Project Proposal for EZMath

Group Information:

Manager: Piaoyang Cui pc2618
Language Guru: Yi Wang yw2580
System Architect: Shangjin Zhang §z2425
Verification & Validation: Zhejiao Chen zc2291

1 Introduction

1.1 Motivation

Complex mathematical operations and representations is always highly demanded for
scientific programming. When creating top-notch academic papers, LaTex, a markup
language to typeset document, is often used to prettify mathematical expressions and the
overall layout. By adopting syntax from LaTex, user can easily type complicated
mathematical equations for calculation purpose. Thus, we propose a new but familiar
language called EZMath, including math expression syntax from LaTex, modifying
unpleasant features in C, hopefully it could make programming in C with heavy
mathematical manipulation more smoothly.

1.2 Description

EZMath is a LaTex syntax supported modified C language. It adopts the exact syntax for
describing complex mathematical expressions from LaTex. With the ease of expressing
complex mathematical expressions, programmers can focus on the bigger picture. The
compiler for this project will translate EZMath program into an equivalent program written in
another high-level language -- C++/C.

2 Language Definition
2.1 Data Types

Type Definition Example

int integer value inti=0;

double double-precision floating-point | double d = 2.0;
numbers

bool boolean value bool flag = true;

formula a mathematical formula using | formula f = $$
Latex syntax \sum_{i=1}Mn}i}

$S;

matrix a matrix using Latex syntax matrix m = $$
\begin {bmatrix}
1&2&3\
48&5&6\\
7&88&9

\end {bmatrix}

$$

2.2 Basic Arithmetic Operators

We support basic arithmetic operators for int, double, including, “+”, “-”, “*”, /" and “N”
(power). Also, we support logical operators, such as “<”, “>” “==" “>=" “<="_"“&&” (and), “||
(or) and 1 (not).

2.3 Advanced Arithmetic Operators

Matrix Operators:

Operator Definition Example
+ matrix add A+B
- matrix minus A-B
* matrix multiply A*B
.* multiply the corresponding A.*B
elements
/and \ matrix divide A*B=C
B=A\C
A=C/B
A divide the corresponding A./B
elements
’ matrix transpose A’

Formula Operators:

Operator

Definition

Example

()

solve the formula with parameters

formula f = $$
\sum_{i=1}Mn}i}

int result = f(%n, 4);

/I “result” has value 10 now

2.4 Control Flow

Control flows exactly follow C convention.

if(condition1){

}

else if(condition2){

}

else{

}

while(condition){

}

for(; ;5){
}

2.5 Comment

Comments exactly follow C convention.
// for one single line
[***| for multiple lines

3 Sample Codes

func main() int

{

matrix A = $$

\begin{bmatrix}
1&0 &2\\
-1&38&1

\end{bmatrix}

$$;
matrix B = $$
\begin{bmatrix}
3 & 1\\
2 & 1\\
1&60
\end{bmatrix}
$$;
matrix C = A * B;
/* now C is $$
\begin{bmatrix}
5 & 1\\
4 & 2
\end{bmatrix}

$$;
*/

// Introduce a math equation with parameters
formula f = $%
\frac{ \log_{x}{y} } {\cos theta}
$%;
double result = f(%x%y%theta, 2, 16, 60);

// or
double result

$3
\frac{ \log_{x}{y} } {\cos theta}
$$ (%x%y%theta, 2, 16, 60);

return result;

4 Test Plan

What we plan to do for testing is to build up a suite of tests gradually and continuously
during the construction of the compiler. As the functionalities of the compiler are gradually
implemented, the tests for unit functionality are as well added to the test suite library.
Additionally, we will seek ways to make the testing part as automatic and fast as possible.

The ways to achieve this goal may be to run the test suite in a framework, and build a one
command to run the test suite. Since the rules for our language are very likely to be
changed during the process, it is expected that we will make changes to the compiler very
often, which will introduce bugs in the older code with high possibility. Thus regression tests
will be needed and the test suite just comes in handy, because all the older tests will run to
make sure no bugs are introduced when adding changes.

