
n2n
A Relational Graphing Language

Project Manager: Elisheva Aeder (ea2621)
Language Guru: Nicholas Ray Falba (nrf2118)
System Architect: Johan M. Mena (jmm2371)
Verification & Validation: Jialun Liu (jl4347)

Motivation
In today’s world there is an escalating interest in relationships. Be it the
connection of people on a social networking platform, of family members in a
family tree, of variables in a mathematical equation, or the connection of trains in a
city subway system—we are constantly trying to find networks of people and
things and analyze how they interrelate. Most often, relationships are
implemented in a programming setting via graph data structures containing sets
of nodes and edges that define connections between the nodes. In standard
programming languages, however, graphs can be tedious to create and manipulate,
requiring the creation of separate classes for nodes and edges, and burdening the
programmer to keep track of their graphs manually. Finding and analyzing
relationships between nodes of a network can be challenging. We therefore
created n2n, a language that provides high-level abstraction to create, maintain,
and manipulate graphs, with a specific focus on the relationship between the
nodes.

n2n has nodes, edges and graphs as built-in data types to assist a programmer in
the simplistic construction and maintenance of graphs. When one node is
connected to another, the relationship between them is named and specific to
those nodes. The graphs can be bidirectional in that there can be two different
relationships between two nodes depending on the direction of the relationship.
For example, node A has the relationship of Parent to node B, while node B has the
relationship of Child with node A. The storage and maintenance of the connections
and node data occurs under the hood, without the programmer’s need to create a
data structure with which to implement the graph. This alleviates the difficulties
of developing networks of nodes and eases the creation of algorithms to
manipulate them.

Syntax

Data Types

Basic types

Int data type representing a positive or negative integer
String data type representing a plain text word, phrase, or sentence using

ASCII
Bool data type that can only take two values, true or false
Double data type representing a floating point number

Complex Types

Data represents a grouping of basic and / or other complex types. The
number of fields, and the diversity of their types are up to the
programmer

Node represents a node in a graph. It must contain at least some Data.
They can be instantiated either explicitly, or implicitly (see
below)

Relationship represents a relationship between two nodes. They can be
instantiated explicitly or implicitly (see below)

Graph represents a collection of nodes with relationships. This is the
main thing our language is supposed to create and manipulate

Collections (colls)

List an ordered collection of elements
Map a key-value store

Language Keywords

If/else used to indicate certain conditions
under which a block of code ought to be
executed. Of form :

if(Bool expression){
…
} else {
…
}

let Used to indicated a declaration of a

variable. Of form:

let var_name: data_type

Operators
+, -, *, / Arithmetic
>, <, ==, !=, >=, <= Comparative
&&, ||, ! Logical
= Assignment
: Used after a variable name in instantiation to indicate the

data type that the variable is.
. Used to access a field in a “grouping”.

Built-in functions
We have a few built-in functions as part of the standard library of our language.

node() Takes an argument that is one of the basic data types or a
grouping and spits back a node containing that data.

rel() Takes a node, a basic data type, and another node and returns a
relationship between the first node and another node.

ins() Takes a graph, and a relationship. There are two cases:
The relationship contains two nodes that already exist in the
graph, in which case, the function will simply insert a new
relationship between the two nodes in the graph;
One of the nodes in the relationship doesn’t exist. In which case
the function will create an empty node implicitly and define a
relationship between the existing node and the new node.

rem() Takes a graph, and either a relationship or a node. If the second
argument is a node, then the function removes the node from the
graph and all the relationships associated with it (from nodes to
it/and from it to nodes). If the second argument is a relationship,
only the relationship is removed.

neighbors() Takes a graph and a node. Returns a list of all the direct neighbors
of that node. In particular, this will return only those neighbors
for which the node has an edge directed toward (not from).

addField() Takes two arguments: a basic data type, and a variable name. This
tells the compiler to add a field into one of our basic data types,
sort of like adding an instance variable to a Java class. This is
useful for adding different types of data to Nodes later in the
program.

