GraphQuil
Language Reference Manual
COMS W4115

Steven Weiner (Systems Architect), Jon Paul (Manager),
John Heizelman (Language Guru), Gemma Ragozzine (Tester)

Chapter 1 - Introduction

Chapter 2 - Types

2.1 Explicit Typing

2.2 Primitive Types
2.2.1 Ints
2.2.2 Doubles
2.2.3 Chars
2.2.4 Booleans

2.3 Non-Primitive Types
2.3.1 Arrays
2.3.2 Strings
2.3.3 Nodes
2.3.4 Edges
2.3.5 Graphs

Chapter 3 - Lexical Conventions

3.1 Identifiers

3.2 Reserved Keywords

3.3 Literals
3.3.1 Integer Literals
3.3.2 Double Literals
3.3.3 Bool Literals
3.3.4 Char Literals
3.3.5 String Literals

3.4 Node Types

3.5 Edge Types

3.6 Operators

3.7 Separators

3.8 White Space

3.9 Comments

Chapter 4 - Syntax
4.1 Program Structure
4.2 Expressions
4.2.1 Unary Operators
4.2.1 Binary Operators
4.2.3 Assignment Operators
4.2.4 Parenthesized Expressions
4.2.5 Function Creation
4.2.6 Linking Nodes
4.2.7 Accessing Data from Non-primitive Types
4.2.8 Using Edges to Retrieve Data
4.3 Statements
4.3.1 Assignment and Node Linkage
4.3.2 Function Calls
4.3.3 Selection Statement
4.3.4 Iteration Statement
4.4 Scope
4.4.1 Scoping within blocks
4.4.2 Scoping within functions

Chapter 5 - Library Functions
5.1 Print

Chapter 1 - Introduction

This is a reference manual for the GraphQuil language. GraphQuil is a specialized
programming language designed to easily manage and manipulate data stored in graphs. It
is simultaneously a data-definition language as well as a data manipulation language. Users
operating GraphQuil will have the ability to create vertices that represent objects while also
being able to link them together and define their relationships within a graph.

Chapter 2 - Types
2.1 Explicit Typing

Data in GraphQuil requires explicit typing. In naming any variable type, an explicit specification of
type is required.

2.2 Primitive Types

GraphQuil provides four primitive types that make up the basis for arranging data in your
programs: int, double, char, and bool. These are the building blocks that define what type of data
can be included in each Node.

2.2.1 Ints
Integers, denoted by the keyword int are 32-bit numbers with a minimum value of -2,147,483,648
and a maximum value of 2,147,483,647 (inclusive).

2.2.2 Doubles

Doubles, denoted by the keyword double, are implemented as 64-bit numbers using the
IEEE-754 standard.

2.2.3 Chars

Chars, denoted by the keyword char, is an 8-bit data type used specifically for storing ASCII
characters.

2.2.4 Booleans

Booleans, denoted by the keyword bool, accept only true or false values and are used in
comparisons of equality.

2.3 Non-Primitive Types

2.3.1 Arrays
An array is a data structure of user-defined types that holds variables and other data structures.
Here is an example of the initialization of an array called “intArray” that would store ints:

int[] intArray = new int[5];
Arrays are dynamically sized according to number of elements stored within the Array. intArray
has been initialized as being able to store five chars, and so its size is at least 160 bits. Arrays
are accessed by index, with indexing starting at 0. The syntax for doing though uses the same
brackets as the construction, and returns the value at that index. The same works for assigning
to an array. An example of each:

int x = intArray[0]; #this accesses the array and copies the value at 0 to x

intArray[1] = x#this sets the spot at index 1 in the array to x

Finally, arrays store one additional piece of data, their length as an int, which can be accessed
using the operator ‘.’ followed by the identifier length. For example, int len = intArray.length; would
set len to 5.

2.3.2 Strings
Strings are implemented as arrays of chars. Whitespace is not ignored. Here is an example of
the initializing of a String called “string™:
String string = “string”;
The string stores six chars, and so its size is at least 48 bits.

2.3.3 Nodes

A Node is a data structure specifically for use in a Graph. Nodes are required to store one array,
edges, that stores all the outward edges from the node. This array is special in that it may not be
modified directly; it is modified automatically on the linking of two nodes, as seen in section 4.2.6.
Additionally, nodes can only be present in one graph at a time, and a duplicate node with the
same data must be created before adding it to a different graph. To meet this requirement, the
graph must be specified when creating the node.

