
FRY - A Flat File Data Processing Language

Tom DeVoe
tcd2123@columbia.edu

September 22, 2014

1 Introduction

Computers have been used for data analysis since the days of UNIVAC and IBM System/360 and the field is still
growing. From Big Iron to Big Data, there will always be a need for methods which enable users to process and
transform data sets. There are plenty of languages around which allow you to do this - R and SQL are more tailored
towards this functionality, but you can even accomplish this processing even with more general purpose languages
like Java or Python.

However, analyzing data sets with pure imperative languages feels awkward to me. There are a lot of times when
you are performing actions on groups of records where loops feel heavy-handed. SQL allows you to process data
sets nicely without having to use loops, but SQL is only easily used with databases, and is much too verbose for my
liking. So, I am setting out with the goal to develop FRY1, a language for querying, processing, and transforming
data in flat text files.

2 Language Overview

The broad vision of FRY is of a language which will allow for a concise definition of any arbitrarily complex
transformations. The way that users can define these transformations succintly is by combining any of the Primitive
Transformations into Complex Transformations, which are a special type of function which takes in a set
and returns a transformed version of that set. Combining these Complex Transformations into more elaborate
transformations will allow for succint expression of complicated business logic or data analysis. FRY will also allow
for regular functions which can return any of the other Built-in Data types.

The syntax of the language will be a combination of a dynamic and static type system. When defining a Record
(a data-type on which I will elaborate on in the following section) or a function you will need to explicitly define
the types of the fields which make it up. Outside of these cases, the type system will be dynamic.

FRY will borrow elements from both functional and imperative programming languages. There are times when
processing data that operations need to be repeated and there are times when operations on a data set are much
more nicely expressed through functional means. So, a number of different control flow statements will be taken
from imperative languages (for, while,if,elif), but there will also be functional-like set operations (à la SQL).

2.1 Built-in Types

• int - an 8-byte integer value.

• str - A text value. Can be a single character or an arbitrarily long string.

• float - A double-precision floating-point number

• bool - a boolean value, either true or false

• Field - an array of a specific type of element. Every column in a data set is a field

• Record - a collection of different data types. Can used to map the record layout of a data set, for creation of
complex data types. Every row in a data set is represented by a record.

• Set - A data set which you can perform a number of operations on to enable data transformations. A Set is
made up of Records (the rows), Fields (the columns), and a layout which describes the data.

1The name is just an homage to a certain television show I am fan of and has no special meaning w.r.t data processing

1

2.2 Operators

• () - Parentheses are used to indicate the quantity inside should be treated as a Set. Also used when calling
functions.

• { } - Brackets can indicate either (a) the definition inside is a record or (b) when combined with the dot
operator on a composite data type, that you are accessing a subset of that data type’s elements (c) the inside
of a function or a control section.

• . - The dot operator allows you to access elements of any of the composite data types (Field, Record, or Set)

• $ - The dollar sign substitutes a variable with it’s value. Can be used to dynamically access different fields by
name.

• * / + - ^ < > - The mathematical operators will all perform their standard behavior on ints and floats.
On strs, the + sign will serve as the concatenation operator.

• % - The percent sign will serve as a wildcard character for string matching.

• ==, != - The equivalence operators will compare values by value, not reference.

• &&, || - Double ampersand and double vertical bar represent logical AND and OR, respectively.

• Read/Write - These keywords will allow the program to read or write to a file or stdin/stdout/stderr

• if, elif, for, while - These keywords will control flow, as they do in most imperative programming lan-
guages. for loops will support iterating over elements using the for ... in syntax used in Python and
Bash.

2.3 Primitive Transformations

The meat and potatoes of FRY are a few Primitive Transformations, which when used in combination allow the
programmer to express any arbitrarily complex data transformation. All these transformations return a set. These
transformations are:

1. Return a subset of Fields from a set or record

For some input set of records S with fields F1, F2, F3, you can obtain a subset of those fields and assign it to
a new set S2 like so:

Returns a subset of the fields
S2 = (S.{F1,F2})
Returns a field
values = S.F1
Returns all fields with the exception of those listed
S2 2 = S.{!F1}

2. Conditionally return a subset of records from a set

For set S3 with fields F1, F2, F3, where F1 is an int or a float, you can return all records where F1 > 15
and assign it to a new set S3

S4 = (S3 if F1 > 15)

3. Sort a set on one or more fields, collating based on the system’s locale

S5 = (Sort S4 on F1, F2)

