TAGG
The Awesome Guitar Game

CSEE 4840
Embedded System Design
Spring 2012

Academic Supervisor:
Professor Stephen A. Edwards

Imré Frotier de la Messeliere (imf2108)

TAGG
The Awesome Guitar Game

CSEE 4840
Embedded System Design
Spring 2012

Academic Supervisor:
Professor Stephen A. Edwards

Imré Frotier de la Messeliere (imf2108)

Overview of the project

- This work is based on the "Guitar Hero" game series.
- The user handles a game guitar.
- Once the game starts, the user tries to match the required notes with the guitar.

- His score increases each time he presses the correct key.

Obiectives of the proiect

Objectives of the project

- Fully functional game
- Hardware conception to create the Game Guitar

- Software conception for the core of the game, using MATLAB, PYTHON,
VHDL and C;
- Detect the input of the game guitar

- Extract the beats of a song
- Ask for the correct key presses, based on the beats

- Analyze the correctness of the key presses of the player
- Keep track of the score

Project Design

Architectural Design

Timing Design

Display of the beats

+ Stored inside the C code

- Displayed based on their embedded timing

data

Storing and playing the music

- SDRAM
« Flash Memory

+ Music in the background (raw

implementation in the current state of this
project)

Architectural Design

Total schematics of the VHDL, €, MATLAE ond PYTHON modules

Display af the beats

The beats are stored and accessed in the C program.

They mark the boundaries for the time a user has the
right to try and press the correct key,

The required key to press are displayed on the
Consale of the NIOSZ coding environmeant.

Getting the user inputs from the Game Guitar
The user inputs are received by using interruptions.

Once a key has been pressed, the VHDL code sends
an interruption to the MIOS2 C code.

There is one type of interruption per guitar key.

The key that had been pressed is determined by the
interruption ID.

Keeping track of the score

The score is handled by the NIOS2 C program.

The score is being increased each time the correct
key has been pressed during the valid time lapse,

The score is displayed continuausly in the NIOS2
Cansole,

Total schematics of the VHDL, C, MATLAB and PYTHON modules

« chremagraes, Em
~ chremagraem: IF.m
~ chremagraem P

MATLAB PYTHON C

= helle_werld.c

- distmatrbowite.m listflewrite m
L « lealmam

s b +encode.py

[En——— » mpread = .

Nistary-ragg-ssncam mymidiem randomize.py

« histary-galdest-wearrm + octednm «shartest_time_distpy
*hadnctsm ~tempem .

. toHexArray . py

* beatavg.m

* beat.m

* calclistftrs.m

* chromagram_E.m

* chromagram_IF.m
* chromagram_P.m
* chrombeatftrs.m

e distmatrixwrite.m

* fexist.m

* fft2chromamx.m

* fft2Zmelmx.m

* history-bragg-autoco.m

* history-golddust-xcorr.m
* hz2octs.m

 ifgram.m

* ifptrack.m

* listfileread.m

* chromnorm.m

* chrompwr.m

* chromrot.m

* chromxcorr.m

» coverDistMxLists.m
* coverFtrExLists.m

* coverTestLists.m

* listfilewrite.m
* localmax.m

* mkblips.m

* mp3read.m

* mymkdir.m

* octs2hz.m

* tempo.m

* testlist.m

* test.m

PYTHON

* encode.py

* randomize.py

* shortest_time_dist.py
* toHexArray.py

* hello_world.c

* AWESOME_GUITAR.qpf * cpu_jtag_debug_

* AWESOME_GUITAR.qws module_wrapper.vhd
* AWESOME_GUITAR_TOP.dpf » cpu_ociram_default_
* AWESOME_GUITAR_TOP.jdi contents.mif
* AWESOME_GUITAR_TOP.qsf » cpu_rf_ram.mif
* AWESOME_GUITAR_TOP.sof * cpu_test_bench.vhd
* counter.vhd * DebounceCounter.vhd
* cpu.ocp » debouncer.vhd
* cpu.vhd » de2_i2c_av_config.v
* cpu_jtag_debug_module.vhd » de2_i2c_controller.v
» de2_sram_controller.vhd * nios_system.bsf
* de2_sram_controller_hw.tcl * nios_system.ptf
* de2_ wm8731_audio.vhd * nios_system.qip
* guitar_top.vhd * nios_system.sopc
* InputController.vhd * nios_system.vhd
* InputController_hw.tcl * nios_system_generation_script
* InputController_inst.vhd » nios_system_log.txt
* InputController2_inst.vhd * nios_system.ptf.pre_generation_ptf
* InputController3_inst.vhd * nios_system_setup_quartus.tcl
* InputController4_inst.vhd » pulser.vhd
* InputController5_inst.vhd » sopc_builder_log.txt
* InputController6_inst.vhd * sram.vhd
* jtag_uart.vhd » timer.vhd
* timer.vhdl|

» timer_hw.tcl
* timer_inst.vhd

Display of the beats

The beats are stored and accessed in the C program.

They mark the boundaries for the time a user has the
right to try and press the correct key.

The required key to press are displayed on the
Console of the NIOS2 coding environment.

Getting the user inputs from the Game Guitar

The user inputs are received by using interruptions.

Once a key has been pressed, the VHDL code sends
an interruption to the NIOS2 C code.

There is one type of interruption per guitar key.

The key that had been pressed is determined by the
interruption ID.

