SNL

Stage (null) Language Reference Manual

James Lin
Alex Liu
Daniel Maxson
Andre Paiva

> w

Introduction
Lexical Elements

2.1. Comments....

2.2. Identifiers
23. Keywords
24. Literals...
2.5. Operators

Table of Contents

2.6, SEPATALONS .cereereeieeeeceeeseeseeseesessessessessessesssssss st sessessesssssssssasssssssssessessessessessssssans
2.7, WHITE SPACE ittt sasssssssssss s sssssss s sasstssssssssssssssssssnes
Data TYPES ettt ses ettt ettt sttt

Expressions and O

PEFATOIS ittt

RECIPES .ottt es s ses s bbbt s s nnen
5.1, ReCiPE DEINITIONS wouvvurirerreireiseiseiesiseisisssiseisssssisssns
5.2, CalliNg RECIPES ovvueeeirrieeereissiseissssssissnes
Program Structure and SCOPE ... sssns

6.1. Program S

TFUCTUIE ettt st st sae e sse e se e s e ssesassessesassesenns

6.2. STAEES ettt bRt

6.3. Universe

6.4. SCOPE ettt sttt sttt ettt st st nae

A Sample Program

1. Introduction

This is a reference manual for the SNL programming language as implemented by James Lin, Alex Liu,
Daniel Maxson, and Andre Paiva. This manual aims to describe the various features of SNL for
programming.

SNL, which stands for Stage Null Language, is a language designed to model role-playing game scenarios
based on the structure of state machines. It allows users to programmatically re-create sequential
scenarios as “stories.” Its syntax aims to be simple so that adolescents can easily understand how to use
it. Where possible, SNL uses intuitive keywords in place of symbols, since symbols commonly known in
the CS community can be confusing to those who are unfamiliar with programming. This will encourage
children to learn how to write code in a controlled, fun environment while allowing them to exercise their
creativity. SNL is robust enough to program typical computer science algorithms like GCD or factorials as
well as more creative applications like interactive fiction or psychology studies.

The SNL language is a product for COMS W4115, a course at Columbia which the four creators took in the
Fall of 2014.

2. Lexical Elements
2.1. Comments
All comments are single-line and denoted by the # character. Any content to the right of the # will
be ignored.

2.2, Identifiers

Identifiers are sequences of characters used for naming variables, functions, and stages. All
characters must be alphanumeric or the underscore character. The first character must be an
alphabetic character.

2.3. Keywords

if else not
and or do

to start next
is local true
false return recipe
done input of

2.4. Lliterals
There are several literals in SNL. These include integer literals, float literals, boolean literals, string
literals, and list literals.

24.1. Integer Literals

An integer literal is a sequence of digits. All digits are taken to be decimal. 12 is an
example of an integer constant.

24.2. Float Literals
Afloat literal consists of a decimal point, and either an integer part or a fraction part or
both. 5.0 and 5. and .5 are all valid floating constants.

2.4.3. Boolean Literals
A boolean literals is either “true’ or "false'.

244. String Literals
A string literal is a sequence of chars. These are sequences of characters surrounded by
double quotes. Two examples of string literals are “hello” and “world".

245, List Literals
Alist literal is a sequence of literals that have been placed between square brackets " [I'
and separated by commas °,’. Lists can contain one or more types and are mutable.
[1,2,3,4] and [1,2,true,"peggy”] are both examples of lists.

2.5. Operators
An operator is a special token that performs an operation on two operands. More information

about these are provided in the Expressions and Operations section (4).

2.6. Separators
A separator separates tokens. These are not seen as tokens themselves, but rather break our

language into discrete pieces.

2.6.1. White Space
White space is the general purpose separator in SNL. More information is provided in the

White Space section (2.7).

26.2. Comma,
The comma is a separator, specifically in the context of creating lists (and their elements)
and also for parameters passed to a function which is being called.

26.3. Colon:
The colon is a separator in the context of starting a new stage or recipe. The separator
will be placed right after the name of the stage or after the recipe declaration.

2.7. White Space

27.1. Spaces
Spaces are used to separate tokens within a single line outside of the creation of list and

the first line of a stage.

2.7.2. New Line
New lines are used to separate expressions from one another. There is only one
expression allowed per line.

Data Types

3.1. Variables in SNL are dynamically typed, similar to Python or Perl. Variables are implicitly
assigned a type depending on the value assigned to it. You can find more information
about these constants in the section about Literals (2.4).

3.2. The following are SNL's built-in data types:

int A series of digits

float A series of digits with a single "
bool Boolean values of True or False
string A sequence of characters within “*
list A sequence of items enclosed by []

Expressions and Operators

Operator Use

+ Addition, String Concatenation

- Subtraction

* Multiplication

/ Division

= Equals

= Not Equals

< Less Than

<= Less Than or Equals

> Greater Than

=> Greater Than or Equals

() Grouping expressions/statements

is Assignment
of Access element from list
Recipes

5.1. Recipe Definitions
Arecipe is set of stages with an implicit Character containing any items passed into it. If there are
any arguments passed into the recipe, the "to’ keyword must come before the

comma-separated list of arguments. The ‘return’ keyword will return at most one item back to
the stage from which it was initially called.

