Interactive Fractal Viewer
CSEE W4840 Final Report

Nathan Hwang - nyh2105@Qcolumbia.edu Richard Nwaobasi - recn2105@Qcolumbia.edu
Luis Pena - lep2141@columbia.edu Stephen Pratt - sdp2128@columbia.edu

Advisor: Prof. Stephen Edwards

May 11, 2012

Abstract

Fractals are often appreciated for their rich and elegant internal complexity. It is this complexity
that is responsible for the beautiful aesthetic of these famed mathematical images as well as the amount
of computational power required to generate them. Using fixed point calculations within parallelized
sequential logic blocks, we aim to develop an hardware-accelerated fractal generator, capable of computing
and displaying quadratic Julia sets in significantly less time than a software-based solution.

1 Background

1.1 An Introduction to Julia sets

The Julia set J of a complex rational function f : C — C is can be expressed as:

Vz: lim [f"(2)] = o

n— oo

That is, given a function that describes a mapping from the complex numbers to the complex numbers,
that function’s Julia set is the set of numbers for which repeated application of that function results in
convergence towards infinity. Julia sets have many remarkable properties. Iterations of a function is
chaotic on its Julia set, meaning that it represents a dynamical system in which tiny perturbations
in initial conditions can result in disproportionately large changes in the evolution of the system. As
chaotic systems, they can be used to generate pseudo-random numbers. When plotted, Julia sets have
the capacity to produce stunning images.

Quadratic polynomial Julia sets are Julia sets of functions that take the form

fe(z2)=2"+¢
So any given quadratic polynomial Julia set is uniquely described by some point on the complex plane
c. These sets produce fractals, and so they often exhibit self-similarity. Quadratic polynomial Julia sets
have the nice property that the magnitude of f.(z) at any point in a recurrence whose initial value was
not in the Julia set will always be bounded above by 2. Thus, any point z that causes |fc(z:)| > 2 for
any z; in the recurrence is necessarily not a member of J(f;)

Generating Quadratic Polynomial Julia Sets

Because points not belonging to the Julia set of some quadratic polynomial f. (also called points in the
Fatou set of f.) are guaranteed to be bounded in magnitude by 2 during repeated application of f., one
may generate the Julia set for a given window in f. by sampling the members of that window, repeatedly
applying f., and testing whether or not the magnitude ever breaks away from 2, giving up after some
fixed number of iterations. This is the basic design of the Interactive Fractal Viewer.

When plotting the resulting Julia set, one may choose to colorize the image based on how long it
took for the iteration beginning at each point in the complex plane to become unbounded. We shall
henceforth call this value the breakaway iteration, or k. Thus, the problem of plotting a Julia set on a
screen reduces to computing the viewing window as a section of the complex plane, and finding k& for
each sample point in that section.

Generating Julia sets in this fashion can be a very lengthy process, especially when the points must
be done in series. However, since each recurrence to be tested is completely independent of each other,
the problem is extraordinarily parallelizeable. Furthermore, since the function being applied is relatively
simple, it may be very easily implemented in hardware. Giving the Interactive Fractal Viewer its
motivation.

Figure 1: The quadratic polynomial Julia set defined by
c=(¢—2)+ (¢ —1)i (from Wikipedia)

2 Design

2.1 System Description and Development Environments
System Description

The Interactive Fractal Generator is implemented on an Altera DE2 Cyclone FPGA by Terasic
Technologies. Terasic advertises the following specification about the device:

Altera Cyclone IT 2C35 FPGA with 35000 LEs

Altera Serial Configuration devices (EPCS16) for Cyclone II 2C35

USB Blaster built in on board for programming and user API controlling

JTAG Mode and AS Mode are supported

8Mbyte (1M x 4 x 16) SDRAM

512K byte(256K X16) SRAM

4Mbyte Flash Memory (upgradeable to 4Mbyte)

SD Card Socket

4 Push-button switches

18 DPDT switches

9 Green User LEDs

18 Red User LEDs

16 x 2 LCD Module

50MHz Oscillator and 27MHz Oscillator for external clock sources

24-bit CD-Quality Audio CODEC with line-in, line-out, and microphone-in jacks

VGA DAC (10-bit high-speed triple DACs) with VGA out connector

TV Decoder (NTSC/PAL) and TV in connector

10/100 Ethernet Controller with socket.

USB Host/Slave Controller with USB type A and type B connectors.

RS-232 Transceiver and 9-pin connector

PS/2 mouse/keyboard connector

IrDA transceiver

Two 40-pin Expansion Headers with diode protection

DE2 Lab CD-ROM which contains many examples with source code to exercise the boards, includ-
ing: SDRAM and Flash Controller, CD-Quality Music Player, VGA and TV Labs, SD Card reader,
RS-232/PS-2 Communication Labs, NIOSII, and Control Panel API

Development Environments

e VHDL Development was done in the Altera Quartus II IDE v. 7.2
e Software Development was done in a combination of Emacs v. 23.1 and the NIOS II IDE

2.2 High-level Overview

The following is a description of how data travels through the block structure specified in Figure 2 when
generating a single fractal.

e Data flow originates from the NIOS II Processor, which initializes the system by computing a set
of parameters that can be used to describe the target window and fractal. The NIOS writes these
parameters across the Avalon Bus onto an on-board RAM and sends instructions to generate a
new image to a special instruction register.

e When the instruction register receives the generate signal, it tells a component charmingly referred
to as the Rammer to write the parameters information contained in the RAM into registers. It
then asserts a generate signal that will be read by the Window Generator

e The Window Generator takes these parameters as input and builds a set of 4-tuples (z,y, a,b)
where each tuple is a mapping from a VGA coordinate (z,y) to a value in the complex plane of
the form a + bi. The (a,b) values eventually be used to compute a breakaway count k for each
co-ordinate on the screen. The computation will be performed by a specialized component called
an Iterative Function Module, or IFM.

e Before the next (a,b, z,y) tuple is delivered to one of the 4 available IFMs, it must be requested by a
component known as the TFM Controller. The IFM Controller is responsible for distributing
work among several IFMs working in parallel.

e When an IFM enters a ready state, it is given the next (a, b, z, y) tuple and will begin performing the
function iterations using the constant prescribed by the set to be generated. The IFM transitions
into a done state after a fixed number of iterations, or when the squared magnitude of its current
iteration exceeds 4.

e The IFM Controller takes the data given by the done-state ITFMs and writes it to a queue that
will deliver it to the Coordinate-Breakaway Lookup Table, implemented using the on-board
SRAM. The IFM data takes the form of the (z,y, k) triples we set out to create. The k value of
each triple is stored in the Coordinate-Breakaway Lookup Table at an address determined by
the (z,y) values. In this way, we map VGA coordinates to their associated breakaway iterations.

e The VGA Module fetches results from the Coordinate-Breakaway Lookup Table and col-
orizes them using a separate ROM-based Colorization Lookup Table. The Colorization
Lookup Table takes a breakaway count, k, and maps it to an (r, g,b) bit-vector for use by the
VGA.

2.3 Module Implementation
User Interface Module

As an interactive device, our fractal generator has the capacity to accept user parameters such as window
size or Julia set constants during operation. This communication with the user is facilitated by the NIOS
IT Processor taking PS/2 keyboard input. We refer to these entities and all their supporting devices
as the User Interface Module. This module is responsible for handling communication with input
peripherals and translating user input into information that can easily be used by the hardware-based
fractal generator. Once this information has been translated into a set of values that can be used by the
remainder of the system generator, they are written into an on-board RAM. When the User Interface
Module is ready for the hardware to take some action, it sends a signal to a component on the board,
which forwards the signal appropriately. All communication with the board is performed over the Avalon
Interconnect Fabric.
The NIOS II Processor uses the SDRAM as its memory store.
Parameters of primary concern are those of viewing window and Julia set constant. The window is

set using the following values (which will be elaborated on in the Window Generator section):
Amin 36 bits

- agiff 36 bits

- Qleap 10 bits

- bmin 36 bits

- baiff 36 bits

- bieap 10 bits
Meanwhile, the Julia set constant is set using the following values
Creal 30 bits
Cimg 36 bits

SDRAM
(Program Storgage)

™\

NIOS II Processor
(Window Generator)

Instr.
RAM

RAM

Param.

Instr.
Reg.

|

Param.|
Reg.

Parallel IFM Control Module

Monitor

VGA
Ctrl.

A A
IFM IFM IFM IFM
Y
IFM Output Buffer
)
RAM Addresser
v
RAM

(Coordinate-Breakaway Lookup)

Y

{

ROM
(Colorization Lookup)

Figure 2: High-level Block Diagram

EXTERNAL Bus TO AvaLoN BRIDGE

Nios Il System

Address
Write

Read
External Bus 2 Master

to Avalon Bridge Peripheral

WriteDala 15
Ac
ReadDala 15

(a) External bus signals

ceo LU LALLM s

Address ¢ Wirite: Adress X Reat Aoess)4

mo T 1§ T L

Write _I— _|

ByteEnabley o > >CX >C

WiiteDatags > Wite Data 4

Acknowledge |_| I_I_
EED

ReadDatays “iRoait Dats

(b) External bus timing diagram

Figure 3: Block and Timing Diagram of the Avalon interconnect
fabric. Provided by Altera Corporation.