Each node must also be given its own type before creation, and there is no base implementation
of Node within GraphQuil that stores certain variables. Before declaring a node, there must be a
defined NodeType to denote what that specific kind of node will hold (see section 3.4 for more
information on NodeTypes). However, links can be made irrespective of type, and the type of
node does not affect the way links are created between them in the graph.

2.3.4 Edges

An edge is a link created between two nodes. There are two different kinds of edge types,
weighted and unweighted. Unweighted edges create links that connect two nodes, but provide no
information about those links. Weighted edges, however, in a way similar to nodes, can contain
all kinds of data about the connections between different nodes. To create a weighted edge
between two nodes, there must first be a defined EdgeType (see section 3.5 for more info), then
a declaration of the edge that specifies what type of edge to be created and the data to populate
said edge (see section 4.2.7 for the syntax for doing so).

2.3.5 Graphs

Graphs are an aggregate of nodes that allow certain operations to be run upon them and are
identified by the keyword Graph. A graph contains one piece of data, which is the array of all of
the nodes contained within it, named with the identifier nodes. Because graphs are simply
aggregations of different nodes, the syntax used to define them only requires creating an
identifier, so the following is sufficient to define a graph: Graph g1;

Chapter 3 - Lexical Conventions

3.1 Identifiers

Identifiers are the names used to identify individual variables within a given function. Each
variable must be given a unique identifier within its scope of the function, and each identifier is
case-sensitive. These identifiers must begin with an ascii letter (a-z or A-Z), but each following
letter can be either a letter, a digit (0-9), or an underscore (_). The only additional restriction on
what strings can be used as identifiers is that they must not match one of the GraphQuil’s
reserved keywords.

3.2 Reserved Keywords
The following is a comprehensive list of reserved keywords inGraphQuil:

add bool char
continue dest do
double edges else
false for Graph
has if in

int new Node
num print return
static String true
void while

3.3 Literals

3.3.1 Integer Literals

Integer literals are made up of digits without any decimal points or other characters separating
the digits. They are solely to be used for whole numbers, but they can be positive or negative,
distinguished by an included or omitted ‘-’ sign. Additionally, integer literals may not begin with a
0.

3.3.2 Double Literals

Double literals include digits with a single decimal point, followed by at least one number. A 0 can
be the first number if and only if it is immediately followed by a decimal point, although in such a
case the 0 is not required. Beyond that, any sequence of numbers followed by a decimal point
and another sequence of numbers of length >= 1 can be a double.

3.3.3 Bool Literals

The bool type can hold two different values, true or false, and those exact literals are used to
declare which value the bool takes.

3.3.4 Char Literals

Char literals are a single character surrounded by a single quote (‘) on each side. This character
can be any character in the 16-bit Unicode character set, with a minimum value of "\u0O000' (or 0)
and a maximum value of "uffff' (or 65,535 inclusive).

3.3.5 String Literals

String literals are sequences of chars anywhere from length 0 to the maximum integer value
(around 2 billion characters). They must begin and end with quotation marks (“) and can be filled
with any character within the same character set as chars. Additionally, strings support a
number of special characters to insert codes into the string, as listed below:

\' Single quotation mark (*)
\" Double quotation mark (“)
\\ Backslash (/)

\t Tab

\b Backspace

\r Carriage return

\n Newline

3.4 Node Types

Before declaring a specific node, a node type must be first established, as there is no general
type node to be instantiated by the user. To do so, there must be a line defining what type of
node the identifier will be associated with. The type includes a listing of all the values to be stored
in that node type, as well as the type of values the node stores. These values can be of any valid
primitive or non-primitive type, with the exception of graphs, edges, and nodes. Using nodes to
store other nodes removes the purpose behind a graph structure, so all data contained within a
node must be of some other type.

Additionally, each value must be associated with an identifier to indicate what the name of that
value is, and each identifier must be unique for that node type. For example, the following is a
valid declaration of a NodeType:

#assume there is a defined Graph g1

NodeType Student has (String name, int age, String[] courses);

To create a particular instance of a node, the type must be specified in its construction, along
with the graph the node is inserted into:
Node john = new Student(“John”, 21, {*PLT", “CS Theory”, “Aristotle”}) in g1;

3.5 Edge Types

Creating a weighted edge requires an edge type to define what kind of data the edge will hold.
This structure is very similar to defining a NodeType, and requires the identifier of the EdgeType,
as well as the types and identifiers for each piece of data to be stored. Also, the same
requirement applies in that these values can take any type other than nodes, graphs, or other
edges. The convention is as follows:

EdgeType relationship has (String type, int closeness, bool positive);

3.6 Operators
The following denotes the operators of the language and their intended function:

Operator Use Associativity
+ Adds two values Left
Substracts right from left Left
* Multiplies two values Left
/ Divides right into left Left
% Modular division Left
= Assignment Right
== Equal to Left
1= Not equal to Left
< Less than Left
> Greater than Left
<= Less than or equal to Left
>= Greater than or equal to Left
-> Link from left to right Right
<-> Bi-directional link Right
! Logical negation Right
&& Logical and Left
| Logical or Left

The order of precedence is as follows, from greatest to least important:
*1 %

+ -

< ><=>=

!

&&

=-><->

3.7 Separators
The following indicates the separators of the language and their usage.

Ko
b4

Signals the end of a line.

“« »
)

Separates one argument from another argument in a declaration statement.

“(...)”

A parenthesised expression can be used to separate tokens. The type and value are identical
to the same expression without the surrounding parentheses.

3.8 Whitespace
White space includes the space character, the tab character, and the newline character.
Generally used to separate characters, it is entirely optional. No white space is required.

3.9 Comments
Multi-line comments are enclosed in #* *# characters. The #* characters introduce a multi-line
comment and the *# signals the termination of the multi-line comment.

Single line comments are introduced by the character #. The single line comment terminates at
the end of the line with no terminating symbol.

e Data Type Combinations (Arrays, functions, pointers(?), structs)

Chapter 4 - Syntax

4.1 Program Structure

A valid program in this language can be composed of as little or as many statements that a user
desires.

4.2 Expressions

4.2.1 Unary Operators

I | The character ! is the logical NOT operator. This operator checks the value of the one
boolean operand. If the boolean operand evaluates to true, then the expression returns
false. If the boolean operand evaluates to false, the expression returns true.

4.2.1 Binary Operators

The binary operators are divided into give categories: Assignment Operators, Relational
Operators, Arithmetic Operators, Logical Operators, and Graphical Operators.

4.2.3 Assignment Operators
All assignment operators group right to left.

= | The simple assignment operator is the ‘=’ character. Simple assignment takes the
following form:

type-declaration identifier = expression
The value of the expression on the right hand side of the operator replaces the semant
value of the identifier on the right. This value must be equal in type to the declared typ¢
of the identifier.

+= | The add AND assignment operator is the two characters +=. This operator adds the
semantic value of the operand on the right to the value of the left operand. This operatg
can only be applied to operands of primitive data types.

+- | The subtract AND assignment operator is the two characters -=. The operator subtractd
the semantic value of the operand on the right from the value of the left operand. This
operator can only be applied to operands of primitive data types.

4.2.3 Relational Operators

Two sequential equal signs denotes an equality operator. This operator checks if the
values of the two operands are equal in reference. If they are equal, it returns a “true’
boolean, else it returns a “false” boolean.

The characters != denote a “not equal” operator. Like the equality operator, it checks
to see if the two operands are equal or not. If the left and right operands are equal in
reference, then the expression evaluates to “false”. If the operands are not equal in
reference, then the expression evaluates to “true”.

The character >’ denotes the “greater than” operator. This can only be used when th
left and right operands are primitive types. The “greater than” operator checks if the
value of the left operand is greater than the value of the right operand. If this is true,
then the expression returns true. If not, the expression evaluates to false.

The character ‘<’ denotes the “less than” operator. This can only be used when the
left and right operands are primitive types. The “less than” operator checks if the valu
of the left operand is less than the value of the right operand. If this is true, then the
expression returns true. If not, the expression evaluates to false.

The characters “>=" denote the “greater than or equal to” operator. This operator
checks if the value of the left operand is greater than or equal to the value of the right
operand. If this is true, then the expression returns true. If not, the expression
evaluates to false. Like the “greater than” and “less than” operators, this operator can
only be used when both operands are primitive types.

The characters “<=" denote the “less than or equal to” operator. This operator checks
if the value of the left operand is less than or equal to the value of the right operand.
this is true, then the expression returns true. If not, the expression evaluates to false.
Like the “greater than”, “less than”, and “greater than or equal to” operators, this
operator can only be used when both operands are primitive types.

4.2.4 Arithmetic Operators
These operators only can be performed on primitive data types.

+

The ‘+’ character signifies the addition operator. It adds the semantic value of the
operands on the left and right side.

