of block b

| Break —> “break;”
| Continue —> “continue;”

| For(a, e, u, b) —> “for (" java of update a =~ ”; 7 ~ java of expr e

”

.77 java of update u =~ “)\n” ~
java_of block b

| TimesLoop (stmt, expr) —> “for (int i = 0; i < ” " java of expr expr

7. i+H)\n{\n” ~ java of stmt stmt
| Prepend(el, e2, draw source) —>
let source =
match draw_source with
| Ast.Top —> ”“Set. TOP”
| Ast.Bottom —> “Set.BOTTOM”
in
“Set.prepend(” = java of expr el ~ 7, 7 source
java of expr e2 = 7);\n”
| Append(el, e2, draw source) —>
let source =
match draw_source with
| Ast.Top —> “Set. TOP”
| Ast.Bottom —> “Set.BOTTOM”
in

” ” o~ ~ 7

“Set. append (" ~ java of expr el ~ 7, source
java of expr e2 = 7):\n”
and java_of block block =
let value =
String. concat “\n” (List.map java of stmt block)
in
“{\n” ~ value = “}\n”

let java of function func =
let access =
match func. decl name with
| ”setup”
| “round” —> “public”
| => “private”
in let formals =
String. concat 7, ” (List.map (fun formal —>
formal. formal id) func. formals)
in

(java_of type formal. formal type)

~ “\n}\n”

~ ” o~

’

” o~
’

~n r -

access 7 void ” 7 func.decl name = (" ° formals =~ “)\n”

java of block func. body

(* Default config values yet to be implemented *)
let java of game program =
let config vars =

String. concat “\n” (List.map java of config program. configs)

in let instance vars =
String. concat ”” (List.map (fun vd —> java of update vd ~ ”;”)
program. vars)
in let funcs =
String. concat “\n” (List.map java of function program. funcs)
in
“import java.util.Scanner;\n” ~
“import java.util.ArrayList;\n\n” ~
“public class Game {\n” ~
“ArrayList{MyPlayer> players:;\n” ~
”Set deck:\n” ~
”int numberOfPlayers = 4;\n
”int highestCard = 12;\n” ~
"boolean ascendingOrder = true;\n” ~

” o~

instance vars =~ “\n” ~

“public Game() {\n” ~

config vars ~

“deck = new Deck (highestCard, ascendingOrder);\n” ~
“deck. shuffle() ;\n” ~

"players = new ArrayList<{MyPlayer>();\n” ~

“for(int i = 0; i < numberOfPlayers; i++) {\n” ~
“players. add (new MyPlayer (\"Player \” + (i+1))):\n” ~
Nn” -

“\n\n” ~

funcs

”} ”

let compile lexbuf =
let program = (* This is our SAST. *)
Semantic. check prgm (Parser.program Cache. process lexbuf)
in let game file =
open out “Game. java”
in let player file =
open out “MyPlayer. java”
in
output string game file (java of game program) ;
output_string player file (java of player program. field decls)

let =
let input file =
open_in Sys. argv. (1)
in
compile (Lexing. from channel input file)

Makefile

a simple “make” command builds the compiler
“make printer” builds the AST printer

CFLAGS = —¢
YACCFLAGS = -v

OBJ = ast.cmo indent.cmo scanner.cmo parser.cmo cache.cmo sast.cmo\
stdlib. cmo semantic. cmo

compile : $(0BJ) compile.cmo
ocamlc —o $@ str.cma $(0BJ) compile. cmo

compile.cmo : compile.ml ast.cmi
ocamlc $(CFLAGS) $<

indent. cmo : indent.ml
ocamlc $(CFLAGS) indent.ml

cache. cmo : cache.ml scanner.ml parser.ml
ocamlc $(CFLAGS) cache.ml

semantic. cmo : semantic.ml
ocamlc $(CFLAGS) semantic.ml

scanner. cmo : scanner.ml parser.cmi indent.cmi
ocamlc $ (CFLAGS) scanner. ml

parser.cmo : parser.ml parser.cmi
ocamlc $(CFLAGS) parser. ml

parser.cmi : parser.mli ast.cmi
ocamlc $(CFLAGS) parser.mli

stdlib. cmo : stdlib.ml
ocamlc $(CFLAGS) stdlib.ml

sast.cmi : sast.ml
ocamlc $(CFLAGS) $~

sast.cmo: sast.ml
ocamlc $ (CFLAGS) $~

ast.cmi : ast.ml
ocamlc $(CFLAGS) $~

ast.cmo : ast.ml
ocamlc $(CFLAGS) $~

parser.ml parser.mli: parser.mly
ocamlyacc $ (YACCFLAGS) $~

scanner.ml : scanner.mll
ocamllex $~

.PHONY : printer
printer : $(0BJ) printer.cmo
ocamlc —o $@ str.cma $(0BJ) printer.cmo

printer.cmo : printer.ml ast.cmo cache. cmo
ocamlc $(CFLAGS) printer.ml

.PHONY : clean
clean:
rm compile printer *.cmi *.cmo scanner.ml parser.ml parser.mli *.output *. java

do

#!/bin/bash

RunJava () {
mv Game. java MyPlayer. java runtime/
(cd runtime && make run && make clean)

make
./compile $1 && RunJava
make clean