Parameter RAM

In order to allow for the buffering and mutation of individual parameters, the UT Module writes each
individual parameter into a RAM. Since the Avalon interconnect fabric only allows for 32 bits to be
transferred at once, but most parametrs are 36 bits wide, the RAM is 18 bits in width and parameters
are sent in with the 18 least significant bits of each 32 bit write. For simplicity, these rows are still
addressed by the NIOS as if they were 32 bits wide.
Each of the 14 rows in this RAM has a different purpose.
Row Data Stored Portion Offset

0 amin 18 MSB 0x0
1 amin 18 LSB 0x4
2 bmin 18 MSB 0x8
3 bmin 18 LSB 0xC
4 aqifs 18 MSB 0x10
5 adiff 18 LSB 0x14
6 bairs 18 MSB 0x18
7 baifs 18 LSB 0x1C
8 Giecap - 0x20
9 bieap - 0x24
10 Creal 18 MSB 0x28
11 creal 18 LSB 0x2C
12 cimg 18 MSB 0x30
13 cimg 18 LSB 0x34

When the UI Module sends a redraw signal to the board, a device called the Rammer moves these
values into registers that will be read by the Window Generator and IFMs when drawing the image.

Window Generator

The Window Generator serves to kick off the calculation cascade, computing the position in the com-
plex plane represented by each pixel in the given input window, thereby producing (z,y, a,b) tuples.

The generator uses a specialized procedure that requires only addition and comparison operations to
map out a whole window. Say we have a window that stretches from vyin tO VUmaz over N pixels. The
procedure works by iterating from 0 to N-1 and producing a sum at each step of the way that corresponds
to a the value of v at that point. The procedure requires a few values as input:

clk
next_val 36 a out
reset
a_min 36 —\36— b_out
a_diff—38\— Window Generator
a_leap—10\ |
—\0 x out
a_mini\—
a_diff—30\—— —¥—y_out
a_leap 10|

Figure 4: High-level Block Diagram of the Window Generator

clk
at_max
next_val
reset ————— I ready
L 36 diff_counter:
v_min—2— =
- a_counter 36y out
v_diff—36\ | ' -
I 10
v_leap 10\ —\0 ¢ out
max_itr—10s

Figure 5: Block diagram of a Differential Counter used in
window generation

Parameter Width | Purpose
Amin 36 bits Describes the minimum value of ¢ in the window

aqiff 36 bits Describes the standard differential between consecutive a values in the
window (@maz —amin)/WIDT Hscrern this is computed by the NIOS
processor.

Gleap 10 bits | Periodically, we will need to add 1 to our sum to compensate for
precision loss. This value corresponds to the length of the inter-
vals between these “leap cycles” WIDTHscreeN/((@maz — Gmin)
mod W]DTHSCREEN)

bmin 36 bits Describes the minimum value of a in the window.

baify 36 bits | Describes the standard differential between consecutive a values in the
window (bmaz —bmin)/HEIGHTscreEN this is computed by the NIOS
Processor.

bieap 10 bits Periodically, we will need to add 1 to our sum to compensate for
precision loss. This value corresponds to the length of the inter-
vals between these “leap cycles” HEIGHTscreeN/((bmaz — bmin)
mod HEIGHTSCREEN)

The Window Generator is therefore comprised of two Differential Counters that are respon-
sible for performing the iterations. One computes values for b and the other a.

When the Differential Counter receives a reset signal, it initializes its data according to the sig-
nals coming in. Then, each time it recieves a next-value signal, it increments the output value accordingly.
If the counter reaches its maximum, it asserts a flag.

In the Window Generator, the Differential Counters are hooked up in such a way that the
points are cycled through from left to right down the screen.

reset=0

Init
v_out=v_min_in
c_out=0
v_diff=v_diff_in
v_leap=v_leap_in
iter_count=0
ready=1
at_max=0
iter_max=iter_max_in

reset=1

Leap_Inc
v_out=v_out+v_diff+1
c_out=c_out+1
iter_count=0

v_out=v_out+v.diff
c_out=c_out+1
iter_count=iter_count+1

Figure 6: State Diagram for the Differential
Counter, Moore machine: signals max=c_cuis=max_itr,
leap=iter_count=v_leap. Omit unused signals (X) for

compactness. Colorcoded signal bundles.

clk_25

next_val

reset |

at_max | | |

ready /

data_in constant data

data_out 77/ X :X :X

Figure 7: Timing diagram of the Differential Counter

data_vector next_val
P
NIOS II Processor) Window
Window Generator a_value, x_value, | Parallelized
Generator :{Vﬂ:e' ‘;—a‘ga'”e' IFM
_mayx, ready
Bus — Controller |
/\ a_min, a_diff, x_value,
a_leap, b_min, _value,
b_diff, b_leap count
AN A

diff_counter:| | diff_counter:
a_counter b_counter

JAN

clk |

Figure 8: Block diagram illustrating (x,y, a, b) tuple dataflow.

The Window Generator takes reset signals from the bus connected to the NIOS processor. When
the Window Generator is ready for computation (the same cycle that it is reset by the bus), it asserts
a data flag. When the IFM reads an (z,y, a, b) tuple, it asserts a next value signal indicating that it will
need new data in the following cycle. Once the Window Generator runs out of values to give, it asserts
an at max flag.

IFM Controller

Rendering Julia set fractals requires many iterations of relatively simple computations in the complex
plane. This sequence of computations is independent for each point in the image, which is why the
calculation of fractal sets lends itself to parallel computation. However, the very nature of the iterated
fractal calculation means that the amount of time spent performing computations on each individual point
can vary drastically, introducing synchronization issues. It is the responsibility of the IFM Controller
to resolve these issues.

The IFM Controller constantly transmits the (z,y,a,b) tuple currently being expressed by the
window generator to each of the IFMs. When an IFM indicates that it is in the ready state, the controller
asserts a signal instructing the IFM to accept the new data and begin computation (assuming that the
window generator is asserting the valid data flag). Simultaneously, the controller signals to the Window
Generator that it needs the next data tuple in the window. If more than one IFM is in the ready state
at once, the controller only sends the read and compute signal to one, saving the upcoming data tuples
for the rest.

Iterative Function Module (IFM)
A quadratic polynomial Julia set is generated by applying the function

fe(z) =2"+¢ (1)
repeatedly, where z, ¢ € C. For any given pair (z, ¢), this recurrence will result in one of two outcomes:
e The magnitude of the complex values generated by the recurrence may stay bounded by 2
e The magnitude may become unbounded and escape toward infinity
A point z on the complex plane is in the Julia set uniquely defined by the complex number ¢ if and
only if the recurrence remains bounded for (z,c). To determine whether or not a point remains bounded

reset=0

Init
at_max=0
Reset(A)
Reset(B)

reset=1

reset=0
mab=0"
next=1
ma=1

\J

Col_Inc
Reset(A)
Increment(B)

In
increment(A)

Figure 9: State Diagram for the Window Generator
code, Moore machine: signals max=c_cuis=max_itr,
leap=iter_count=v_leap. Omit unused signals (X) for
compactness.

e eliplinigininipininl
next_val / \ /

reset

at_max |

—

data

data_in ;

a_out

b_out ?

x_out ¢

_ S o] =]

y_out

Figure 10: Timing diagram of interface between the Window
Generator and the IFMs.

10

IFM

X, Y, count

IFM

IFM

X, ¥, count

a, b, x, y
I
F
M
ab, a, b %,y
X Yy
at_max,| c —
ready o
—
T
R a, b, x,y
(¢}
L —
L
E
R a, b, x, y

IFM

X, Y, count

Mux -

Registerf

X, Y,
count, we

Figure 11: Block diagram for the IFM wrappers

for a given ¢, we compute a fixed number of iterations on the recurrence (in our case 127) and report the
iteration in which the value generated has a squared magnitude of greater than 4. Those points that do
not become unbounded in this many iterations are considered to be part of the set.

Because the factors of the multiplication are complex numbers, computing their product involves 3
real-number multiplications. For z = a + bi we compute

With these values we can compute:

Anext
bnext
ElS

Py
Pgp
Pc

b2
ab

Pa — P + Creal
2Pc — Cimg
Pa+ Pp

The squaring operations for P4 and Pg is perfomed by a specialized logical circuit provided as an
Altera Megafunction. The multiplication Pc is perfomed by embedded multipliers on the DE2. These

are expansive circuits, but the FPGA is still to accomodate up to 4 IFMs.

11

reset=0

Done
X,y,count

count=127 orma2 > 4

compute=1

Figure 12: State diagram for a single ITFM. Moore machine: using
abstract transition descriptions. Omits unused signals for com-
pactness.

cr

72

Subtractor

Reg. L
Mult a

36

w 1

36

MUXF Reg. L \ A\

Mult b 72 36

mag2

done

Counter (until 127)

72

Mult ¢

<<1
Adder

Figure 13: Arithmetic Logic Circuit within each IFM

Real-valued numbers are represented as two’s-complement fixed-point binary values in our circuit. A
complex number is comprised of two such data vectors. We restrict ourselves to 36 bits, as the onboard
multipliers are sized as such.

In order to accomodate the largest-magnitude value we expect to come across during any iteration,
we require 6 bits to the left of the radix. Thus, our fixed-point values have 30 bits to the right of the
radix. This gives us a machine precision of approximately 9.31 x 1071,

12

S [I /A S S S B S /8 S S 6 [S

clr ‘\ // /—\ // /—\—
omp [\ ... [
ready I\ // /—\ // /—L
done // /_\ // / | SN S S S S

sata_in 000 N N Y)
SR i, S)) S

Figure 14: Timing diagram for a single IFM.

