FRY Language Reference

Tom DeVoe
ted2123Qcolumbia.edu

October 26, 2014

Contents

I3 Syntax Notation|

4 Meaning of Identifiers|

4.1 Types| o
4.1.1 Basic Types|. oo

4.1.2 Compound Types|

[5E_Conversions
.1 Integer and Floating|
B2 Arithmetic Conversionsl

P.3 String Conversions|o

|6 Expressions|

|6.1.3 Parenthesized Expressions|
6.2 Posthx Expression| o 0oL
621 list Blement Referencel

6.2.4 expression——|.o
6.2.0 expresston+-+.o
6.3 Unary Operators|

0.0.1 not expression|
6.3.2 typeof(expression)|.
6.4 ultiplicative Operators|
6.5 Additive Operators| L o

0 00 ~1 I I

6.6 Containment Operators]
[6.7 Relationa erators| 3
[6.8 Equality Operators| 9
6.9 Logical AND Operator|. 9
6.10 Logical OR Operator|. 9
6.11 Assignment Expressions| oL 9
[r__Declarations| 10
[r.1 Type Specifiers| oo 10
[[2 Tist Declarationd, 10
[7.3 _Layout Declarations| 11
[[4_Table Declarafions] o v vvvv v 12
[c.b Function Declarationsl 13
I8 Statements| 14
8.1 Expression Statements| L. 14
8.2 Conditional Statements| 14
8.3 Tterative Statements 15
8.3.1 forloop| 15
8.4 whileloop| oo 15
8.5 Jump Statements| oL 15
8.6 Set Builder Statementsf.o 15
9__Scope] 16

1 Introduction

This document serves as a reference manual for the FRY Programming Lan-
guage. FRY is a language designed for processing delimited text files.

2 Lexical Conventions

2.1 Comments

Single line comments are denoted by the character, #. Multi-line comments are
opened with #/ and closed with /#.

This is a single line comment

#/ This is a
multi-line comment /#

2.2 Identifiers

An identifier is a string of letters, digits, and underscores. A valid identifier
begins with an letter or an underscore. Identifiers are case-sensitive and can be
at most 31 characters long.

2.3 Keywords

The following identifiers are reserved and cannot be used otherwise:

int str float bool Layout
List Table if else elif
in Sort not typeof and

or continue break Write Read
stdout stderr true false

2.4 Constants

There is a constant corresponding to each Primitive data type mentioned in

ETT

e Integer Constants - Integer constants are whole base-10 numbers repre-
sented by a series of numerical digits (0 - 9) and an optional leading sign
character(+ or —). Absence of a sign character implies a positive number.

e Float Constants - Float constants are similar to Integer constants in
that they are base-10 numbers represented by a series of numerical digits.
However, floats must include a decimal separator and optionally, a frac-
tional part. Can optionally include a sign character (+ or —). Absence of
a sign character implies a positive number.

e String Constants - String constants are represented by a series of ASCII
characters surrounded by quotation-marks (" "). Certain characters can
be escaped inside of Strings with a backslash *“. These characters are:

Character | Meaning

\n Newline

\t Tab

\\ Backslash

\" Double Quotes

e Boolean Constants - Boolean constants can either have the case-sensitive
value true or false.

3 Syntax Notation

Borrowing from the The C Programming Language by Kernigan and Ritchie,
syntactic categories are indicated by italic type and literal words and characters
in typewriter style. Optional tokens will be underscored by ;.

4 Meaning of Identifiers

4.1 Types
4.1.1 Basic Types

e int - 64-bit signed integer value
e str - An ASCII text value
e float - A double precision floating-point number

e bool - A boolean value. Can be either true or false

4.1.2 Compound Types

e List - an ordered collection of elements of the same data type. Every
column in a Table is represented as a List. Lists can be initialized to an
empty list or one full of values like so:

e Layout - a collection of named data types. Layouts behave similar to
structs from C. Once a Layout is constructed, that layout may be used as
a data type. An instance of a Layout is referred to as a Record and every
table is made up of records of the Layout which corresponds to that table.

e Table - a representation of a relational table. Every column in a table
can be treated as a List and every row is a record of a certain Layout.
Tables are the meat and potatoes of FRY and will be the focus of most
programs.

5 Conversions

Certain operators can cause different basic data types to be converted between
one another.