4. Join two sets together on one or more fields You can choose to return matched and/or unmatched records from
either side (the keywords UMR, M, and UML describe which records to return)

S6 = (Join S1.F1 == S2.F1, S1.F2 == S2.F2 ret UMR,M)

5. Concatenate two record sets with the same format

S7 = (S1, S2)

2

3 Typical Use Cases

The aim for FRY is to be able to accomplish any data processing necessary. This includes:

• Data Validation - Flagging, fixing, or removing bad data from a predefined data set

• Extracting Relevant Data - Extracting data relevant to certain queries (e.x. all Users who are under the
age of 23 or all payments made from the state of Missouri)

• Merging Data Sets from Different Sources - Integrating data sets from multiple sources, potentially all
with different file layouts

• Tracking Data Changes - Tracking and recording records which have changed, have been deleted, etc. One
common use case of this is a CDC, illustrated in the example.

• Analyzing Data - Statistically analyzing data to gain further insight

These examples are often combined to perform more intricate processing. This is just a subset of the ways that
FRY can be used to process data.

4 Example Program: CDC

The following example programs implement a CDC. CDCs are a common process used in data-warehoues to capture
and track changes in frequently updated data. In this example, the program takes in a file with the current (updated)
records and a file with the previous records. Any record in the previous file and not the current file was deleted, any
record not in the previous file and in the current file is new, and any matching record with different field values in
the previous file and current file is changed. I have shown how one could in FRY two different ways:

• The case which only needs to handle a specific data set

• A general case where there I define a complex transformation which can perform a CDC on any data set

Specific Case

This defines the layout of the data and reads in the two input files

layout = {int key, str fname, str lname, str addr, delim ","}
previous set = (Read "/home/tdevoe/previous.txt", layout)
current set = (Read "/home/tdevoe/current.txt", layout)

Get the deleted, new, and matched records by joining the two files on the key.
Fields with a common name are accessed by referencing the
side they came from (R or L)

deleted set = ((Join previous set.key=current set.key ret UML).{key, L.fname, L.
lname, L.addr})

new set = ((Join previous set.key=current set.key ret UMR).{key, R.fname, R.lname
, R,addr})

matched set = (Join previous set.key=current set.key)

Need to check the records in matched set to find out if they are changed

changed set = (matched set if L.fname != R.fname or L.lname != R.lname or L.addr !=
R.addr)

write each of the changed/deleted/new records to their correspond output file

(Write "/home/tdevoe/deleted records.txt", deleted set , "append")
(Write "/home/tdevoe/new records.txt", new set , "append")
(Write "/home/tdevoe/changed records.txt", changed set , "append")

3

General Case

Definition of a generalized CDC transformation
Takes in the two sets being processed and the name
of the key field
trans CDC (Set current set , Set previous set , str key) {

Get the deleted, new, and matched records by
joining the two files on the key.
Fields with a common name are accessed by referencing the
side they came from (R or L)

deleted set = (Join previous set.$key=current set.$key ret UML)
new set = (Join previous set.$key=current set.$key ret UMR)

When fields are joined with the same name
The fields are renamed so the field from the left is L $fieldname
and the right is R $fieldname
matched set = (Join previous set.$key=current set.$key)

This gets the layout of the original data
orig fields = current set.layout.{!$key}

The ":" indicates that the value before it should be set to
its value after the code following the ":" is completed
changed set = (matched set if isChanged:

isChanged = true
for fld name in orig fields {

isChanged = isChanged && { L $ {fld name} == R $ {
fld name}

}
}

)

The function addValue will be a transformation implemented
in the standard library. It’s purpose is to take a set and append
a value to every record in the set and adding a field
with the third argument’s name to the layout

ret ((addValue(deleted set , "D", "status")), (addValue(new set , "N", "
status")), (addValue(changed set , "C", "status")))

}

This defines the layout of the data and reads in the two input files

data layout = {int key, str fname, str lname, str addr, delim ","}
previous set = (Read "/home/tdevoe/previous.txt", data layout)
current set = (Read "/home/tdevoe/current.txt", data layout)

processed data = (CDC(current set , previous set , "key"))

write each of the changed/deleted/new records to their correspond output file

(Write "/home/tdevoe/deleted records.txt", (processed set if status == "D") , "
append")

4

(Write "/home/tdevoe/new records.txt", (processed set if status == "N"), "append"
)

(Write "/home/tdevoe/changed records.txt", (processed set if status == "C"), "
append")

5

