
1	of	7

QUark	Language	Reference	Manual

Daria Jung (djj2115), Jamis Johnson (jmj2180), Jim Fan (lf2422), Parthiban Loganathan (pl2487)

Introduction

This is the reference manual for QUark, a high level language for quantum computing.

Lexical	Conventions

Comments

Single line comments are denoted using a % while multi-line comments use %{	}%. Anything
between the brackets will be commented out.

Identifiers

Identifiers are made up of alphabetical characters, numbers, underscores, and the first
character cannot be a number. Identifiers are case sensitive.

Keywords

The following identifiers are reserved:

Constants

Number	Constants

Numbers are represented as either a sequence of digits or an integer part, a decimal point, a
fraction part, and an optionally-signed exponent part which consists of an 'e' and a sequence
of integers. If the decimal point and the exponent part are included then the fraction part is
necessary. All numbers are considered as floats and will be compiled down to c++'s 8-byte,
double precision type.

String	Constants

Strings can one or more string constants enclosed in double or single quotes. Individual
string constants can be alphabetical characters - both lower and uppper case - and special
reserved escape sequences which are composed of a backslash \ followed by an alphabetical
character. The following escape sequences are defined:

\\

\n

\'

\"

qreg	num	complex	frac	bool	str	if 	elif	else 	while 	return 	for 	in 	len	bit	and	or	

null 	import 	mod


2	of	7

\t

\r

Syntax	Notation

In this definition we will use bold to define literals and italics for categories. We use Backus-
Naur Form to speficy the grammar.

Types

type-specifier ::= primitive-type | array-type | function-type | null

Identifiers have an associated type and the null type has no value.

Primitive	Types

primitive-type ::= number-type | fraction-type | complex-type | quantum-register-type | boolean-
type | string-type

Number	Type

Numbers are denoted using the following the literal num

All numbers will be compiled to c++ doubles.

Fraction	Type

Fractions are given by the following literal frac and can be constructed using the syntax

fraction-type ::= number-type $ number-type

Complex	Type

complex is the literal used to denote the complex type and is composed of numbers having the
form:

complex-type ::= number +/- number i

The real and imaginary parts can be accessed using re and im.

Quantum	Register	Type

There are two quantum register types: sparse and dense. The bracket literals, < and > are used
to denote a quantum register and an optional apostrophe suffix, ' means the quantum register
is treated as sparse.

quantum-register-type ::== \ | \'

The first number is the size of the quantum register and the right number is the initial state.

Boolean	Type

Booleans use the literal bool and can take the value of the literals true or false.

String	Type

3	of	7

We use the str literal to indicate a string type, and strings are sequential alphabetic characters
or escape sequences wrapped in single or double quotes.

List	Type

list-type :== [primitive-type]

Function	Type

Functions accept zero or more variables and return a primitive type or list type.

Expressions

expression :== base-expression | multiplicative-expression | additive-expression | relational-
expression | equality-expression | logical-expression | assignment | function-call

Base	Expression

base-expression ::= identifier | constant | (expression)

Multiplicative	Expression

multiplicative-expression ::= expression \ expression | expression / expression | expression mod
expression*

Additive	Expression

additive-expression ::= expression + expression | expression - expression

Relational	Expression

relational-expression :== expression > expression | expression < expression | expression <=
expression | expression >= expression

Equality	Expression

equality-expression :== expression == expression expression != expression

Logical	Expression

logical-expression ::= expression and expression expression or expression

Assignment

assignment :== identifier type = expression

Assignments are right associative and therefore can be chained together such as: alice	=	bob
=	"missing"

Functions

function-call ::= identifier(argument-list) argument-list ::= argument-list, expression | expression

Expressions are evaluated before passed into the function and all parameters are pass by-
value.

Declarations

4	of	7

declaration ::= primitive-declaration | array-declaration | function-declaration

Primitive	Type	Declarations

primitive-declaration ::= identifier primitive-type-specifier | identifier primitive-type-specifier =
expression

Array	Type	Declarations

array-declaration ::= identifier [primitive-type-specifier] | identifier [primitive-type-specifier] =
[index-list] index-list ::= index-list, expression | expression

Function	Type	Declarations

function-call ::= def identifier return-type (parameter-list) statement-block parameter-list ::=
param, parameter-list | param | ϵ

Statements

statement ::= expression | declaration | statement-block | selection-statement | iteration-
statement | return-statement

Blocks

statement-block ::= { statement-list } statement-list ::= statement, statement-list | ϵ

Selection	Statements

selection-statement ::= if (expression) statement else statement | if (expression) statement

You can nest if statements by writing else	if	(expression)	statement.

Selection	Statements

return-statement ::= return statement

Iteration	Statements

iteration-statement ::= while (expression) statement | for (iterator) statement iterator ::=
identifier in array-expression | identifier in range range ::= expression : expression : expression |
expression : expression

Import	Statements

import-statement ::= import string-literal

Grammar

top-level ::=

top-level-statement top-level

top-level-statement

top-level-statement ::=

5	of	7

datatype identifier (param-list) { statment-block }

datatype identifier (param-list)

declaration

import-statement

statement-block ::=

statement statement-block

ϵ

import-statement ::= import string-literal

datatype ::= number	|	frac	|	complex	|	qreg	|	bool	|	string	|	null

expression ::=

expression + expression

expression - expression

expression expression*

expression / expression

expression mod expression

expression < expression

expression <= expression

expression > expression

expression >= expression

expression == expression

expression != expression

expression or expression

expression and expression

(expression)

constant

{expression-list}

identifier ()

identifier (expression-list)

6	of	7

expression-list ::=

expression , expression-list

expression

declaration ::=

identifier = expression

datatype identifier

datatype [identifier]

statement ::=

if (expression) statement else statement

if (expression)statement

while (expression) statement

for (iterator) statement

{ statement-block }

expression

declaration

return expression

return

iterator ::=

identifier in range

identifier in expression

range ::=

expression : expression : expression

expression : expression

param ::=

datatype identifier

datatype [identifier]

param-list ::=

param, param-list

7	of	7

param

ϵ

constant ::= number	|	frac	|	complex	|	qreg	|	bool	|	string	|	null

