do fifty-two:

Language Reference Manual

Sinclair Target
Jayson Ng
Josephine Tirtanata
Yichi Liu

Yunfei Wang

1. Introduction

We propose a card game language targeted not at proficient programmers but at people who
have never programmed before. For these people, programming a card game in something like
C or Java would be prohibitively difficult, so it makes sense to give them an alternative language
tailored to their inexperience and to the problem of creating a card game. The time they invest in
learning this language is not time they might otherwise have spent coding, but rather an
opportunity for them to grow more comfortable with the idiosyncrasies of computer

programming. Therefore our language will be first and foremost a pedagogical tool. It will not try
to compete as an “easy” option for a programmer who could code a card game in dozens of

different ways. It will instead be a way to introduce students to programming as gently as
possible in a familiar domain.

Our goals for the language then are as follows: do fifty-two, as we’ve chosen to call it, must be
intuitive and high-level, so that students can grasp it without feelings of frustration or despair. But
it must also be sufficiently related to more traditional programming languages to serve as a good

stepping-stone to them.

2. Types

Primitive Types Meaning

Number Numbers are defined as a 64bit signed
integer with a range of —2,147,483,648 to
2,147,483,647. Which is similar to the integer

class found in other languages such as Java.

String String is a sequence of characters
surrounded by double quotes. A string is

made of an array of characters.

Boolean Booleans are defined by true and false
keywords. Booleans are considered their own
type, thus when an expression is defined with
both a boolean operator and a non-boolean

variable it will create an error.

Composite Types Meaning

Card A data type representing a card.
Fields:

Number rank

Number suit

String desc

Set A data type representing an ordered collectior]
of cards, whether that collection is supposed
to be a deck, hand, or something else.
Fields:

Number size

String desc

Card top

Card bottom

Player A data type representing a player, or possibly
a dealer.

Fields:

Set hand

String Desc

Data in do-fifty-two is expressed in a finite and well defined set of data types. There are three

primitive types in do, with several composite data types to facilitate the creation of card games.

There are no floating point numbers because the rules of card games don’t ever -- as far as we
know -- call for fractional parts. Each of the composite data types has a field called desc, which
contains a string description of the data it contains. When an instance of a composite data type

is passed as an argument to the output function (see below), the desc field is what is printed.

New data types cannot be created, but the existing data types can be extended. New fields can
be added to an existing type like so:

typename has typeName called variableName

A type extension is global and should not appear inside a function. Meaning that, all instances of
the first data type have a filled of the second data type with the given name. For example,

Player has Number called score

would make the field Player_score available throughout a program.

3. Lexical Conventions
3.1 Identifier

An Identifier is a sequence of letters, digits or underscores. The first character must be

alphabetic. An underscore (“_”) is not considered to be alphabetic. Upper and lower case letters

are considered to be different.
3.2 Keywords

The following identifiers are reserved for use as keywords and may not be used.

o |f

e celseif
e else

e while
e for

e break

e continue

e until

e true

o false
e do

e quit

e with

e output
® new

e configure

e setup

e return

e int

e Dboolean

e String
3.3 Literals

Literals are values written in a conventional form with a fixed value.
An Number Literal consists of an optional minus sign, followed by one or more digits within the
range of an Integer.

A Boolean Literal represents boolean values for true or false.

3.4 New Line

New lines are used to signify the end of a declaration, when preceded by the “\” token. In the
latter case, the new line is ignored by the compiler. If there is no such token proceeds a new line,

the compiler will treat the new line token being used to complete the declaration

3.5 Whitespace

Whitespace consists of any combination of blanks or tab characters. Whitespace is used to
separate tokens and format programs.

3.6 Punctuations

Punctuators, are characters that have their own syntactic and semantic significance; they are

not operators or identifiers

Punctuator

Use

Example

{}

Statement list delimiter

if (boolean) { statements }

9)

Conditional parameter
delimiter. (Expression

precedence)

if (boolean)

3.7 Comments

The characters “//” introduce a single line comment. For example:

// Hello World !

3.8 Operators

do includes most standard operators found in any programming languages, but changes a few

so that their meaning is more obvious, and adds two specific to card games. An operator is a

token that creates an operation on at least one operand, which in turn yields a result. the

assignment operator is not an equals sign, because assignment and tests for equality are

distinct concepts in programming, yet that fact is often lost on beginner programmers who—and

quite rightly—get confused by the equals sign. An added benefit here is that the actual equality

operator can be a single equals sign as opposed to two.