Operations on collections
● map(coll, fn) ; returns an array of the results of running fn on each elem of

coll;
● reduce(coll, fn, init) ; combines all elements of coll by applying fn to two

args at a time, starting from init;

● each(coll, fn) ; applies fn to each elem of coll, returns the original coll;
● filter(coll, pred) ; yields every element in coll to a predicate pred;

Useful native syntax

Line termination by new line. No semicolons.

Native definitions of graphs and graph elements:

Defining a relationship
let r1: Relationship = [A 4 B]
Where A and B are connected by an edge with weight 4. If A or B are not nodes already,
these nodes are created implicitly.

Defining a graph
let graph: Graph = {A 4 B

 B 5 C
 C 3 A
 D 4 A}

This creates a graph with 4 empty nodes, A, B, C, and D. Edges will be created from A to
B, B to C, C to A, and D to A, with relationships defined by the integers 4, 5, 3, and 4,
respectively.

Comments
Our language only supports multi-line comments. Use ; to start and ; to end.

Sample Code
; declare some data ;
data SwimmingPool {
 let length: Int
 let size: Double
}

; declaring a relationship with one attribute ;
data Connected [
 let isConnected: Bool
]

; another relationship;
data sortaConneted [
 let isSortaConnected: Bool
]

; declaring a Swimming Pool Graph that contains SwimmingPool nodes related
through some relationships;
let spg: Graph = { p1 Connected p2
 p1 Connected p4

 p1 sortaConnected p3
 p2 Connected p3
 p3 sortaConnected p4 }

; filter direct neighbors by relationship, nodes connected to node p1 either
directly or indirectly would be returned;
let connected-neighbors: List = neighbors(p1 Connected)

; get direct neighbors ;
let p1Neighbors: List = neighbors(p1)

; inserting a node into the ‘spg’ graph ;
ins(spg {p6 Connected p7})

; This removes the edge from A to D, and D as well if there are no more
relationships associated with it (pointing to/coming from) ;
rem(spg {p6 Connected p7})

; This removes the Node D and all edges associated with it (pointing to/coming
from) ;
rem(spg D)

Depth-first search comparison n2n vs. Java

n2n

addField(Node, visited: Boolean) ; Node now has a boolean field called visited;

fn visited(n: Node) -> void { n.visited = true }

fn visitAllNodes(g: Graph, n: Node) -> void {

if (! n.visited) {
visited(n)
each(neighbors(n), { node in visitAllNodes(g, node) })

}
}

; Dollar sign indicates start of main method ;
$

let node1: Node = node(Visited)
let node2: Node = node(Visited)
let node3: Node = node(Visited)
let g:Graph = { node1 1 node2

 node2 2 node1
 node3 3 node1 }

dfs(g, node1)
Java

import java.util.ArrayList;
import java.util.List;

class Main {
 private static class Node {
 private boolean visited;
 private List<Node> neighbors;

 public Node() {
 this.visited = false;
 this.neighbors = new ArrayList<Node>();
 }

 public boolean isVisited() {
 return this.visited;
 }
 public void setVisited(boolean visited){
 this.visited = visited;
 }

 public void addNeighbor(Node node){
 this.neighbors.add(node);

 }

 public List<Node> getNeighbors() {
 return this.neighbors;
 }
 }

 private static class Graph {
 List<Node> nodes;
 public Graph() {
 this.nodes = new ArrayList<Node>();
 }

 public Graph(List<Node> nodes) {
 this();
 for(Node node : nodes) {
 this.nodes.add(node);
 }
 }

 public Node getFirst() throws Exception {
 if (nodes.isEmpty()) {
 throw new Exception();
 } else {
 return nodes.get(0);
 }
 }
 }

 public static void main(String[] args) throws Exception {
 Node n1 = new Node();
 Node n2 = new Node();
 n2.addNeighbor(n1);
 n1.addNeighbor(n2);
 List<Node> nodes = new ArrayList<Node>();
 nodes.add(n1);
 nodes.add(n2);
 Graph g = new Graph(nodes);
 dfs(g, g.getFirst());
 System.out.println("Done");
 }

 public static void visitAllNodes(Graph g, Node n) {
 if(n.isVisited()) {
 return;
 }
 n.setVisited(true);
 for (Node node : n.getNeighbors()) {
 dfs(g, node);
 }

 }
}