An example of a recipe built using multiple stages:

start example program:
1st is [3, 4, 5, 6]
do inc list to 1lst
show 1lst

recipe inc list to my list: #declaration of recipe

start start inc list:
length is do get len to my list #calling a recipe
index is O

next loop start

loop start:
if index < length
(next s list modifier)

else (return my list) #returning out of our recipe

s list modifier:
index of my list is index of my list + 1
index is index + 1
next loop start
done

5.2. Calling Recipes
The keywords “do’and "to’ mark recipe calls, and the comma is used to separate function
arguments. For example:

do foo to bar, baz
When there are no arguments to a recipe, " to’ must be omitted such as:

do foo

Program Structure and Scope

6.1. Program Structure

Each program must be written within one source file and are a combination of a single Universe
along with Stages and Recipes. These can each be defined anywhere within the file.

6.2. Stages
A Stage will consist of a series of statements. The starting Stage for each recipe or program will be
specified by the the ‘start’ keyword. Next will come the name of the Stage followed by a colon.

For all Stages outside of the starting Stage of a recipe or program, only the name of the Stage and
the colon should be used.

Within a Stage, the ‘next’ keyword will designate the following Stage to jump to. These will control
the movement of the Character between different Stages, particularly by utilizing conditional
statements to vary between different next Stages.

6.3.

Scope

6.3.1. Global Scope
All variables defined either in a Stage are by default part of the global scope and can be
accessed and modified from any of the other stages within the program.

6.3.2. Scope within a Stage

To declare a variable at a Stage scope you will use the reserved keyword ‘local’ followed
by the variable name. For example:

local colour of ball is “blue”

6.3.3. Scope within a Recipe
Arecipe does not have any access to the Universe scope but will only have access to any
items passed in or declared within this recipe. Users must be careful to remember which
recipe they are declaring variables in at each stage.

7. ASample Program

These are
Recipe to

comments
calculate health lost

recipe calc damage done to attack, defense:

start

done

calc:

if attack < defense
return 1

else

return attack - defense

recipe does_hit land to attacker speed, defender speed:

start

done

Universe:

calc:

return attacker speed >= defender speed

Character HP is 10
Character Attack is 10
Character Defense is 5

Character Speed is 5

Ogre HP is 10

Ogre Attack is 20

Ogre Defense is 5

Ogre Speed is 2
weapon_room_ seen is false

start dungeon_ entrance:
do show to “You are at the entrance of the dungeon. There are three doors
in front of you. These are labelled 1, 2, and \”BOSS\”. Enter the label of the
door you want to go through. Choose wisely: ”
choice is input
if choice = 1 and not weapon room seen
(next weapon_ room)
else if choice = 1 and weapon room_ seen
(do show to “You already went there!”
next dungeon entrance)
else if choice = 2
(next trap_ room)
else if choice = “BOSS”
(next boss room intro)
else
(do show to “That’s not a valid door label! Try again.”
next dungeon_ entrance)

weapon_room:

do show to “You found a shiny sword! +5 attack and -1 speed. You return
to the previous room.”

Character Attack is Character Attack + 5

Character Speed is Character Speed - 1

weapon_room seen is true

next dungeon entrance

trap room:
do show to “The door closes behind you and never opens again. SADNESS.
THE END.”

boss_room intro:
do show to “An ogre appeared!”
next boss room

boss room:
if Character HP < 1
(next character death)
if Ogre HP < 1
(next ogre death)

do show to “Will you try to hit or dodge? Type \”hit\” or \”dodge and try
hitting\”.”

battle move is input

if battle move = “hit”
(dam is do calc damage done to Character Attack, Ogre Defense
Ogre HP is Ogre HP - dam
do show to “You hit the ogre inflicting “ + dam + “ damage!”
dam is do calc damage done to Ogre Attack, Character Defense
Character HP is Character HP - dam
do show to “The ogre hit you inflicting “ + dam + “ damage!”)

else if battle move = “dodge and try hitting”
(success is do does hit land Ogre Speed, Character Speed

if success
(dam is do calc_damage done to Ogre Attack, Character Defense
Character HP is Character HP - dam
do show to “The ogre hit you inflicting “ + dam + “ damage!”)

else
(dam is do calc damage done to Character Attack, Ogre Defense
Ogre HP is Ogre HP - dam
do show to “You dodged and hit the ogre for “ + dam + “
damage!”)

)

else
(dam is do calc_damage done to Ogre Attack, Character Defense
Character HP is Character HP - dam
do show to “The ogre hit you inflicting “ + dam + “ damage!”)

next boss room

character death:
do show to “You died. Sadness. THE END.”

ogre death:
do show to “The ogre died. You win!!! THE END.”