5.1 Integer and Floating

Integer and Floating point numbers can be converted between each other by
simply creating a new identifier of the desired type and assigning the variable
to be converted to that identifier. For example, to convert an integer to a
floating point number:

int i = 5

float f = i
Write(stdout, f)
5.0

When converting a floating point number to an integer, any fractional part will
be truncated:

float £ = 5.5
int 1 = £
Write(stdout, 1)
5

5.2 Arithmetic Conversions

Performing any sort of arithemetic operation on an Integer and floating point
number has a floating point result. For example:

float £ = 5.25

int i = 2
Write(stdout, fxi)
10.50
Write(stdout, f—i)
3.25

5.3 String Conversions

String conversions are automatically performed when a non-string variable is
concatenated with a string variable.

6 Expressions

An expression in FRY is a combination of variables, operators, constants, and
functions. The list of expressions below are listed in order of precedence. Ev-
ery expression in a subsection shares the same precedence (ex. Identifiers and
Constants have the same precedence).

6.1 Primary Expressions

Primary-erpression :
identifier
constant
(expression)

Primary Expressions are either identifiers, constants, or parenthesized expres-
sions.

6.1.1 Identifiers

Identifiers types are specified during declaration by preceding that identifier by
its type. Identifiers can be used for any primitive or compound data types and
any functions.

6.1.2 Constants

Constants are either integer, string, float, or boolean constants as specified in

24

6.1.3 Parenthesized Expressions

Parenthesized expression is simply an expression surrounded by parentheses.

6.2 Postfix Expression

Operators in a postfix expression are grouped from left to right.

postfix-expression :
Primary-erpression
postfiz-expressionfezpression(:expression)opt]
postfiz-expression.{ expression(:expression)ops }
postfiz-expression(argument-listop:)
expression——
expression++

6.2.1 List Element Reference

A list identifier followed by square brackets with an integer-valued expression
inside denotes referencing the element at that index in the List. For instance
MyLst[5] would reference the 6" element of the List, MyLst. Similarly, MyLst
[n] would reference the n — 1" element of MyLst. The type of this element is
the same as the type of elements the List you are accessing contains.

Sublists can be returned by sliceing the list. By specifying the optional colon
() and indices before and/or after, the list is sliced and a sublist of the original
list is returned. If there is an integer before the semi-colon and none after, then
a sublist is returned spanning from the integer to the end of the list. If there
is an integer after the colon and none before, the a sublist is returned spanning
from the beginning of the list to the integer index. If there is an integer before
and after the colon, then a sublist is returned spanning from the first integer
index to the second integer index.

6.2.2 Layout Element Reference

A layout identifier followed by a dot and an expression in braces references
an element of a layout. The expression in the braces must either be (i) the
name of one of the member elements in the Layout you are accessing, such as
MyLyt.{elem name} or (ii) a integer reference to the n'" element of the Layout,
i.e. MyLyt.{2} would access the 1°* member element. The type of the element
returned will be the type that element was defined to be when the Layout
was defined. If the member element you are accessing is itself a Layout, then
the numeric and identifier references will both return a element of that Layout

type. Sublayouts can be returned by sliceing the layout. Layout slicing syntax
is mostly the same as the List slicing, except you can also specify element names
as the indices on either side of the colon. This returns an instance of unamed
layout type with unamed elements.

6.2.3 Function Calls

A function call consists of a function identifer, followed by parentheses with a
possibly empty argument list contained. A copy is made of each object passed
to the function, so the value of the original object will remained unchanged.
Function declarations are discussed in [Z.5l

6.2.4 expression——

The double minus sign (-’) decrements an integer value by 1. The type of this
expression must be integer.

6.2.5 expression+-+

The double plus sign ("+’) increments an integer value by 1. The type of this
expression must be integer.

6.3 Unary Operators

Unary operators are grouped from right to left and include logical negation,
incrementation, and decrementation operators.

UNATY-eTPTESSIOn :
postfiz-expression
not unary-expression
typeof (primary-expression)
6.3.1 not expression
The not operator represents boolean negation. The type of the expression must
be boolean.

6.3.2 typeof(expression)

The typeof operator returns the type of some identifier as a string.

6.4 Multiplicative Operators
These operators are grouped left to right.

multiplicative-expression :
multiplicative-expression*multiplicative-expression
multiplicative-expression/multiplicative-expression
multiplicative-expression/multiplicative-expression

* denotes mutltiplication, / denotes division, and % returns the remainder
after division (also known as the modulo). The expressions on either side of
these operators must be integer or floating point expressions. If the operand of
/ or % is 0, the result is undefined.

