
COMS W4115
Programming Languages and Translators

Homework Assignment 2

Prof. Stephen A. Edwards Due Oct 22nd, 2014
Columbia University at 4:10 PM

On-campus students: submit solution on paper; (no email).
CVN students: submit online through CVN.
Include your name and your Columbia ID (e.g., se2007).
Do this assignment alone. You may consult the instructor

or a TA, but not other students.

1. Using Ocamllex-like syntax, write a scanner for C’s float-
ing point numbers following the definition in K&R 2ed.

A floating constant consists of an integer part,
a decimal part, a fraction part, an e or E, an
optionally signed integer exponent and an op-
tional type suffix, one of f, F, l, or L. The in-
teger and fraction parts both consist of a se-
quence of digits. Either the integer part, or the
fraction part (not both) may be missing; either
the decimal point or the e and the exponent
(not both) may be missing. The type is deter-
mined by the suffix; F or f makes it float,
L or l makes it long double, otherwise it is
double.

Hint: make sure your scanner accepts constants such as
1. 0.5e-15 .3e+3 .2 1e5 but not integer constants
such as 42

2. Draw a DFA for a scanner that recognizes and distin-
guishes the following set of keywords. Draw accepting
states with double lines and label them with the name
of the (single) keyword they accept. Follow the definition
of a DFA given in class.

chan chanin chanout width with if end endif
elseif

3. Construct nondeterministic finite automata for the fol-
lowing regular expressions using Algorithm 3.23 (p. 159,
shown in class), then use the subset construction algo-
rithm to construct DFAs for them using Algorithm 3.20
(p. 153, also shown in class).

(a) (ab | b)∗

(b) ((ε | a) b)∗

(c) a b (a | b)∗

Number the NFA states; use the numbers to label DFA
states while performing subset construction, e.g., like
Figure 3.35 (p. 155).

4. Using the grammar

S → (L) | a
L → L,S | S

(a) Construct a rightmost derivation for ((a, a), (a, a))
and show the handle of each right-sentential form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the concrete parse tree that would be con-
structed during this shift-reduce parse.

5. Build the LR(0) automaton for the following ambiguous
grammar. if, else, and null are terminals; the third rule
indicates T may be the empty string. Indicate the state in
which the shift/reduce conflict appears.

S′ → S
S → if S T
S → null
T →
T → else S

Check your work by running “ocamlyacc -v” on the gram-
mar below and looking through the “.output” file.

%token IF ELSE NULL
%start s
%type <int>s

%%

s : IF s t { 0 }
| NULL { 0 }

t : /* empty */ { 0 }
| ELSE s { 0 }