To more easily facilitate communication with the IFM Controller, each IFM is contained within a
wrapper module. Thus, the IFM Controller need only alter the state of the wrapper module, and the
wrapper module will transmit signals to the IFMs indicating the desired behavior.

reset!=0

New Data IFM done

Waiting
for data

No Data

Pugh data

IFM Done
we=1,x,y,count

IFM Ready
we=0

IFM new data

Figure 15: State diagram for a single TFM wrapper module, Moore
machine: using abstract transition descriptions.

If a wrapper module is in the done state, the controller indicates that its (x, y, c¢) triple should be read
into the output register. If multiple IFM wrappers are in the done state simultaneously, the controller
chooses one at a time to be read in. These triples are then augmented with an asserted write enable
flag to indicate that they represent valid data, and should be written to the Coordinate-Breakaway
lookup table.

Coordinate-Breakaway Lookup Table

After the count associated with each pixel is calculated, it must be stored in a framebuffer that interfaces
both with the IFM Controller as well as the VGA Module.

13

clk_50MHz
clk_25MHz

__ rv
reset:

X—\—
ry_gb

re

Coordinate-Breakaway
LuUT

w10 |

wy— |
wv—s\—

we

Figure 16: Block Diagram of the Coordinate-Breakaway
LUT: signals on the right side are inputs, signals on the left are
outputs.

For this, we use the SRAM chip that is built into the DE2 board, for its relatively expansive memory
size (versus on-chip memory), fast speed, and ease of use (versus the SDRAM chip). The SRAM chip
has a 512kibibytes capacity that can be accessed and written to in half a 50MHz clock cycle, making it
ideal for our purposes.

Since we display a 640 x 480 image in the VGA module and keep 8 bits of iteration information for
each pixel, we need a grand total of 300kibibytes to store the information, fitting well within the confines
of the given 512kibibyte SRAM chip.

We use a straightforward addressing scheme to store the count information, using the y position as
the top 9 bits of the address, and the x position as the bottom 10 bits of the address. This way, finding
the address from a given pixel position is very fast.

A small wrinkle is the fact the SRAM is in fact a 256K x 16 bit memory, reading and writing in 16
bit chunks. This merely means that the very bottom bit of the x position does not go to the address,
but is routed to the bitmask signal indicating whether the byte sought is in the upper or lower half. Of
the 16-bit word that is addressed by the remaining 18 bits.

Reading/Writing Since the SRAM has only one IO port, reads and writes must be time multiplexed.
The VGA module will be consistently requesting data from the SRAM at 25MHz. However, while the
fractal is being generated, the IFMs will be providing information that must be written to the SRAM at
the same frequency. This means that we must interleave reads and writes to the SRAM.

We can use the structure of the reads from the VGA to our advantage to make room for the necessary
writes. Reads always follow a pattern, where if we read the lower half of a 16bit word, then we will read
the higher half in the next 25MHz clock cycle. Hence, when we require the lower half of a word, we can
fetch the entire word in one read, save the higher half in a register, and return it when it’s required in
the next clock cycle. In this way, we reduce the frequency of VGA reads from the SRAM to every other
cycle on a 25MHz clock.

clk_25 | |

el /N
x V2228 X X772
v T N X777

read_sram 7 id CEN A %

Figure 17: Timing diagram of the interface between the
Coordinate-Breakaway LUT and VGA module

14

Even with every other 25Mhz cycle being dedicated to writing the data being sent out by the IFMs,
the SRAM might still miss a coordinate if the TFMs are generating their maximum possible throughput
of 25MB/s. To account for this, we prioritize writes over reads. Even if a VGA read is missed in one
scan, it will be correct in the next scan as long as writes are prioritized. The junction writing to the
SRAM consists of a shift register that constantly reads from the IFM output, but only shifts when the
SRAM’s read enable signal is not being asserted.

re=1,we=X/rv

re=0,we=0/~ re=0,we=1/~

re=0,we=0/~

re=0,we=1/~

re=0,we=0/~ re=0,we=1/~

Figure 18: Simplified State Diagram of the
Coordinate-Breakaway LUT: Mealy machine, only in-
cludes re and we as inputs and rv as an output, with ~ denoting
a lack of outputs

ckso [1 [LT 1T LITLILTIT.
55 [\
W_x 77X X X8 X ¥
Wy 78 ¥ K777/770 X K

write_sram 7///dcount\///////Acout\”,

Figure 19: Timing diagram of the interface between the TFMs and
the Coordinate-Breakaway LUT.

VGA Module

In order to display the generated Julia set, we connect a VGA controller to the Coordinate-Breakaway
lookup table. As the controller cycles through output coordinates within the display area, it modifies
the read address signal for the lookup table. The data signal coming from the RAM is thus the breakaway
value associated with that coordinate.

15

0 rv_in - 32
X_pos,y_pos = X_pos,y_pos
re=1,VGA=0 re=1, VGA

reset=1

Figure 21: State diagram for the VGA module, Mealy ma-
chine: ~ stands in for no input/output, and VGA stands in
for all the VGA_ signals (VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK,
VGA_SYNC, VGA_R, VGA_G, VGA_B). Omits unused signals for com-

pactness.
clk ——— —— VGA_CLK
reset —— — VGA_HS
rv_in—& VGAVS
VGA_SYNC
VGA Control Module — VGA_BLANK
—— 3% VGA_*
—\& X_pos
2 y_pos

re

Figure 20: Block diagram of the VGA module

This breakaway value is passed through a decoder known as the Colorization lookup table
and the resulting (R, G, B) signal tuple is sent to the VGA port.

Colorization lookup table

The Colorization lookup table is implemented using a ROM on the FPGA. The ROM maps each
possible breakaway k value to a bit-vector corresponding to the (R, G, B) signal tuple that should be
expressed for that value. The system includes a special “cycle colors” mode, wherein the k value being
sent in to the Colorization lookup table is modified by a linearly increasing amount. This causes
the colors to shift on screen, creating a remarkable aesthetic.

To assist with programming the ROM, the development team created a small Python application that
allows the user to graphically modify (R, G, B) components for different k values, and interpolates the
results. The application can then display a preview of what a Julia set will look like with these settings,
and produces VHDL for programming the ROM accordingly.

3 System Validation and Performance

3.1 Verification and Validation

During development of the Interactive Fractal Viewer, it was desireable to validate the functionality of
individual components. We used VHDL Test Benches in combination with the Quartus RTL simulation
tool to verify proper timing and behavior during the early stages of development.

The development team wrote Test Benches for each of the major hardware components. These proved
invaluable in finding problems during the initial implementation stages, as well as diagnosing them later
on.

Additionally, in order to strictly verify the correctness of the Julia sets that the system produced,
the team wrote a specialized Test Bench capable of dumping (a, b, k) triples to a file. A Python script
was written to parse and validate this file. The script built a complex number for each (a,b) double and

16

computed its own breakaway iteration k' for that value using floating point precision. If the |k—k'| < ¢, it
marks the value as a success. Otherwise, it is marked as a failure. The tolerance parameter € is necessary
because Julia set iterations represent chaotic systems. Therefore, the minor perturbations caused by the
difference in hardware vs. software computation can cause major changes.

For the Julia set described by a chosen ¢, and € = 5, the validation script showed a 98% success rate
on the 307200 points tested.

3.2 Performance Analysis
Upper-Bound on Image Generation Time

Say the system wishes to compute an arbitrary window of an arbitrary Julia set. The only variable in
generation time for a given image is the amount of time it takes for the IFMs to completely write all
k values to the Coordinate-Breakaway lookup table. Thus, to find an upper bound on image
generation time, we may assume that each IFM spends the maximum possible amount of time computing
the k value for each coordinate. The number of iterations in each IFM is capped at 127. Each IFV can
perform one function evaluation per clock cycle, and requires 3 cycles of setup and tear-down time for
state changes.

Additionally the IFM Controller takes a clock cycle between each IFM value assignment to perform
a check for a ready IFM and grab a new value from the Window Generator.

Thus, the system sets up a pipeline extending from the IFV Controller tothe Coordinate-Breakaway
lookup table. When using 4 IFMs for computation, it may achieve a throughput of %

Though the system has to worry about scheduling conflicts from the controller on the first set of
values to go to the IFMs (since only one IFM may be assigned or report a value at a once), this issue
vanishes due to pipelining on subsequent value sets because maximizing the number of iterations required
for each value means synchronizing the start and end times of each TFM.

It is now possible compute the delay incurred between the IFM Controller and the Coordinate-Breakaway
lookup table when generating a full image on a 25MHz clock in this scenario. 640 x 480 = 307200
values must be computed, so

307200 values « 133 iterations « 1 cycle « 1 seconds _0.408576 seconds
1 image 4 values 1 iteration ~ 25000000 cycles image

Which is a good approximation of the upper bound on total time it takes for data to flow through
the system.

Experimental Results

Simulations on a variety of constants confirmed the above results, producing delays ranging from 0.125s
to 0.250s on use case images, and a delay of 0.409s on a “maximum cost” image.

17

4 Milestone Report

Milestone Date Goal Accomplished

Milestone 1 Mar 27 Have a static Julia set filled into Develop a Window Generator
a buffer. capable of communicat-

ing with a parallelized IFM
Controller

Milestone 2 Apr 10 Display the colorized Julia set As planned.
through VGA.

Milestone 3 Apr 24 Implement parameter mutation, Hardware-based parameter mu-
with subsequent updates to the tation and set redraw.
displayed Julia set.

Deadline May 9 Feature-complete system with As planned.

accompanying report and pre-
sentation.

