
'corgi' Proposal
PM: Alisha Sindhwani (as4312)
Guru: Justin Zhao (jxz2101)
Testing: Melissa O’Sullivan (mko2110)
Infrastructure: Philippe-Guillaume Losembe (pvl2109)

September 24, 2014

Description
corgi is a language centered on music translation, generation, and analysis. It will be able to
read in a MusicXML file which are both standardized digital file formats for interpreting music
and translate the files into the appropriate data structures. Similarly, a user will be able to
generate music directly through the implementation of our musical data structures. These data
structures will allow our language to quantitatively analyze and find patterns in music that would
be difficult to do manually.

Proposed Uses
corgi’s main selling point is its ability to search through music. Our data structures make it easy
to identify and return the location of specific instances in a given composition. An example
program could be finding the longest subsequence of rising notes. This search functionality will
allow users to compare multiple pieces of music. corgi can also be used to programmatically
generate music.

Syntax
Similar to Java with the list comprehension functionality of Python. Every statement line ends in
a semicolon.

Comments
Single line comments are denoted by #:

int x = 2; # the int x is set to the value 2

Multiple line comments are included between two sets of 3 apostrophes.

‘’’ The comment can span multiple
 lines if denoted with opening and
 and closing delimiters as shown ‘’’

Variable Declarations
Variables are declared as in Java. The type declaration precedes the variable name which is
then followed by an ‘=’ as the assignment operator, the value to be assigned to the variable, and
a semicolon.

pitch p = 54;

Control Flow
Control flow options similar to Java with brackets required. There is support for if, else, for, and
while.

int count = 0;
for(int i=0; i < 10; i++) {
 if (count < 5) {
 while (count < 3) {
 count ++;
 }
 }
 else {
 count = 2;
 }
}

Name What Declaration

string standard char sequence

int standard 32-bit integer int x = 4;

frac two integers that represent a fraction fraction f = <3/4>;

duration wrapper around fraction duration d = <7/8>;

pitch wrapper around integer, this can also be
instantiated as 'C+4' pitch p = 52;

rhythm a collection of durations rhythm r = [d, d, d];

chord a collection of pitch duration tuples chord c = [(p1, d1),
(p2, d1)];

track a sequential list of chords track t = [c1, c2, c3];

composition a collection of tracks composition c = [t1,
t2, t3];

Utilities
corgi will come with three utility functions.

Function
Name What it Does Usage

print() print string message to stdout print("Hello, World")

import() imports a musicxml file into a composition data
type

track =
import(filename)

export() exports a composition into a musicxml file export(track,
filename)

Example Programs
Generate Random Track

int trackLength = 0;
track t;

while (trackLength < 100?) {
 chord randomChord;
 duration randomDuration = randomFraction;
 for(i=0; i < randomlessthan5; i++) {
 randomChord += randomPitchInt;
 }
 t.add(randomChord);
 trackLength += duration from earlier;
}

Everything Goes Up an Octave
composition c = import("filepath/test.xml");

for (t in fun) {
 for (ch in t) {
 pitches += Music.OCTAVE;
 }
}

export(c, “xml”, “filepath/test2.xml”);