Operator

Meaning

+-.%

arithmetic only.

Standard arithmetic operators. Integer

Standard precedence.

=l=<>>=<=

Standard relational operators,

except that the equivalence operator is = not

Standard precedence.

Logical operators and the unary NOT

operator. No bitwise operators.

Assignment operator.

- Equivalent to the dot operator in
many languages. Accesses a field within an

object.

>><< Prepend and append operators. Take a Set
(see below)

and a Card and either adds the

card to the front or the back of the Set.

If card is null, does nothing.

+ String Concatenation Operator

4. Control Flow Statements

do incorporates most of the common control-flow statements with the exception of switch. In
addition, it incorporates an intuitive shorthand for expressing simple loops, which can be thought
of as “multiplying” a series of statements by a number. The shorthand is redundant, because it
could be replaced with a for loop. But in our experience many algorithms can be expressed
using only the shorthand, so it might be introduced as a simpler form of looping to students not

ready for the menacing syntax of a for loop, or for the bizarreness that is zero-based numbering.

4.1 The if Statement:

You can use the if statement to conditionally execute part of your program, based on the truth

value of a given expression. Here is the general form of the if statement:

if (testl)
then-statementl

else 1f (test’2)

then-statement?2
else

else-statement

If test1 evaluates to true, then then-statement1 is executed. if test1 evaluates to false, but test?
evaluates to true, then then-statement? is executed and neither then-statement1 nor
else-statement is. If test1 and test2 evaluate to false, then else-statement is executed and
then-statement1 or then-statement2 is not. The else if clause and else clause are optional.

Example:

if (count = 5)
count: count + 1
else if (count = 6)
count: 12
else

count: count - 1

If count = 5 evaluates to true, then the statement count: count + 1 is executed. If count = 5
evaluates to false and count = 6 evaluates to true, then the statement count: count + 1 is not
executed, but the statement count: count: 12 is executed. If neither count = 5 nor count = 6 is

true, then the statement count: count - 1 is executed.

4.2 The while Statement:
The while statement is a loop statement with an exit test at the beginning of the loop. Here is
the general form of the while statement:

while (test)

statement

The while statement first evaluates test. If test evaluates to true, statement is executed, and
then fest is evaluated again. statement continues to execute repeatedly as long as test is true
after each execution of statement.

This example increments the integer from zero through nine:

new Number counter: 0
while (counter < 10)

counter: counter + 1

4.3 The for Statement:

The for statement is a loop statement whose structure allows easy variable initialization,
expression testing, and variable modification. It is very convenient for making counter-controlled

loops. Here is the general form of the for statement:

for (initialize, test, step)

statement

The for statement first evaluates the expression initialize. Then it evaluates the expression test.
If test is false, then the loop ends and program control resumes after statement. Otherwise, if
test is true, then statement is executed. Finally, step is evaluated, and the next iteration of the
loop begins with evaluating fest again.

Most often, initialize assigns values to one or more variables, which are generally used as
counters, test compares those variables to a predefined expression, and step modifies those

variables' values. Here is another example that prints the integers from zero through nine:

for (new Number x: 0; x < 10; x: x + 1)

do output with “x = 7 + x

First, it evaluates initialize, which assigns x the value 0. Then, as long as x is less than 10, the
value of x is printed (in the body of the loop). Then x is incremented in the step clause and the
test re-evaluated.

All three of the expressions in a for statement are optional, and any combination of the three is
valid. Since the first expression is evaluated only once, it is perhaps the most commonly omitted

expression. You could also write the above example as:

new Number x: 1

for (; x <= 10; x: x + 1)

do output with “x = 7 + x

In this example, x receives its value prior to the beginning of the for statement.

If you leave out the test expression, then the for statement is an infinite loop (unless you put a
break statement somewhere in statement). This is like using 1 as test; it is never false.

This for statement starts printing numbers at 1 and then continues infinitely, always printing x

incremented by 1:

for (new Number x: 1; ; Xt++)

AL

do output with “x = 7 + x
If you leave out the step expression, then no progress is made toward completing the loop—at
least not as is normally expected with a for statement.

This example prints the number 1 over and over, infinitely:

for (new Number x: 1; x <= 10;)

A\

do output with “x = " + x

4.4 The {} * N Statement:
The { } * N Statement execute the statement(s) in the { } for N times. The statements in {}
must be executable, and N must be a positive integer that is greater or equal to 1.