5 Contributions and Teamwork

As in all good engineering projects, our development team was heavily collaborative. There are very few
files in our source that were produced by one person alone. However, our modular development process
allowed different team members to accept primary responsibility for certain files. The following is a list
of major contributions of each team member to the project
e Nathan Hwang
1. Project management work
2. Coordinate-Breakaway lookup table
3. VHDL for color cycling
4. Instruction registers for communication with NIOS
e Richard Nwaobasi
1. Colorization lookup table
2. VGA Module
3. Communication with PS/2 keyboard
4. Control loop software (with Stephen Pratt)
e Luis Pena
1. Systems integration
2. Top level module
3. IFM and IFM Controller
4. Parameterization RAM (with Stephen Pratt)
e Stephen Pratt
1. Document composition and presentaiton management
Integration test bench and validation script
Window Generator and window generation algorithm
Parameterization RAM (with Luis Pefia)
Control loop software (with Richard Nwaobasi)

A

6 Challenges and Lessons Learned

This project was one filled with learning opportunities, both in terms of technical knowlege as well as
personal growth. Some major design and implementation challenges included:

1. Design and Implementation of the IFMs - Working with a system as parallel and dynamic
as our IFM array presented a very unique set of challenges. Many communication protocols, state
machines, and design concepts were discussed when planning the design of this core component of
our device. Because most elements of our system needed to interface with the ITFM Controller

18

in some way, successful integration of the component was in many ways a cornerstone acheivement
for our team.

2. Maintaining Timing Discipline - Clocks were consistently an adversary for our team, as many
parts of our system needed to operate at different rates. The NIOS processor and the buses it
writes to necessarily run at 50MHz, while the critical path on our IFMs allowed for only 25MHz
frequencies. The SDRAM clock needed to lag the NIOS to account for setup, charging, and hold
times, and the VGA clock needed to run at just over 25MHz to meet protocol. We did run into
trouble on many occasions when trying to manage interplay between these components, but this
taught us a lot about the importance of synchronization in Embedded Systems and the nature of
Phase-Locked Loops.

Furthermore, each group member ended up with a few personal takeaways:

e Nathan Hwang

1. Between the team and the tools, the team is the greater.

e Richard Nwaobasi

1. T would say that while it’s good to enjoy early success, keep in mind that the the road to a
project’s final realization is a long and uneven one. In addition to this, form good relationships
with your teammates: it makes those late nights that turn into early mornings all the more
bearable, and at times even enjoyable and worthwhile.

e Luis Pena

1. Modularity is golden. The team divided up the IFV into smaller components to be able to test
their functions easily. This modularity helped so much that the first time we connected the
core components, they all worked.

2. Meeting with the team early on to discuss interfaces and protocols was really useful because
we did not have to work together all the time to create our individual components.

3. We should have listened more to Dr. Edwards because he knows about many of the issues we
faced. We should have made more use of his office hours, especially because he was our adviser
for the project.

e Stephen Pratt

1. Consistent progress is of central importance to the success of a project. A team should always
focus on moving forward at least a little bit, no matter how busy the week. Even the most
marginal rates of progress are far preferable to the overhead that ends up getting poured into
teardown/setup time if a team decides to focus its efforts elsewhere for even a short period.

2. Implementation challenges are not exam questions. They do not need to be solved alone, or
even successfully on the first go around. It’s far better to experiment and utilize resources
that are available than to design a failing solution and pour time into trying to make the
implementation work out.

7 Reflections and Prospective

All things considered, our team is extremely satisfied with the results that we’ve achieved. Development
was certainly not without its ups and downs, but we ultimately brought all major project goals to fruition.

Of course, like all good engineers, we can never claim to be completely satisfied with the fruits of our
labor. The following are a few features that we would like to implement once we have more time to work
with the project:

1. Though window and constant selection are currently software-mutable system parameters, the Ul
through which these parameters are modified does not allow very intuitive control of their values. A
primary reason for this is that our original system architecture was built with the explicit purpose
of drawing fractals on the screen, not anything else. In the future, we would like to let users select
a custom window by modifying a frame on-screen. Explicit, rather than relative specification of
new seed constants for the Julia set would also be desirable.

2. There exist a few timing glitches that were never completely resolved. Ironing out these glitches is
a high priority for future work.

3. It is our professional opinion that the color-cycle mode is totally radical. Having this cycling rate
vary with audio input would turn our Interactive Fractal Viewer into a spectacular music visualizer.

19

A Source Code

A.1 VHDL
ifv.vhd

—-— DE2 top-level module for the IFV

——- Nathan Hwang, Richard Nwaobasi, Luis E. P. & Stephen Pratt

—-— From an original by Terasic Technology, Inc.

-— (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ifv is

port (

CLOCK_50 in std_logic; -— 50 MHz

-— LED displays

HEX0, HEX1, HEX2, HEX3, HEX4, HEXS5,
out std_logic_vector (6 downto 0);

HEX6, HEX7 -- 7-segment displays

LEDG out std_logic_vector (8 downto 0); —-— Green LEDs

—— SDRAM

DRAM_DQ inout std_logic_vector (15 downto 0); —-- Data Bus

DRAM_ADDR out std_logic_vector (1l downto 0); —-- Address Bus
DRAM_LDQM, —-— Low-byte Data Mask
DRAM_UDQM, —-- High-byte Data Mask
DRAM_WE_N, -— Write Enable

DRAM_CAS_N,
DRAM_RAS_N,

—— Column Address Strobe
—-— Row Address Strobe

DRAM_CS_N, —— Chip Select
DRAM_BA_QO, —-— Bank Address 0
DRAM_BA_1, —— Bank Address 0
DRAM_CLK, —-— Clock

DRAM_CKE out std_logic; —— Clock Enable

—-— SRAM

SRAM_DQ inout std_logic_vector (15 downto 0); —-- Data bus 16 Bits
SRAM_ADDR out std_logic_vector (17 downto 0); —-- Address bus 18 Bits
SRAM_UB_N, —— High-byte Data Mask
SRAM_LB_N, —-— Low-byte Data Mask
SRAM_WE_N, -— Write Enable
SRAM_CE_N, —— Chip Enable
SRAM_OE_N out std_logic; —— Output Enable

-—- PS/2 port

PS2_DAT, —— Data

PS2_CLK inout std_logic; —-— Clock

—-— VGA output

VGA_CLK, -— Clock

VGA_HS, —-— H_SYNC
VGA_VS, -— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC out std_logic; -— SYNC

VGA_R, -— Red[9:0]
VGA_G, —-— Green[9:0]
VGA_B out unsigned(9 downto 0) —— Blue[9:0]

)i

end ifv;

20

architecture datapath of ifv is

signal clk_25 std_logic;
signal clk_50 std_logic;
signal clk_sdram std_logic;
signal cread unsigned (7 downto 0);
signal xread unsigned (9 downto 0);
signal yread unsigned (8 downto 0);
signal re std_logic;
signal we std_logic;
signal cwrite : unsigned (7 downto 0);
signal xwrite unsigned (9 downto 0);
signal ywrite unsigned (8 downto 0);
signal a_min signed (35 downto 0) = X"F80000000";
signal b_min signed (35 downto 0) = X"FA0000000";
signal a_diff signed (35 downto 0) = X"000666666";
signal b_diff signed (35 downto 0) = X"000666666";
signal cr signed (35 downto 0) = X"FCA8F5C29";
signal ci signed (35 downto 0) = X"FF125460B";
signal a_leap unsigned (9 downto 0) = "0000000010";
signal b_leap unsigned (9 downto 0) = "0000000010";
signal reset_n std_logic =r1r;
signal a_mine signed (35 downto 0) ;
signal b_mine signed (35 downto 0) ;
signal a_diffe signed (35 downto 0) ;
signal b_diffe signed (35 downto 0) ;
signal cre signed (35 downto 0) ;
signal cie signed (35 downto 0) ;
signal a_leape : unsigned (9 downto 0) ;
signal b_leape unsigned (9 downto 0) ;
signal DRAM_BA std_logic_vector (1 downto 0);
signal DRAM_DOM std_logic_vector (1 downto 0);
signal ram_read std_logic;
signal ram_data signed (17 downto 0);
signal ram_address unsigned (3 downto 0);
signal ram_addr unsigned (3 downto 0);
signal iterate std_logic;
signal reset std_logic;
signal color std_logic_vector (2 downto 0);
signal refresh std_logic;
signal fract std_logic_vector (1 downto 0);
signal sig std_logic_vector (7 downto 0);
begin
reset <= sig(0);
iterate <= sig(l);
color <= sig(4 downto 2);
refresh <= sig(5);
fract <= sig (7 downto 6);
LEDG (7 downto 0) <= sig;
process (clk_25)
begin
if rising_edge (clk_25) then
if fract = "00" then
a_min <= a_mine;
b_min <= b_mine;
a_diff <= a_diffe;
b_diff <= b_diffe;
cr <= cre;
ci <= cie;

21

a_leap <= a_leape;
b_leap <= b_leape;
elsif fract = "01" then
a_min <= X"F80000000";
b_min <= X"FA0000000";
a_diff <= X"000666666";

b_diff <= X"000666666";
cr <= X"000000000";
ci <= X"000000000";
a_leap <= "0000000010";
b_leap <= "0000000010";
elsif fract = "10" then

a_min <= X"F80000000";
b_min <= X"FA0000000";

a_diff <= X"000666666";

b_diff <= X"000666666";

cr <= X"FCA8F5C29";

ci <= X"FF125460B";

a_leap <= "0000000010";

b_leap <= "0000000010";
else

a_min <= X"F80000000";
b_min <= X"FA0000000";

a_diff <= X"000666666";
b_diff <= X"000666666";
cr <= X"FCA8F5C29";
ci <= X"FFF25460B";
a_leap <= "0000000010";
b_leap <= "0000000010";
end if;
end if;

end process;