6.5 Additive Operators
These operators are grouped left to right.

additive-expression :
multiplicative-expression
additive-expression+additive-erpression
additive-expression-additive-expression

+ and — denote addition and subtraction of the two operands respectively.
Additionally the + also denotes string concatenation. For —, the expressions
on either side of the operators must be either integer or floating point valued.
For +, the expressions can be integer, floating point or strings.

6.6 Containment Operators

cont ainment-expression :
additive-expression in containment-expression
additive-expression not in containment-expression

The containment operators check whether an element is contained in a List.
The right operand must be a List and the left operand must be the same type
as the elements that List contains. Both operators return a boolean value. If
the element is in the list, then in returns true and if the element is not in the
list, it returns false. not in returns the opposite values.

6.7 Relational Operators

relational-expression :
additive-expression
relational-expression>relational-expression
relational-expression>=relational-expression
relational-expression<relational-expression
relational-expression<=relational-expression

> represents greater than, >= represents greater than or equal to, < rep-
resents less than, and <= represents less than or equal to. These operators all
return a boolean value corresponding to whether the relation is true or false.
The type of each side of the operator should be either integer or floating point.

6.8 Equality Operators

equality-expression :
relational-expression

equality-expression == equality-expression

equality-expression | = equality-expression
The == operator compares the equivalence of the two operands and returns the
boolean value true if they are equal, false if they are not. ! = does the opposite,

true if they are unequal, false if they are equal. This operator compares the
value of the identifier, not the reference for equivalence. The operands can be
of any type, but operands of two different types will never be equivalent.

6.9 Logical AND Operator
The logical AND operator is grouped left to right.

logi cal-AND-expression :
equality-expression
logical-AND-expression and logical-AND-expression

The logical and operator (and) only allows for boolean valued operands. This
operator returns the boolean value true if both operands are true and false
otherwise.

6.10 Logical OR Operator
The logical OR operator is grouped left to right.

logi cal-OR-expression :
logical-AND-expression
logical-OR-expression or logical-OR-expression

The logical or operator (or) only allows for boolean valued operands. This

operator returns the boolean false if both operands are false and true otherwise.

6.11 Assignment Expressions

Assignment operators are grouped right to left.

assignment-expression :
logical-OR-expression
PriMary-erpression=assignment-erpression

Assignment operators expect a variable identifier on the left and a constant or
variable of the same type on the right side.

7 Declarations

Declarations give the ability to define identifiers type and value.

declarations :
type-specifier declarator
type-specifier declarator = initializer

7.1 Type Specifiers
The different type-specifiers available are:

type-specifiers :
int
str
float
bool
List
Layout
Table

Exactly one type-specifier must be provided during a declaration. These
types are described in more detail in

7.2 List Declarations
A List is an ordered collection of elements of the same type.

List-declarators :
List identifier
List identifier = List-intializer

A List declaration consists of the keyword List followed by an identifier for the
list and optionally followed by an assignment from a List-initializer.

List-intializer :
[List-declaration-list]
{identifier-or-constant . . identifier-or-constant }

A list-initializer intializes an unnamed list one of two ways. The first way de-
fines each element of the list explicitly in square brackets using a List-declaration-
list. The second way requires two integer-valued identifier-or-constant and gen-
erates a list ranging from the first identifier-or-constant to the second identifier-
or-constant. The first identifier-or-constant must be smaller than the second.

List-declaration-list :
constant-or-identifier
List-declaration-list, constant-or-identifier

10

constant-or-identifier :
identifier
constant

The List-declaration-list is a comma-separated list of identifiers or constants
which define the values contained in that list. The associated type of the list is
determined by the first element in the List-declaration-list. It is invalid to add
elements of a different type than the first element to that list. Declaring a List
with no List-declaration-list initializes an empty list with no associated type.
The first element added to that list sets that List’s type.

For example,

List 1l_int = [1,2,3,4]

List 1l_empty

List 1 _str = ["This", "is", "a", "list"]
List 1_int = {1 .. 100}

declares a list containing the first for natural integers, an empty list, and a list
of strings.

7.3 Layout Declarations
A Layout is a collection of optionally named members of various types.

Layout-intializers :
Layout identifier = { Layout-declaration-list, Print-specifierop; }

A Layout declaration consists of the keyword Layout followed by an identi-
fier and then an assignment from a Layout-declaration-list surrounded by curly
braces. It is also optional to define a Print-specifier, which is a string that
defines how this Layout should be formatted when printed.