Example:

new Number x: 1
do output with “x = 7 + x

}o* 10

This statement executes the statements new Number x: 1 and do output with “x =7 + x

for 10 times.

4.5 The {} until B Statement:

The { } until B Statement is similar to the C language statement do...while... . The { } until B
Statement executes the statement(s) in { } repeatedly until the B statement evaluates true.
Example:

new Number x: 1

{

x: x + 1

do output with “x = 7 + x

} until (x > 10)

This example declares a new Number type variable which is initialized to be 1, and execute the
statements x: x + 7 and do output with “x = ” + x repeatedly until statement x > 70 is true. Note
that if B is an empty statement, or if B is not able to terminate the statements in { } by its

restriction(s), the statements in { } will be executed infinitely.

4.6 The break Statement:

User can use the break statement to terminate a while, for, { } * N or { } until B statement. Here

is an example:

for (new Number x: 1; x <= 10; x: x + 1)
{
if (x = 8)
break;
else

do output with x

That example prints numbers from 1 to 7. When x is incremented to 8, x = 8 is true, so the
break statement is executed, terminating the for loop prematurely.

If you put a break statement inside of a loop statement which itself is inside of a loop statement,

the break only terminates the innermost loop statement.

4.7 The continue Statement:

User can use the continue statement in loops to terminate an iteration of the loop and begin the

next iteration. Here is an example:

for (new Number x: 0; x < 100; x: x + 1)
{
if (x / 5 > 10)
continue
else

do output with “ x = " + x

If you put a continue statement inside a loop which itself is inside a loop, then it affects only the

innermost loop.

5. Procedures

In do, functions are called “procedures.” They are not called “functions” for reasons that will
shortly become clear. They might have been called “methods,” except they are not associated
with objects. They might also have been called “subroutines,” but the term “subroutine”, as I'm

sure you'll agree, is by this point rather passé.

A procedure must be defined in order for a call to the procedure to make sense, but the definition
can come anywhere in a source file outside of a block. This means that a procedure does not
have to be defined before it is called. Procedures are not first-class objects and they cannot be

nested. They do not have to be—and in fact cannot be—declared.

A procedure consists of a header and a body. The header specifies the name of the procedure

along with the types and names of its parameters. A header has the following syntax:

procedureName with Type parameterName and Type parameterName:

procedureName is the identifier associated with the procedure. with is a keyword that
separates the identifier from the list of parameters, which consists of an arbitrary number of
variable declarations separated by the keyword and. The colon terminates the header and
begins the block that contains the body of the procedure. If a procedure takes no arguments,

with can be omitted.
A procedure can be called anywhere within a source file. A procedure call looks like this:
do procedureName with argumentl and argumentZ?

do is a keyword that signals a procedure call. The identifier procedurenName tells the
compiler which procedure to call. Everything after the keyword with is part of the list of
arguments. The arguments are separated by the keyword and just as the parameters are in a
procedure header. If the arguments passed to a procedure do not match the parameter types in
the procedure header, the compiler will throw an error. Arguments are evaluated left to right.

Again, if a procedure takes no arguments, with can be omitted.

You may have noticed that the syntax for a procedure header does not include its return type.
That is because procedures cannot return anything. This is a quirk of do; there are no functions
that map input to output. Procedures can only change the values of their parameters (which are
passed by reference) and the values of global variables. They are not expressions. Conceptually,

a procedure can only do something—it can only act on data to produce a change in state.

do is thus a hyper-imperative language. A do program consists mostly of statements with only a
few expressions here and there. For large programs, this would become a nightmare. But while
the programs remain simple, we believe that using procedures instead of functions is a good
thing—it better conforms to the layperson’s understanding of programming as “telling the

computer to do things.”

6. Expressions

6.1 Arithmetic Expressions
An arithmetic expression consists operands and operators. The operands can be integer
constants or variable of the Number type. Only integer arithmetic are allowed. Example of

expressions:

2 + 2
3 -1
4 * 5
10/2

Expressions can be surrounded with parenthesis to indicate order of evaluation. For

example:

2 * (4 +5)

The expression 4 + 5 will be evaluated first, resulting in 9. Then, 2 * 9 will be

evaluated, resulting in 18.

There are 4 types of arithmetic operators.
° +
Adds the two operands together.
° -
Subtract the right operand from the left operand.
o *
Multiply the two operands together.
o /
Divide the operand on the left by the operand on the right.