VGA_CLK <= clk_25;
DRAM_BA_1 <= DRAM_BA(1);
DRAM_BA_0 <= DRAM_BA(0);
DRAM_UDQM <= DRAM_DOQM(1) ;
DRAM_LDQM <= DRAM_DQM(0) ;
DRAM_CLK <= clk_sdram;

CLK5025: entity work.pll5025 port map (
inclk0 => CLOCK_50,

c0 => clk_50,
cl => clk_25,
c2 => clk_sdram

)i

IFM: entity work.hook port map (

clk25 => clk_25,

reset => reset,

a_min => a_min,

a_diff => a_diff,

a_leap => a_leap,

b_min => b_min,

b_diff => b_diff,

b_leap => pb_leap,

cr => cr,

ci => ci,

std_logic_vector (xout) => xwrite,
std_logic_vector (yout) => ywrite,
count => cwrite,

we => we

)i

NIOS: entity work.nios port map (
-— 1) global signals:
clk => clk_50,
clk_25 => clk_25,

22

reset_n

r1r,

PS2_CLK_to_and_from_the_ps2_0 => PS2_CLK,
PS2_DAT_to_and_from_the_ps2_0 => PS2_DAT,

irg_from_the_ps2_0

—-— the_ram
addressout_to_the_ram
read_to_the_ram

std_logic_vector (readdata_from_the_ram)
std_logic_vector (readaddr_from_the_ram)

-— the sram signal

read_addr_to_the_ram_signal
read_data_from_the_ram_signal

—— the_sdram
zs_addr_from_the_sdram
zs_ba_from_the_sdram

zs_cas_n_from_the_sdram

zs_cke_from_the_sdram
zs_cs_n_from_the_sdram

=> LEDG(8),

=> std_logic_vector (ram_address),
=> ram_read,
=> ram_data,
=> ram_addr,

= 0",

=> sig,

=> DRAM_ADDR,
=> DRAM_BA,

=> DRAM_CAS_N,
=> DRAM_CKE,

=> DRAM_CS_N,

zs_dqg_to_and_from_the_sdram => DRAM_DQ,

zs_dgm_from_the_sdram

zs_ras_n_from_the_sdram

zs_we_n_from_the_sdram
)i

=> DRAM_DOQM,
=> DRAM_RAS_N,
=> DRAM_WE_N

RMR: entity work.rammer port map (
clk => clk_25,
compute => refresh,
read => ram_read,
addressout => ram_address,
addressin => ram_addr,
readdata => ram_data,
amin => a_mine,
bmin => b_mine,
adiff => a_diffe,
bdiff => b_diffe,
aleap => a_leape,
bleap => pb_leape,
cro => cre,
cio => cie
)i
VGA: entity work.vga_mod port map (
clk => clk_25,
reset => '0’,
switch => color,
count => cread, ——EXTERNAL SIGNALS
VGA_HS => VGA_HS,
VGA_VS => VGA_VS,
VGA_BLANK => VGA_BLANK,
VGA_SYNC => VGA_SYNC,
VGA_R => VGA_R,
VGA_G => VGA_G,
VGA_B => VGA_B,
xout => xread, ——EXTERNAL SIGNALS
yout => yread, ——EXTERNAL SIGNALS
re => re, ——EXTERNAL SIGNALS
ce => iterate
) i
SRAM: entity work.sram port map (

sram_data => SRAM_DQ,

sram_addr => SRAM_ADDR,
sram_ub_n => SRAM_UB_N,
sram_lb_n => SRAM_LB_N,

23

sram_we_n => SRAM_WE_N,
sram_ce_n => SRAM_CE_N,
sram_oe_n => SRAM_OE_N,

rx => std_logic_vector (xread),
ry => std_logic_vector (yread),
WX => std_logic_vector (xwrite),
wy => std_logic_vector (ywrite),
std_logic_vector (rv) => cread,

WV => std_logic_vector (cwrite),
re => re,

we => we

)i

HEX7 <= "1100001"; -- J

HEX6 <= "1000001"; -- U

HEX5 <= "1000111"; -- L

HEX4 <= "1111001"; -- I

HEX3 <= "0001000"; -- A

HEX2 <= "0010010"; -- S

HEX1 <= "0000110"; -- E

HEXO0 <= "0000111"; - t

end datapath;

ramcon.vhd

——ramcon
—-This is the entity holding all four IFMs. This is where all the
—--wiring and the IFM coordination takes place.

—--Author: Luis E. P.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ramcon is

port (

clk : in std_logic;

reset_n : in std_logic;

read : in std_logic;

write : in std_logic;

chipselect : in std_logic;

address : in unsigned (3 downto 0);
addressout : in unsigned(3 downto 0);
readaddr : out unsigned (3 downto 0);
readdata : out unsigned (17 downto 0);
writedata : in unsigned (31 downto 0)

)i

end ramcon;
architecture ramarch of ramcon is

type ram_type is array(l5 downto 0) of unsigned (17 downto 0);
signal RAM : ram_type;
begin

process (clk)
begin
if rising_edge (clk) then
readaddr <= addressout;
readdata <= RAM(to_integer (addressout));
if chipselect = "1’ then
if write = 1’ then
RAM (to_integer (address)) <= writedata (17 downto 0);

24

end if;
end if;
end if;
end process;

end ramarch;

rammer.vhd

window_gen.vhd

—-window_gen.vhd
——-A device used to generate (a, b) values for each pixel on the
—--screen under the given window parameters.

——Author: Stephen Pratt

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity window_gen is

port (
clk : in std_logic;
next_val : in std_logic;
reset : in std_logic;
a_min : in signed (35 downto 0);
a_diff : in signed (35 downto 0);
a_leap : in unsigned (9 downto 0);
b_min : in signed (35 downto 0);
b_diff : in signed (35 downto 0);
b_leap : in unsigned (9 downto 0);
a_out : out std_logic_vector (35 downto 0);
b_out : out std_logic_vector (35 downto 0);
x_out : out std_logic_vector (9 downto 0);
y_out : out std_logic_vector (9 downto 0);
ready : out std_logic

)i
end window_gen;

architecture wg of window_gen is

constant HACTIVE : integer := 640-1;

constant VACTIVE : integer := 480-1;

signal x_max : unsigned (9 downto 0) := to_unsigned(HACTIVE, 10);
signal y_max : unsigned (9 downto 0) := to_unsigned(VACTIVE, 10);
signal a_at_max : std_logic;

signal b_at_max : std_logic;

signal both_max : std_logic;

signal a_ready : std_logic;

signal b_ready : std_logic;

signal b_next : std_logic;

signal a_reset : std_logic;

signal y_out_mirror : std_logic_vector (9 downto O0);

25

begin
b_next <= next_val and a_at_max;
both_max <= a_at_max and b_at_max;

a_reset <= reset or (b_next and not both_max);
y_out <= std_logic_vector (y_max - unsigned(y_out_mirror));

ready <= a_ready and b_ready;

—--Module is composed of two diff_counters, one for each
—--screen dimension.

a_counter: entity work.diff_counter port map (
clk => clk,
next_val => next_val,
reset => a_reset,
v_min => a_min,
v_diff => a_diff,
v_leap => a_leap,
max_itr => x_max,
v_out => a_out,
c_out => x_out,
at_max => a_at_max,
ready => a_ready

)i

b_counter: entity work.diff_counter port map (

clk => clk,
next_val => b_next,
reset => reset,
v_min => b_min,
v_diff => b_diff,
v_leap => b_leap,
max_itr => y_max,
v_out => b_out,
c_out => y_out_mirror,
at_max => b_at_max,
ready => pb_ready
)i
end wg;

diff_counter.vhd

—--diff_counter.vhd

--A device that increments a value by some differential, adjusting
—--the sum as necessary to assure convergence to a maximum value.

——-Author: Stephen Pratt

library ieee;
use ieee.std_logic_1164.all;
use lieee.numeric_std.all;

entity diff_counter is

port (

26

clk : in std_logic;

next_val : in std_logic;

reset : in std_logic;

v_min : in signed (35 downto 0);

v_diff : in signed (35 downto 0);

v_leap : in unsigned (9 downto 0);

max_itr : in unsigned (9 downto 0);

v_out : out std_logic_vector (35 downto 0);
c_out : out std_logic_vector (9 downto 0);
at_max : out std_logic;

ready : out std_logic

) i
end diff_counter;

architecture dc of diff_counter is

signal itr_count : unsigned (9 downto 0);
signal leap : std_logic;

signal v_next : signed (35 downto 0);
signal c_next : unsigned (9 downto 0);
signal itr_next : unsigned (9 downto 0);
signal v_curr : signed (35 downto 0);
signal c_curr : unsigned (9 downto 0);
signal v_sum : signed (35 downto 0);
signal ready_sig : std_logic := '0’;
begin

c_out <= std_logic_vector (c_curr);
v_out <= std_logic_vector (v_curr);
ready <= ready_sig;

process (clk)

begin

if rising_edge (clk) then

c_next <= c_curr+l;
v_next <= v_curr + v_diff;

itr_next <= itr_count+l; --itr_next is leap counter

--make adjustment on leap count

if leap = "1’ then

v_next <= v_curr + v_diff + 1;

itr_next <= (others=>'0’'); --reset leap counter to zero
end if;

leap <= '0';

——if we complete a leap interval, we should leap next cycle
if itr_next = v_leap then

leap <= '1';
end if;

itr_count <= itr_count;

——-Reset operation - tra

—--vga_mod.vhd

—-This unit connects the VGA raster and the Color_LUT.