Layout-declaration-list :
Layout-element
Layout-declaration-list, Layout-element

Layout-element :
type-specifier : identifierop:

Print-specifier :
Print: string-identifier-or-constant

The Layout-declaration-list is a comma-separated list of Layout-elements which
defines the members of the Layout being declared. If no identifier is provided
for an element, it can be accessed using the numeric Layout element reference
as described in If no Print-specifier is defined, the elements are printed
in the same order they were defined with any specified delimiter.

An instance of an already created layout is created using similar syntax to
the declaration:

11

Layout-instance-creation :
Layout identifier identifier
Layout identifier identifier = { Layout-instance-list }

The first identifier is the identifier of the Layout you are creating an instance of
and the second is the identifier of this layout instance.

Layout-instance-list :
constant-or-identifier
Layout-instance-list, constant-or-identifier

The types of each element in the Layout-instance-list must match the types of
the members of the Layout type. Each member of the Layout instance declared
is assigned the value of the constant-or-identifier at that member’s position.
A mismatch between the member type and the constant or identifier type is
considered an error.

Some examples of Layout declaration and creation are

Layout date = { int: mon, int: day, int: year \
Print:mon+"—"+day+"—"+year }

Layout date today = {10, 23, 2014}

Write(stdout, today)

10—23—-2014

Layout date nextweek = { today.mon, today.day+7, \

today.year}
Layout userinfo = {str: Fname, str: Lname, \
Layout date:bday}

In this example, date is defined as a Layout with three integer fields, for month,
day, and year, and has a Print-specifier defined. An instance of the date Layout
is created with value 10-23-2014 and written to stdout using the Write function.
Write is a built-in function which takes two arguments, an output (stdout,stderr,
or string name of a file) and the object to be written. The date Layout instance
nextweek is computed from today’s date. The userinfo layout is created with
the date Layout nested inside of it.

7.4 Table Declarations

A Table represents a relational table of data. A Table is represented as a special
type of Layout where every element of the layout is a List of the same size.

Table-intializers :
Table identifier (identifierop:)

A table is initialized with the keyword Table followed by the table identifier
and then an optional corresponding layout inside of parentheses. This Table will
then have a List of each type in the corresponding layout. If the table is initial-
ized without a corresponding layout, then the first layout instance added to this

12

table will define the layout of its table. Since a Table is just a special type of
layout, any layout operations can be performed on the table. For example, since
any columns of the table are just List elements of the corresponding ”Layout”,
they can be accessed using the Layout reference techniques explanined in [6.2.2]
In particular, tables without a corresponding layout can be accessed using the
numeric reference technique mentioned in that section.

Some Table declaration/initialization examples are:

Layout date = { int: mon, int: day, int: year }
Table date_tbl(Layout date) = \
Read (" /home/tdevoe/dates.txt", ",")

Table date_tbl2
Layout date myDate = {9,15,2012}
date_tbl2 = append(date_tbl2, myDate)

The first example illustrates creating a Table from a file using the built-in
Read function. Read takes two arguments, the name of the file (or stdin,stdout)
to read from, and a field delimiter. The second example illustrates initializing
a table without a corresponding layout and then append a record to it, using
the built-in Append function. Append takes as arguments a record and a table.
As long as the record conforms to the table’s associated Layout, the record is
appended to the end of the table and the resulting table is returned. If the
table doesn’t have an associated layout yet, then the resulting table’s layout is
defined as the same as the record being appended.

7.5 Function Declarations

Function declarations are created along with their definition and have the fol-
lowing format:

Function-declarations :
type-specifieryp; identifier (parameter-listo,:) { function-definition }

The type-specifier in the beginning of the function declaration specifies what
type is returned by that function. The identifier that follows is the name of the
function and will be referenced anytime that function should be called.

Then there is a parameter-list, i.e. a list of arguments, inside of parentheses.

parameter-list :
type-specifier identifier
parameter-list, type-specifier identifier

These arguments must be passed with the function whenever it is called.

After the arguments comes the function definition inside of curly braces. The
definition can contain any number statements, expressions, and declarations.
The one caveat is the definition must contain a ret statement for the return
type indicated. If no type-specifier is included, then there is no return type and
there should be no ret statement.

13

8 Statements

Unless otherwise described, statements are executed in sequence. Statements
can be broken up into the following;:

statement :
expression-statement
conditional-statement
iteration-statement
Jump-statement
set-builder-statement

Statements are separated by newlines and a series of statements will be
called a statement-list. A single statement can be spread across multiple lines
by ending the line with a backslash (\):

statement-list :
statement
statement-list \n statement

8.1 Expression Statements

Expressions statements make up the majority or statements:

expression-statements :
expression

An expression statement is made up of one or more expressions as defined
in[6] After the entire statement is evaluated and all effects are completed, then
the next statement is executed.