The *-’ character is the subtraction operator. It subtracts the value of the right hand
operator from the left hand operator to produce a new result.

The *’ character is the multiplication operator. It multiplies the values of the operands on
the left and right side of the operator.

The ‘' character denotes the division operator. This divides the value of the left hand
operator by the value of the right hand operator.

%

The ‘%’ character is the modulus operator. It divides the value of the left hand operator b
the value of the right hand operator, and returns the remainder of the division.

4.2.3 Logical Operators

&&

The characters “&&” signify the logical AND operator. This operator checks the value of
two boolean operands. If both boolean operands evaluate to true, then the expression
returns true. In any other case, the expression evaluates to false.

The characters “||” signify the logical OR operator. Like the logical AND operator, this
checks the value of the two boolean operands, but it only returns true if any of the
operands (the left operand, the right operand, or both operands) evaluate to true.

4.2.3 Graphical Operators
These operators only work when both operands are Nodes.

-> | The characters “->” signify the directional link operator. It adds a directional link (edge)
from the operand on the left hand side to the operand on the right hand side. The
operand on the right hand side is added to the list of destination nodes of the operand
on the right hand side.

<-> | The characters “<->”" denote the bidirectional link operator. It adds a bidirectional (and

therefore, undirected) link between the left operand and the right operand. In each Nod
operand, the other Node operand is added to the list of destination nodes.

4.2.4 Parenthesized Expressions

Parenthesized expressions are a tool to override the built-in order of operations in GraphQuil.
Parenthesis force the evaluation of the expression inside of them before using that value in

whatever other expression the parenthetical is contained in. For example, if a given expression is

1 -2 + 3, the internal order of operations would give the equivalent of (1 - 2) + 3, which equals 2.
If however, parenthesis are added to make 1 - (2 + 3), which equals -4. This works for all
operators in all expressions.

4.2.5 Function Creation

Functions are declared by giving a return type of the function, a unique identifier for the function,
any arguments passed in, then creating and closing a block with the function body.

The syntax is as follows:

return_type identifier (argtype arg_identifier,...) { ... return out; }

The type of out must match the return type declared at the beginning of the function, and each
function must return a type. The only exception to this rule is if the function is declared with the
return type void, then the function should not return any type. If at any point the function should
return before the end of the block, putting “return;” will break out of the function and return to
wherever the function was called.

4.2.6 Linking Nodes

Given two nodes node1 and node2, there are two main ways of creating edges between the
nodes, weighted and unweighted. Edges that have no weight merely create a connection
between the two nodes and contain no more information about those connections. They are
created using the following statements:
node1 -> node2; #Creates an unweighted, directed edge from node1 to node2
node1 <->node2; #Creates an unweighted, bidirectional edge between the nodes

To create a weighted node, there must first be a specified edge type (see section 3.5 which
describes how to do so). Then, the syntax requires an assignment of an EdgeType to the edge
created between the two nodes. In the same way a variable is assigned a value, the edge
created between two nodes can be assigned a value (which requires a type) by assigning a
newly constructed weighted edge to the connection between two nodes, as seen here:
EdgeType relationship has (String type, int closeness, bool positive);
billy -> allie = new relationship(“siblings”, 10, true);

Finally, either kind of edge can only be valid if both nodes are in the same graph. The compiler
will give an error if the two nodes are not in the same graph.

4.2.7 Accessing Data from Non-primitive Types

To access the data stored in a non-primitive type, the operator ‘.’ is used, followed by the
identifier given to the piece of data you want to access. This access has highest precedence in
the order of operations, and the value will be pulled from the object before any other operations
are done using the value, unless overridden by parenthesis. It works for accessing the values in
nodes, edges, the length of arrays, and the node array of a graph. All of the following are valid:

int x = john.age; #where john is a Node containing an int named age
x = intArray.length;
Node[] nodes = g1.nodes; #note that this returns all nodes in a given graph

String str = edge1.relationship; #where edge1 is an Edge containing said String

4.2.8 Using Edges to Retrieve Data

Accessing all the nodes connection to a node is done through the edges directed outward from a
node. To access these, each node type has an implicit array stored inside it with the identifier
edges. This array has contains values of type Edge (which includes all EdgeTypes and
unweighted edges), and can be accessed in the same way any other data can be accessed
from a node by the following:

Edge[] edgeArray = node_indentifier.edges;

Then, that array can be used to iterate through and find any particular edge or node
needed. Additionally, each edge, whether weighted or unweighted, contains a reference to
the destination of the edge, associated with the identifier dest. This is done using the same
syntax for accessing data for any non-primitive type, as follows: Node example =
edge1.dest;

4.3 Statements

At their core, statements execute specific tasks, control the order and flow of processes
being taken, and are performed in the order in which they appear.