27

——-Author: Richard Nwaobasi

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_mod is

port (
clk, reset : in std_logic;
count : in unsigned (7 downto 0);
switch : in std_logic_vector (2 downto 0);
VGA_HS, —-— H_SYNC
VGA_VS, —-— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC : out std_logic; -— SYNC
VGA_R, —— Red[9:0]
VGA_G, -— Green[9:0]
VGA_B : out unsigned(9 downto 0); -- Blue[9:0]
xout : out unsigned (9 downto 0);
yout : out unsigned(8 downto 0);
re : out std_logic;
ce : in std_logic

)i
end vga_mod;

architecture imp of vga_mod is

component vga

port (

reset : in std_logic;

clk : in std_logic; —— Should be 25.125 MHz
VGA_RGB : in unsigned (29 downto 0);

VGA_HS, —-— H_SYNC
VGA_VS, —— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC : out std_logic; -— SYNC

VGA_R, —— Red[9:0]
VGA_G, -— Green[9:0]
VGA_B : out unsigned(9 downto 0); —-- Blue[9:0]
x_pos : out unsigned(9 downto 0);

y_pos : out unsigned(8 downto 0);

re : out std_logic —-— Read Enable

)i

end component;

component Color_LUT

port (
count : in unsigned (7 downto 0);
switch : in std_logic_vector (2 downto 0);

VGA_RGB : out unsigned (29 downto 0));
end component;

signal VGA_RGB : unsigned (29 downto 0);

signal cycle : unsigned(7 downto 0) := (others => '0');

signal spacer : unsigned (19 downto 0) := (others => '0'");
begin

G : vga port map (reset => reset,

clk => clk, —— Should be 25.125 MHz
VGA_RGB => VGA_RGB,

VGA_HS => VGA_HS,

VGA_VS => VGA_VS,

VGA_BLANK => VGA_BLANK,

VGA_SYNC => VGA_SYNC,

VGA_R => VGA_R,

28

VGA_G => VGA_G,

VGA_B => VGA_B,
X_pos => xout,
y_pos => yout,
re => re);

A : Color_LUT port map

(count => count + cycle,
switch => switch,
VGA_RGB => VGA_RGB) ;

process (clk)

begin
if rising_edge (clk) then
if reset = 1’ then
spacer <= (others => ’0');
cycle <= (others => ’'0");
end if;
if ce = ’1’ then
spacer <= spacer + 1;
if spacer = 0 then
cycle <= cycle + 1;
end if;
end if;
end if;

end process;

end imp;nsition to start state

if reset = "1’ then
v_curr <= v_min;
c_curr <= (others=>'0");
itr_count <= (others=>'0");
at_max <= '0’;

ready_sig <= '17";

—--Maximum iteration reached - transition to max state
elsif c_curr = max_itr then
at_max <= ’'1’";

——Next value requested
elsif next_val = "1’ then
c_curr <= c_next;
v_curr <= v_next;
itr_count <= itr_next;
end if;

end if;
end process;

end dc;

hook.vhd

——hook.vhd
--This is the place where the IFMs and their controller connect with
—--the window generator that feeds the IFMs.

—-—Author: Luis E. P.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity hook is
port (

29

clk25 : in std_logic;

reset : in std_logic; —— Clear
a_min : in signed (35 downto 0);

a_diff : in signed (35 downto 0);

a_leap : in unsigned (9 downto 0);

b_min : in signed (35 downto 0);

b_diff : in signed (35 downto 0);

b_leap : in unsigned (9 downto 0);

cr : in signed (35 downto 0);

ci : in signed (35 downto 0);

xout : out std_logic_vector (9 downto 0);
yout : out std_logic_vector (8 downto 0);
count : out unsigned (7 downto 0);

we : out std_logic

)i
end hook;

architecture first of hook is

signal nxt : std_logic;

signal ai : std_logic_vector (35 downto 0);
signal bi : std_logic_vector (35 downto 0);
signal x : std_logic_vector (9 downto 0);
signal yi : std_logic_vector (8 downto 0);
signal yo : std_logic_vector (9 downto 0);
signal data : std_logic;

begin

yi <= yo (8 downto 0);

gen: entity work.window_gen port map (

clk => clk25,
next_val => nxt,
reset => reset,
a_min => a_min,
a_diff => a_diff,
a_leap => a_leap,
b_min => b_min,
b_diff => b_diff,
b_leap => pb_leap,
a_out => ai,

b_out => bi,

X_out => x,

y_out => yo,

ready => data

)i

ifm: entity work.ifmunitd port map (

clk25 => clk25,
reset => reset,
data => data,
xin = x,

yin => vyi,
ain => ai,
bin => bi,

cr => cr,

ci => ci,
xout => xout,
yout => yout,
count => count,
full => nxt,
we => we

)i

end first;
\end{Huge}

\subsubsection{ifmd.vhd} $Luis

30

\begin{lstlisting}

——ifmd.vhd

—--This is the iterating unit. This unit, given a complex number and a
—-—-complex constant, calculates the number of iterations until breakaway
—--or whether or not the coordinate is out of bounds

—--Author: Luis E. P.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ifmd is

port (

clock : in std_logic; —-— Global clock

clr : in std_logic; —-— Clear

compute : in std_logic; —-— Controls when IFM starts iterating.
Set high to start iterations

xin : in std_logic_vector (9 downto 0); —— The x coordinate input

yin : in std_logic_vector (8 downto 0); —— The y coordinate input

ain : in std_logic_vector (35 downto 0); —-— Real part of input

bin : in std_logic_vector (35 downto 0); —-— Imaginary part of input

cr : in signed (35 downto 0); -- Real part of constant

ci : in signed (35 downto 0); -- Imaginary part of constant

xout : out std_logic_vector (9 downto 0); —-— The x coordinate output

yout : out std_logic_vector (8 downto 0); —— The y coordinate output

count : out unsigned(7 downto 0); -— Iteration count

don : out std_logic; —— Becomes high when the iterator is done
iterating

ready : out std_logic —— Becomes high when the IFM is ready for
new data

)i
end ifmd;

architecture first of ifmd is

signal proda : std_logic_vector (71 downto 0);

signal prodb : std_logic_vector (71 downto O0);

signal prodc : std_logic_vector (71 downto 0);

signal X : std_logic_vector (9 downto 0); —-— The x coordinate

signal vy : std_logic_vector (8 downto 0); —-— The y coordinate

signal a : std_logic_vector (35 downto 0);

signal b : std_logic_vector (35 downto 0);

signal spa : signed (35 downto 0); —-— proda "trimmed" to 36 bits

signal spb : signed (35 downto 0); —-— prodb "trimmed" to 36 bits

signal spc : signed (35 downto 0); —— prodc "trimmed" to 36 bits

signal sumr : signed (35 downto 0); —— Difference of the squares

signal sumi : signed (35 downto 0); —— Product multiplied by two

signal newr : signed(35 downto 0); —— Newly computed Re{z}
before flip flop

signal newi : signed(35 downto 0); —-— Newly computed Im{z}
before flip flop

signal oldr : std_logic_vector (35 downto 0); -— Re{z} after flip flop

signal oldi : std_logic_vector (35 downto 0); -— Im{z} after flip flop

signal mag2 : signed(35 downto 0); —-— Magnitude squared of
current a & b

signal counter : unsigned(7 downto 0) := (others => '0"); —— Counter for
iterations

signal done : std_logic = 10'; —— Indicates if IFM is done
iterating

31

begin

spa <= signed(proda (65 downto 30)); —-Change range depending on radix.
Assuming 6-bit & 30-bit
<= signed (prodb (65 downto 30));

<= signed(prodc (65 downto 30));

spb
spc

sumr
sumi
mag?2

spa — spb;
spc + spc;
spa + spb;

newr
newi

sumr + cr;
sumi + cij;

count
don
ready
xout
yout
aout
bout

= counter;

done;

clr nor compute;
xj

=Y

<= aj;

<= Db;

process (clock)
begin
if rising_edge (clock)
if clr "1’ then
done <='0";
counter <=
oldr (others =>
oldi (others =>
b4 others => '0
y others => ’0
a others => '0
b <= (others => '0
elsif counter "0111111
then
done
elsif compute
oldr
oldi
if counter
counter
else
counter
end if;
<= x;
<=vy;
<= a;
<= b;

then

<=
<=
<=
<=
<=

<= r1’;
r1r

then

"00000000
<= "000000

<= counter

<= ain;
<= bin;
<= xinj;
<= yin;
<= ain;
<= bin;
end if;
end if;
end process;

multa:
dataa
result
)i

entity
=> oldr,
=> proda

multb:
dataa
result

entity
=> oldi,
=> prodb

work.sqr

(others =>

<= std_logic_vector (newr) ;
<= std_logic_vector (newi);

—— Add Re{c}
—-— Add Im{c}

"0");
0" ;
"0");
")
")
")

")

1" or mag2 > "000010000000000000000000000000000000"
—-— More than 127 iterations or more than 4 mag squared?

-— Are we iterating?
Store Re{z}
—— Store Im{z}

then
oL";

+ 1;

—-— Get value from outsie
—— Get value from outside

work.sqgr2 port map (

2 port map (

32

multc: entity work.mult2 port map (

dataa => oldr,
datab => oldi,
result => prodc

)i

end first;

ifmunitd.vhd

——ifmunitd.vhd
—--This is the entity holding all four IFMs. This is where all the
--wiring and the IFM coordination takes place.