8.2 Conditional Statements

Conditional statements control the flow of a program by performing different
sets of statements depending on some boolean value.

conditional-statements :
if (expression) { statement-list }
if (Cexpression) { statement-list } else { statement-list }
if Cexpression) { statement-list } elif (expression) { statement-list } else { statement-list }

The three different conditional statements here all operate on a similar idea.
Based on the value the expression in parentheses, which must be a boolean-
valued expression, do or do not perform the statements in the curly braces. For
an if statement, if the expression in parentheses is true, then the statements
inside the if block is evaluated. If that if statement has an attached else block,
then the else block is evaluated if the expression is false.

14

If there are elif blocks, then if any expression is true, the statement inside is
evaluated and then conditional block is then jumped out of, i.e. no further ex-
pressions are evaluated. If no expression is true, then the else block is evaluated
if it exists.

8.3 Iterative Statements

iter ative-statements:
for identifier in iterator { statement-list }
while (expression) { statement-list }

8.3.1 for loop

A for loop executes the statement-list once for each elements in an iterator.

iterator:
List-identifier
List-intializer

An iterator is either a predefined list or an unnamed List-initializer, see
for more information on these. The first identifier in the for loop represents the
element in the iterator that the loop is currently on and can be referenced as
such in the scope of the for loop block.

8.4 while loop

The expression inside of the parentheses of a while loop must be boolean-valued.
The while loop repeatedly executes the statement-list as long as the value of the
expression is true.

8.5 Jump Statements

Jump statements allow the program to jump out of an iterative statement.

Jump-statements:
continue
break

continue jumps to the start of the loop that the program is currently in. break
jumps to the end and out of the loop the program is currently in.

8.6 Set Builder Statements

Set builder statements are a major part of FRY and can create new Tables
from other tables using Set-builder notation.

Set-builder-statements:
[return-layout | elements-of ; expression]

15

A Set-builder-statement consists of a return-layout, which is the format of
the columns which should be returned, a elements-of, which are identifiers for
the records in up to two tables, and an expression which is a boolean expression.

The Set-builder notation evaluates the boolean expression for every record
in the source table(s). If the boolean expression is true, then the return-layout
is returned for that record (or pair of records). The Set Builder statement
finally returns a table composed of all of the records which passed the boolean
condition, formatted with the return-layout.

elements-of :
identifier <- identifier
identifier <- identifier , identifier <- identifier

The elements-of is comprised of two identifiers, the second identifier must
be a valid table and the first is a name for the records in that table. The first
identifier is only valid within the Set-builder statement. There can be either
one or two pairs of identifiers, for one or two source tables.

return-layout:
identifier
{ Layout-instance-list }

The return-layout must be a Layout type, and can be either a Layout identifier
or a Layout-instance-list as described in [7.3]

9 Scope

Scope is handled simply in FRY, a variable cannot be referenced outside of the
code block it was declared inside. In most cases, this block is denoted by curly
braces (Conditional Statements, Iterative Statements, Function Definitions).
One exception is the elements-of section of a Set-builder statements the
scope for these variables are only inside the Set Builder statement (i.e. inside the
square brackets). Any variable delcared outside of any code block is considered
a global variable and can be referenced anywhere in the program.

16

	Introduction
	Lexical Conventions
	Comments
	Identifiers
	Keywords
	Constants

	Syntax Notation
	Meaning of Identifiers
	Types
	Basic Types
	Compound Types

	Conversions
	Integer and Floating
	Arithmetic Conversions
	String Conversions

	Expressions
	Primary Expressions
	Identifiers
	Constants
	Parenthesized Expressions

	Postfix Expression
	List Element Reference
	Layout Element Reference
	Function Calls
	expression–
	expression++

	Unary Operators
	not expression
	typeof(expression)

	Multiplicative Operators
	Additive Operators
	Containment Operators
	Relational Operators
	Equality Operators
	Logical AND Operator
	Logical OR Operator
	Assignment Expressions

	Declarations
	Type Specifiers
	List Declarations
	Layout Declarations
	Table Declarations
	Function Declarations

	Statements
	Expression Statements
	Conditional Statements
	Iterative Statements
	for loop

	while loop
	Jump Statements
	Set Builder Statements

	Scope