6.2 Assignment Expressions

The assignment operator : stores the value of its right operand in the variable specified

by the left operand. Example:

Number n : 5 * 2

7. Operators

7.1 Relational operators

You can use relational operators to determine how two operands relate to one another. Do

Fifty-Two supports 6 types of comparisons.

Relational Operator Description Example

= Checks for equality if (a=3)
do evaluate
else

quit

I= Checks for inequality if (al!=3)

do evaluate

else
quit
< Checks whether left if (a<3)
operand is smaller than do evaluate
the right operand else
quit
> Checks whether left if (a>3)
operand is greater than do evaluate
right operand else

quit

operand is equal or
greater than right

operand

<= Checks whether left if (a<=3)
operand is equal or do evaluate
smaller than right else
operand quit

>= Checks whether left if (a>=3)

do evaluate
else

quit

7.1 Logical operators

Logical operators can be used to negate or combine relational expressions.

The logical conjunction operator & tests if two expressions are both true. If the first

expression is false, the second expression is not evaluated and the entire expression

becomes false.

if((a>3)&(a<5))

do output with “a is 47

The logical conjunction operator | test if at least one of the two expressions are true.

if((a=3)1 (a=5))

do output with

“a 1s either 3 or 57

The prepend operator ! tests if the logical expression equates to false.

if(!(a=3))

do output with “a is not

7.2 Field Accessor Operator

The field accessor operator _is attached after an object name and fetches the field whose
name is specified on the right side of the underscore. It returns the value of the field. The

type depends on the type that the field is set to initially. Example:

Card a : deck top

The field accessor operator fetches the field named top in the object deck. Since the

deck consists of Card types, this expression returns a Card type.

7.3 Prepend and Append Operators

The prepend and append operators >> and << respectively takes a Card and places it to
a set. In both cases, if a Set is taken as the source, the operators will simply take the top

most Card from the Set.

The prepend operator >> takes the Card or the top most Card from the Set in the left

operand and places it in the back of the set in the right operand.

The append operator << takes the Card or the top most Card from the Set in the right

operand and places it in the front of the Set in the left operand.

7.4 String Concatenation

The operator + when surrounded with strings will immediately concatenate the left and right

string operands. Example:

do output with winner + “has lost”

8. Program Structure and Scope

8.1 Program Structure

A do-fifty-two program should be entirely self-contained, i.e. all the program code should be

contained within a single file. No library or code import is supported.

A program should start with environmental variable assignments (by using configure)

and type extensions if any, before any procedures are called or declared.

8.2 Scope

Variable declarations made at the top-level of a program (i.e., not within a procedure) are
visible to the entire program, including from within procedures. Variable declarations made
within procedures are visible only within those procedures. Variable declarations are not

visible to the code that comes before them.

Procedure declarations can only happen at the top-level of a program. However,

procedures can be called before their declarations.

Also, environmental variables and type extensions are global.

9. Sample Program

War! is a simple card game often played between children. The rules can be found here.
What follows is an implementation of War! in do that showcases most of the features of the

language.

// war in do

configure playerCount: 2

configure acesHigh: false

new Number warCount: 0

Player has Set called table // player table available

setup:

// deal cards

{ playerl hand << deck top } * (deck size / 2) // loop

{ player2 hand << deck top } * (deck size / 2) // loop

round:
do
do
do
do
do

turn with player: playerl

turn with player: player?Z

output with "Player 1 played: " + playerl table top
output with "Player 2 played: " + playerZ table top
evaluate

turn with Player player:

do

output with player + "'s turn."

1f (player hand size = 0)

if (player = playerl)
do output player + " has lost. Player?2 wins!"
do quit

else
do output player + " has lost. Playerl wins!"

do quit

do output with "Play card?"
do input with new String 1in
if (in = "y")

player hand top >> player table

else
do output with player + " has decided not to play)\
anymore.” // no backslash needed here
do quit
evaluate:

i1f (playerl table top > playerz table top)
do output with "Player 1's card is higher."
{ playerl hand << playerl table top } \
* playerl table size
{ playerl hand << player2 table top } \
* player? table size
else 1f (playerl table top < playerZ table top)
do output with "Player 2's card is higher."
{ player2 hand << playerl table top } \
* playerl table size
{ player2 hand << player2 table top } \
* playerZ table size
else
do output with "It's a tie. That means WAR!"

warCount: warCount + 1

// 1f a set runs out of cards >> and << won't do anything
{ playerl hand top >> playerl table } * 4
{ player2 hand top >> player2 table } * 4

do output with "Player 1 and 2 put down 4 cards."

do evaluate