4.3.1 Assighment Statements
Assignments of nodes and node values are performed in two separate ways. The first
involves setting a variable as equivalent to another variable or expression. This is performed
by using an equals sign, seen in the following:
Node node1= new CUStudent (‘jrh2184’, ‘John’, ‘Heizelman’, 2016) in classroom;
Node node2= new CUStudent (‘jp3144’, ‘Jon’, ‘Paul’, 2015) in classroom;
node2=node1;
#node2 now refers to the CUStudent node named with uni jrh2184
#the CUStudent node with uni jp3144 still exists in the classroom, though

To assign values into node fields, the ‘.’ operator is used:
node2.uni= “jrh2184”;
#updates the uni field of node1 to jrh2184

4.3.2 Function Calls

Function call statements are performed simply by using the desired function in any kind of
expression. The function call takes highest precedence and will return its data type and use
that piece of data in the expression. See the following example:

node2.uni = getUni(name);

Where getUni is defined as: String getUni(String name) { }

4.3.3 Conditional Statement

Usage of the if statement allows a certain set of steps to be taken given an explicit
condition.

For example, here is the construction for an if statement based on an explicit condition.
if (node1.year==2015) {

#insert set of tasks to be performed here

3

Additionally, if a given condition is not met and the user desires to outline another
condition, the else if construction can be used.

if (node1.year==2015) {

#insert set of tasks to be performed here
1 else if (node1.year==2016) {

#insert set of tasks to be performed here

3

Lastly, the else construction allows users to perform a set of tasks if none of the prior
mentioned if or else if conditions are met.

if (node1.year==2015) {

#insert set of tasks to be performed here
} else if (node1.year==2016) {

#insert set of tasks to be performed here
} else {

#insert set of tasks to be performed here

3

4.3.4 lteration Statement

Iteration statements are performed using for or while, in order to generate loops that
execute a set of tasks.

For example, running a set of tasks on all pieces of data in an array uses a for loop. The
syntax is simple, where each object of the type in the array can be named (in this case
tmp), and the loop will apply the set of tasks in the brackets to each object in the array.
See the following example
for (Node tmp : classroom) { #where classroom is an array filled with nodes
#insert set of tasks to be performed here

3

Using a while loop is very similar. The set of task outlined within the loop are executed as
long as the condition denoted in the while loop is met, where the condition is an expression
that results in a bool. The condition is re-evaluated after each pass through the loop (given
the case that the condition initially passes).

while (node1.year==2015){
#insert set of tasks to be performed here

3

4.4 Scope

4.4.1 Scoping within blocks
Variables defined within blocks (separated by { and }) are only accessible within the block
they are defined. For example, the following is invalid:

if(x = true) {

String abc = “abc”;

}

abc.length();
The only exception to this blocking rule is the declaration of non-primitive variables using
the new keyword, be they graphs, nodes, or some other type. This declares a new object
that is not deleted until all references to it are removed and are taken care of by
behind-the-scenes garbage collection.

4.4.2 Scoping within functions

Similar to the block scoping, variables defined within a function are only applicable within
that function. This applies both to the variables passed into a function and the ones named
and created within it. The same exception is the declaration of non-primitives using the
new keyword applies as before.

The main difference in the difference between function scoping and scoping within a block
is in the return statement. When returning a primitive type, the value of the primitive
being returned is copied directly to the expression that called the function. However, when
returning a non-primitive type, a reference to the object is returned and used in the
expression. The memory used to store the object remains valid until all references to it are
gone, then the built-in garbage collection system removes it from the allocated memory.

Chapter 5 - Library Functions

5.1 Print
GraphQuil includes a built-in print to console feature. To print a String or primitive type
toPrint, the statement:

print(toPrint);
Multiple Strings or primitives may be printed to console in one statement, separated by the
plus sign as follows (for String or primitives toPrint1 and toPrint2):

print(toPrint1 + toPrint2);
Any number of Strings or primitives may be printed in a single print statement as long as
they are separated by plus signs as shown above.
Attempting to print the literal “\n” produces a newline in the console.
Only Strings and primitives may be printed; printing non-primitives directly is not allowed
and elicits a compiler warning.