—--Author: Luis E. P.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ifmunitd is

port (

clk25 : in std_logic;

reset : in std_logic;

data : in std_logic; —--Asserted high when data is ready to be
read

xin : in std_logic_vector (9 downto 0);

yin : in std_logic_vector (8 downto 0);

ain : in std_logic_vector (35 downto 0);

bin : in std_logic_vector (35 downto 0);

cr : in signed (35 downto 0);

ci : in signed (35 downto 0);

xout : out std_logic_vector (9 downto 0);

yout : out std_logic_vector (8 downto 0);

count : out unsigned(7 downto 0); --Data to be written in memory

full : out std_logic;

we : out std_logic -— Write enable

)i
end ifmunitd;

architecture gqgq of ifmunitd is

—-—Input buses
type inRecord is record

d : std_logic;

a : std_logic_vector (35 downto 0);
b : std_logic_vector (35 downto 0);
cr : signed (35 downto 0);

ci : signed (35 downto 0);

X : std_logic_vector (9 downto 0);
y : std_logic_vector (8 downto 0);

end record;
type inArray 1is array (0 to 1) of inRecord;

--Buses connecting to the IFMs

type bxifm is array (0 to 3) of std_logic_vector (9 downto 0);
type byifm is array (0 to 3) of std_logic_vector (8 downto 0);
type baifm is array (0 to 3) of std_logic_vector (35 downto 0);
type bbifm is array (0 to 3) of std_logic_vector (35 downto 0);
type bcount is array (0 to 3) of unsigned(7 downto 0);

type bdon is array (0 to 3) of std_logic;

type bread is array (0 to 3) of std_logic;

type bclr is array (0 to 3) of std_logic;

33

type bcompute is array (0 to 3) of std_logic;

——Buses for the output buffer Currently one output stage

type owb is array (0 to 0) of std_logic;
type ocb is array (0 to 0) of unsigned(7 downto 0);
type oxb is array (0 to 0) of std_logic_vector (9 downto 0);
type oyb is array (0 to 0) of std_logic_vector (8 downto 0);
type oab is array (0 to 0) of std_logic_vector (35 downto 0);
type obb is array (0 to 0) of std_logic_vector (35 downto 0);
signal ia : inArray;
signal bx : bxifm;
signal by : byifm;
signal ba : baifm;
signal bb : bbifm;
signal bc : bcount;
signal bdone : bdon;
signal bready : bread;
signal bclear : bclr;
signal bcomp : bcompute;
signal ow : owb;
signal oc : ocb;
signal ox . oxb;
signal oy : oyb;
begin
full <= not ia(l).d;
xout <= ox(0);
yout <= oy (0);
we <= ow(0);
count <= oc(0);

process (clk25)

begin
if rising_edge (clk25) then
if reset = "1’ then
initl: for m in 0 to 0 loop
ow (m) <= '0";
oc (m) <= (others => "0");
end loop initl;
else
if bdone(0) = "1’ then
ox (0) <= bx (0);
oy (0) <= by (0);
oc (0) <= bc(0);
ow (0) <= '1";
elsif bdone(l) = ’1’ then
ox (0) <= bx(1l);
oy (0) <= by (1);
oc (0) <= bc(1l);
ow (0) <='1’;
elsif bdone(2) = ’1’ then
ox (0) <= bx(2);
oy (0) <= by (2);
oc (0) <= bc(2);
ow (0) <='1";
elsif bdone(3) = "1’ then
ox (0) <= bx(3);
oy (0) <= by (3);
oc (0) <= bc(3);
ow (0) <= '1";
else
ox (0) <= (others => "0’);
oy (0) <= (others => "0");
oc (0) <= (others => "0');
ow (0) <='0";

34

end if;
end if;
end if;
end process;

process (clk25)
begin
if rising_edge (clk25) then

if reset = ’1’ then

init0: for idx in 0 to 1 loop
ia(idx) .d <= '0";

ia (idx) .a <= (others => "0’);
ia (idx) .b <= (others => ’07);
ia(idx) .cr <= (others => ’0");
ia (idx) .ci <= (others => "0’);
ia (idx) .x <= (others => ’0");
ia(idx) .y <= (others => "0’);

end loop init0;

init2: for n in 0 to 3 loop
bclear (n) <= '1";
bcomp (n) <= '0";
end loop init2;
else

—— INPUT BUFFER:

if ia(l).d = "0’ then
if data = "1’ then
ia(l).a <= ain;
ia(l).b <= bin;
ia(l) .cr <= cr;
ia(l).ci <= ci;
ia(l).x <= xinj;
ia(l) .y <= yin;
ia(l).d <='1";
else

ia(l).d <= '0";

end if;

end if;

if ia(0).d = "0’ then
if ia(l).d "1’ then
ia(0).a <= ia(l).a;
ia(0).b <= ia(l) .b;
ia(0).cr <= ia(l).cr;
ia(0).ci <= ia(l).ci;
ia(0) .x <= ia(l) .x;
ia(0) .y <= ia(l).y;
ia(0) .d <= ia(l).d;
ia(1l).d <='0";
else

ia(0) .d <= '0";

end if;

end if;

—-— END INPUT BUFFER

-— Ready available IFMs

clear: for idx in 0 to 3 loop
if bclear(idx) = ’1’ then —-— Availability check
bclear (idx) <= '0";
end if; —-— End availability check

end loop clear;
—-— End readying available IFMs

—-— Feed ready IFMs
if ia(0).d = "1’ then —-- Data validation

35

if bready(0) = "1’ then -- Ready check

bcomp (0) <= '1";
ia(0) .d <= '0";
elsif bready(l) = "1’ then
bcomp (1) <= '1";
ia(0).d <= '0";
elsif bready(2) = "1’ then
bcomp (2) <= '1";
ia(0) .d <= '0";
elsif bready(3) = "1’ then
bcomp (3) <='1";
ia(0) .d <= '0";
end if; —-— End ready check
end if; -— End data validation

-— End feeding ready IFMs

—— Check done IFMs

if bdone(0) = '1’ then
bclear (0) <= '1";
bcomp (0) <= '0";
elsif bdone(l) = ’1" then
bclear (1) <= '1";
bcomp (1) <= '0";
elsif bdone(2) = ’'1’ then
bclear (2) <= '1";
bcomp (2) <='0";
elsif bdone(3) = "1’ then
bclear (3) <= '1";
bcomp (3) <= '0";
end if;

—— End checking for done IFMs

end if; -— reset =1
end if; -- rising edge
end process;

gl: for I in 0 to 3 generate
ifm: entity work.ifmd port map (
clock => clk25,
clr => bclear(I),
compute => bcomp (I),
xin => ia(0) .x,
yin => 1a(0) .y,
ain => ia(0).a,
bin => 1a(0) .b,
cr => ia(0).cr,
ci => 1ia(0) .ci,
xout => bx(I),
yout => by (I),
count => bc(I),
don => bdone (I),
ready => bready (I)

)i

end generate;

end qg;

sram.vhd

——sram.vhd

—-This module is an asynchronous SRAM. This is where the computed
--values for each pixel are stored

——Author: Nathan Hwang

36

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

—— this module expects to bridge from 50Mhz writes to 25MHz reads
entity sram is
port (

—-— SRAM_DQ, 16 bit data
sram_data : inout std_logic_vector (15 downto 0);
—— SRAM_ADDR, 18 bit address space (256k)
sram_addr : out std_logic_vector (17 downto 0);
—-— SRAM_UB_N, *LB_N, upper and lower byte masks
sram_ub_n,
sram_1lb_n,
—— SRAM_WE_N, write enable
sram_we_n,
—— SRAM_CE_N, chip enable (power up chip)
sram_ce_n,
—-— SRAM_OE_N, output enable (when reading)
sram_oe_n : out std_logic;

—— 640<1024 (10 bits)

rx : in std_logic_vector (9 downto 0);
—— 480<512 (9 bits)

ry : in std_logic_vector (8 downto 0);
—-— same, but for writing

wx : in std_logic_vector (9 downto 0);
wy : in std_logic_vector (8 downto 0);

-— read/write values (8 bits)
rv : out std_logic_vector (7 downto 0);
wv : in std_logic_vector (7 downto 0);
-— read/write controls
—— reading takes precedence
re : in std_logic;
we : in std_logic
)i
end sram;

architecture sram_arch of sram is

signal addr : std_logic_vector (17 downto 0);
-— temp addr signals

signal raddr : std_logic_vector (18 downto 0);
signal waddr : std_logic_vector (18 downto 0);

-— "really" signals
signal rre : std_logic;
signal rwe : std_logic;

-—- byte mask, due to 16bit words in SRAM
signal mask : std_logic_vector (1l downto 0);

-— write buffer
signal we_buffer : std_logic;

signal wv_buffer : std_logic_vector (7 downto 0);
signal waddr_buffer : std_logic_vector (18 downto 0);
signal wdup : std_logic := '0’;

begin

—-—- determine whether we really need to read from the SRAM

rre <= re when not rwe=’'1l’ else ’'0’;

—-— determine if we should really write to the SRAM

-— rwe <= (we and (not wdup)); -- don’t know why, but this is not better
—-—rwe <= we and not wdup;

rwe <= we;

—-— generate the address

raddr <= ry(8 downto 0) & rx(9 downto 0);
—-— for the waddr

37

waddr <= wy (8 downto 0) & wx (9 downto 0);
addr <= waddr (18 downto 1) when rwe=’1l’ else raddr (18 downto 1);

