
COMSW4115 Proposal

Manager Ben Edelstein, bie2103

Language Guru Dan Schlosser, drs2161

System Architect Brendon Fish, bjf2127

System Integrator Nate Brennand, nsb2142

Tests / Validation Brian Shin, ds2791

With increased demand in the public and private sector for cloud-connected mobile and

web applications has come a rising need for web servers to maintain state across multiple

devices and users. Development of web servers is complex, however. Building a web server

using modern web server packages requires learning a server-side programming language,

and then integrating a web server package and implementing required methods.

Furthermore, local testing and development of these servers is excessively complex, as they

have numerous dependencies and are difficult to build.

RAPID (RAPID API Dialect) is a programming language intended specifically for the rapid

development of web APIs that are compatible with modern standards for data transmission

(like REST). Using RAPID, developers can easily code and launch a database-backed REST

API server that guarantees JSON or XML shapes in responses. RAPID compiles to Go , for

extreme portability and built-in multi-threading.

Statically typed.

The keywords class , param , and namespace define a "path context". All methods

defined with a class <ClassName> {...} block are associate with instances of that

RAPID (RAPID API Dialect)

Our Team

Introduction

Language Features

class, and yield routes that begin with that class's classname. Similarly, any http

routes within a namespace <namespace_name> {...} block have the namespace name

appended to the "path context". Finally, functions defined within a param

<param_name> {...} block are required to declare a parameter param_name , which is

also appended to the "path context".Nested blocks are appended from left to right,

outside in. See the comments (//) in the following code snippet to see the "path

context" for each block:

// Path context: /
class User {
 // Path context: /user/
 param user_id {
 // Path context: /user/<user_id>/
 namespace books {
 // Path context: /user/<user_id>/books/

 }
 }
}

HTTP and routing primitives. The http and func are used to define functions. If

 http is used, the method name is appended to the "path context", yielding the

complete route. The func keyword, which may not be nested within param or

 namespace blocks, defines instance methods that may access the class instance using

the self keyword. If a http is left unnamed (see below), it is implicitly named '' .

// Path context: /
class User {
 namespace list {
 http (int max) User[] {
 users = get_a_list_of_users(max)
 return users, 200
 }
 }
}

This creates a route GET /user/list/ on the API, which will require a query string

parameter max . All routes generated are lowercase.

 http methods must return a tuple, where the second entry is a HTTP status code.

Allowed HTTP methods for all http routes are implicitly only GET , but these may be
overridden:

http[POST] create() str {

 // this route only accepts POST requests

 return '', 201

}

Implicit JSON and XML handling. Routes accept and return Objects, which are
serialized to and decoded from JSON under the hood. Parameters are required to exist
in the query string if they are declared as arguments to http methods. If the argument
name has JSON , or XML prepended, the request body will be parsed, looking for an
object encoded in the specified type. Arguments within the parentheses of a http
function declaration must follow the order: path, query string, request body. For
example:

class User {

 str name

 str password

 int id

 param user_id {

 http update_profile_info(int user_id,

 bool overwrite=True,

 JSON User profile_info) User {

 // update user instance with id `user_id` with profile_info,

 // overwriting if `overwriting` is set in the query string

 }

 }

}

Here user_id is a path param, overwrite is an optional boolean parameter (with
 True as it's default value) in the query string, and profile_info is matched against
the JSON-decoded response body to take the form:

{

 "name": "AzureDiamond",
 "password": "hunter2",
 "id": 42
}

SQL database-backed (Postgresql). Classes are mapped to SQL tables, and the data is
accessed using the build in standard library methods db_get , db_delete ,
 db_insert , and db_update . SQL joins are not supported.

http hello() str {
 return "Hello World", 200
}

$ curl http://localhost:5000/hello
Hello World

class Tweet {
 str message
 str username

 http list(max=20) Tweet[] {
 tweets = self.db_get({limit: 20})
 return tweets, 200
 }

 http[POST] (JSON Tweet tweet) str {
 self.db_insert(tweet)
 return '', 201
 }
}

$ curl -X POST -d '{"message": "just setting up my twttr", "username": "jack"}'
$ curl http://localhost:5000/tweet/list?max=2
[
 {
 "message": "just setting up my twttr",

Example Programs

1. hello_world.rapid

2. twitter.rapid

 "username": "jack"
 },
 {
 "message": "you can go hunter2 my hunter2-ing hunter2",
 "username": "AzureDiamond"
 }
]