Keeping track of the score

The score is handled by the NIOS2 C program.

The score is being increased each time the correct
key has been pressed during the valid time lapse.

The score is displayed continuously in the NIOS2
Console.

Timing Design

Display of the beats

« Stored inside the C code

- Displayed based on their embedded timing
data

Storing and playing the music

« SDRAM
+ Flash Memory
+ Music in the background (raw

implementation in the current state of this
project)

Display of the beats

.- Stored inside the C code

- Displayed based on their embedded timing
data

Storing and playing the music

- SDRAM
- Flash Memory
- Music in the background (raw

implementation in the current state of this
project)

IMPIEMEeNTaton IN the CUrrent state or this
project)

Software

- MATLAB LabRosa:
- getting the beats

- PYTHON:
- formatting the song

- NIOS 2 platform:

- launch of the beats

- keeping track of the score

- The NIOS 2 console is the visual display for the user.

| [SRGNUE FY

Hardware

Link between the guitar and the cardboard Cardboard Link between the cardboard and the FPGA

Hardware

Link between the guitar and the cardboard

Cardboard

Link between the cardboard and the FPGA

Project

Milestone 1

March 27th

* | will buy and construct the game
guitar.

* | shall detect key inputs with the
game guitar.

* I will play a song (raw sound format)
from a SD card in the FPGA.

+ | will develop a program to build a
script of a given song. This means, to
produce a file that contains the notes
and their corresponding positions for
this particular song.

+ | shall finally make a prototype of
the base game engine in Java.

Milestone 2

April 10th

* | will work on the sprites and study
how to do graphics and how to
encode the sound efficiently (how
many bits, how much information |
can store...).

= The Java game prototype will
integrate the work on scripts from
the first milestone.

* | shall have designed the game
internal functioning to ensure a
constant frame rate (on paper).

= | will have started implementing the
game,

Milestone 3

April 24th
* | shall finalize the game.

« | will develop an algorithm to
compute the score.

* | shall improve the performance of
the game and work on the graphics.

Timeline

Final Run

May 23rd
- End of the VHDL programming
- End of the C programming

- Test of the global game

September 30th
« End of the project report

« End of the project presentation

Milestone 1

March 27th

* | will buy and construct the game
guitar.

* | shall detect key inputs with the
game guitar.

* | will play a song (raw sound format)
from a SD card in the FPGA.

* | will develop a program to build a
script of a given song. This means, to
produce a file that contains the notes
and their corresponding positions for
this particular song.

* | shall finally make a prototype of
the base game engine in Java.

Milestone .

April 10th

* | will work on the sprites and st
how to do graphics and how to
encode the sound efficiently (ho
many bits, how much informatic
can store...).

* The Java game prototype will
integrate the work on scripts fro
the first milestone.

* | shall have designed the game
internal functioning to ensure a
constant frame rate (on paper).

* | will have started implementin
game.

Nilestone 1

27th

buy and construct the game

| detect key inputs with the
Juitar.

play a song (raw sound format)
SD card in the FPGA,

develop a program to build a
Of a given song. This means, to
e a file that contains the notes
eir corresponding positions for
rticular song.

| finally make a prototype of
se game engine in Java.

Milestone 2

April 10th

* | will work on the sprites and study
how to do graphics and how to
encode the sound efficiently (how
many bits, how much information |
can store...).

* The Java game prototype will
integrate the work on scripts from
the first milestone.

* | shall have designed the game
internal functioning to ensure a
constant frame rate (on paper).

* | will have started implementing the
game.

Milestone

April 24th
* | shall finalize the game.

* | will develop an algorithm to
compute the score.

* | shall improve the performan
the game and work on the grar

lilestone 2

)th

nvork on the sprites and study
do graphics and how to

> the sound efficiently (how
its, how much information |
re...).

Iva game prototype will
te the work on scripts from
t milestone.

| have designed the game
| functioning to ensure a
nt frame rate (on paper).

1ave started implementing the

Milestone 3

April 24th
* | shall finalize the game.

* | will develop an algorithm to
compute the score.

* | shall improve the performance of
the game and work on the graphics.

Final Rur

May 23rd
- End of the VHDL programm
- End of the C programming

- Test of the global game

September 30th
- End of the project report

- End of the project presentat

lilestone 3

4th
| finalize the game.

develop an algorithm to
te the score.

I improve the performance of
me and work on the graphics.

Final Run

May 23rd
- End of the VHDL programming
- End of the C programming

- Test of the global game

September 30th
- End of the project report

- End of the project presentation

Experiences and issues in
iImplementation

- Storage using SRAM/SDRAM
- Playing the song
- Bugs solving, difficulty to trace the source of a crash

- Merging several parts of the project

Lessons learned

- Start the project as early as possible.

+ Code and debug small step per small step.

- Synchronize all the parts of the project as soon as possible.
- Do not venture into too many directions at once.

« Share CLIC laboratory resources with the other students.

- Make regular copies of the global projects.

- Be very careful with the SOPC builder.

- The most important lesson of all: enjoy your project!

Conclusion

- A very enjoyable game to code and debug

- A great hands on experience: using, modifying and building hardware
by myself

- My first coding experience with VHDL and good training in C, as well as
in MATLAB and PYTHON

- Additional tracks of study:

- more developed visual interface for the game, using sprites;
- have several different songs available instead of just one;
- introduce a multiplayer mode.

Thank you for your attention!

Now is the time for a demo!