—-— find out if we need to mask either byte

mask <= "01" when rwe='1l’ and waddr (0)="0’ else
"10" when rwe=’'1’ and waddr(0)="1’ else
"11l" when rre=’'1l’ else —-- always read both bytes
"00"; -- don’t read anything by default

—— sram outputs

sram_addr <= addr;

—-—- going to have to redo this part, migth have to use both bytes
sram_ub_n <= not mask(1l);

sram_lb_n <= not mask (0);

—-— only enable write enable when, well, writing
sram_we_n <= not rwe;

—-— only enable the output when reading
sram_oe_n <= not rre;

-- always power up the chip

sram_ce_n <= '0’;

-— try to generate the right data

sram_data <= wv & "00000000" when (waddr(0)='1" and rwe=’1l’) else
"00000000" & wv when (waddr(0)='0’ and rwe=’'1l’) else
(others => "2");

—-— module outputs

rv <= sram_data (7 downto 0) when rre="1’ and raddr(0)='0’ else
sram_data (15 downto 8) when rre=’1l’ and raddr(0)='1’ else
"00000000";

end sram_arch;

—--vga.vhd

—-This unit is a VGA raster. It sends the signals to the converter
--to drive the monitor

—-Author: Richard Nwaobasi

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga is

port (

reset : in std_logic;
clk : in std_logic; —— Should be 25.125 MHz
VGA_RGB : in unsigned (29 downto 0);
VGA_HS, -— H_SYNC
VGA_VS, —— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC : out std_logic; —-— SYNC
VGA_R, —— Red[9:0]
VGA_G, —— Green[9:0]
VGA_B : out unsigned(9 downto 0); —-- Blue[9:0]
x_pos : out unsigned(9 downto 0);
y_pos : out unsigned(8 downto 0);
re : out std_logic —-— Read Enable
)i

end vga;

architecture rtl of vga is

38

-— Video parameters

constant HTOTAL : integer := 800;
constant HSYNC : integer := 96;
constant HBACK_PORCH : integer := 48;
constant HACTIVE : integer := 640;
constant HFRONT_PORCH : integer := 16;
constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK_PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT_PORCH : integer := 10;

—-— Signals for the video controller

signal Hcount : unsigned(9 downto 0); -- Horizontal position (0-800)
signal Vcount : unsigned(9 downto 0); —— Vertical position (0-524)
signal EndOfLine, EndOfField : std_logic;

signal vga_hblank, vga_hsync,

vga_vblank, vga_vsync : std_logic; -- Sync. signals
signal rectangle_h, rectangle_v, rectangle : std_logic; -- rectangle area
begin

—-— Horizontal and vertical counters

HCounter : process (clk)
begin
if rising_edge (clk) then
if reset = 1’ then
Hcount <= (others => "0'");
elsif EndOfLine = "1’ then
Hcount <= (others => "0');
else
Hcount <= Hcount + 1;
end if;
end if;
end process HCounter;

EndOfLine <= ’1’ when Hcount = HTOTAL - 1 else ’'0’;

VCounter: process (clk)

begin
if rising_edge(clk) then
if reset = 1’ then
Vcount <= (others => "07);
elsif EndOfLine = "1’ then
if EndOfField = "1’ then
Vcount <= (others => "07);
else
Vcount <= Vcount + 1;
end if;
end if;
end if;

end process VCounter;

EndOfField <= ’1’ when Vcount = VIOTAL - 1 else '0’;

—-— State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK
HSyncGen : process (clk)

begin

if rising_edge (clk) then
if reset = 1’ or EndOfLine = ’1’ then

39

vga_hsync <= "1";
elsif Hcount = HSYNC - 1 then
vga_hsync <= ’0’;
end if;
end if;
end process HSyncGen;

HBlankGen : process (clk)
begin
if rising_edge (clk) then
if reset = 1’ then
vga_hblank <= "1’;
elsif Hcount = HSYNC + HBACK_PORCH then
vga_hblank <= '0’;
elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then
vga_hblank <= "17’;
end if;
end if;
end process HBlankGen;

VSyncGen : process (clk)
begin
if rising_edge(clk) then
if reset = 1’ then
vga_vsync <= '1';
elsif EndOfLine ="1’' then
if EndOfField = '1’ then
vga_vsync <= '1';
elsif Vcount = VSYNC - 1 then
vga_vsync <= ’'0';
end if;
end if;
end if;
end process VSyncGen;

VBlankGen : process (clk)
begin
if rising_edge (clk) then
if reset = "1’ then
vga_vblank <= '1';
elsif EndOfLine = "1’ then
if Vcount = VSYNC + VBACK_PORCH - 1 then
vga_vblank <= '0';
elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
vga_vblank <= '1';
end if;
end if;
end if;
end process VBlankGen;

VideoOut: process (clk, reset)
begin
if reset = 1’ then
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";
elsif rising_edge (clk) then -- clk’event and clk = "1’
if vga_hblank = "0’ and vga_vblank = ’0’ then
VGA_R <= VGA_RGB (29 downto 20);
VGA_G <= VGA_RGB (19 downto 10);
VGA_B <= VGA_RGB (9 downto 0);
re <= "'1";
else
VGA_R <= "0000000000";
VGA_G <= "0000000000";
VGA_B <= "0000000000";

40

re <= '0";
end if;
end if;
end process VideoOut;

X_pos <= Hcount - (HSYNC + HBACK_PORCH) ;

y_pos <= unsigned(Vcount - (VSYNC + VBACK_PORCH)) (8 downto 0);
VGA_HS <= not vga_hsync;

VGA_VS <= not vga_vsync;

VGA_SYNC <= "0'";

VGA_BLANK <= not (vga_hsync or vga_vsync);

end rtl;

vga_mod.vhd

—--vga_mod.vhd

—-This unit connects the VGA raster and the Color_LUT.

——-Author: Richard Nwaobasi

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity vga_mod is

port (
clk, reset : in std_logic;
count : in unsigned (7 downto 0);
switch : in std_logic_vector (2 downto 0);
VGA_HS, —— H_SYNC
VGA_VS, —-— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC : out std_logic; —-— SYNC
VGA_R, —— Red[9:0]
VGA_G, -— Green[9:0]
VGA_B : out unsigned(9 downto 0); -- Blue[9:0]
xout : out unsigned (9 downto 0);
yout : out unsigned(8 downto 0);
re : out std_logic;
ce : in std_logic

)i
end vga_mod;

architecture imp of vga_mod is

component vga

port (

reset : in std_logic;

clk : in std_logic; —— Should be 25.125 MHz
VGA_RGB : in unsigned (29 downto 0);

VGA_HS, —-— H_SYNC
VGA_VS, —— V_SYNC
VGA_BLANK, —— BLANK
VGA_SYNC : out std_logic; —-— SYNC

VGA_R, —— Red[9:0]
VGA_G, —-— Green[9:0]
VGA_B : out unsigned(9 downto 0); —-- Blue[9:0]
x_pos : out unsigned(9 downto 0);

y_pos : out unsigned(8 downto 0);

re : out std_logic —-— Read Enable

)i

end component;

41

component Color_LUT

port (
count : in unsigned (7 downto 0);
switch : in std_logic_vector (2 downto 0);

VGA_RGB : out unsigned (29 downto 0));
end component;

signal VGA_RGB : unsigned (29 downto 0);
signal cycle : unsigned(7 downto 0) := (others => '0');
signal spacer : unsigned (19 downto 0) := (others => '0');
begin
G : vga port map (reset => reset,
clk => clk, —— Should be 25.125 MHz
VGA_RGB => VGA_RGB,
VGA_HS => VGA_HS,
VGA_VS => VGA_VS,
VGA_BLANK => VGA_BLANK,
VGA_SYNC => VGA_SYNC,
VGA_R => VGA_R,
VGA_G => VGA_G,
VGA_B => VGA_B,
X_pos => xout,
y_pos => yout,
re => re);

A : Color_LUT port map

(count => count + cycle,
switch => switch,
VGA_RGB => VGA_RGB) ;

process (clk)

begin
if rising_edge (clk) then
if reset = 1’ then
spacer <= (others => ’0');
cycle <= (others => '0');
end if;
if ce = 1’ then
spacer <= spacer + 1;
if spacer = 0 then
cycle <= cycle + 1;
end if;
end if;
end if;

end process;

end imp;

Other VHDL Sources / Libraries

Some other VHDL modules used include:
1. Altera Multiplier and Squaring Megafunctions
2. Altera PLL Megafunction
3. PS/2 Controller written by Stephen Edwards

A2 C
ifv.c
/%
* ifv.c

*

* The main function for the Interactive Fractal Viewer

42

Responsible for responding to PS/2 input, computing window parameters
and communicating them across the Avalon bus

Author: Richard Nwaobasi and Stephen Pratt

L S

#include <stdio.h>
#include <alt_types.h>
#include <stdlib.h>
#include <system.h>
#include <io.h>

#include "ps2_keyboard.h"

#define VGA_WIDTH 640LL
#define VGA_HEIGHT 480LL

#define RADIX_SHIFT 30

#define TOP_18_MASK OxFFFFCO000LL
#define BOT_18_MASK 0x00003FFFFLL
#define DC 0x100000LL

#define RES_O
#define ITER_O
#define COLOR_O
#define REF_O
#define FRACT_O
#define RMR_REFRESH
#define MAX_SPEED

g J o0 o NP O

KB_CODE_TYPE decode_mode;

//Window and Julia set parameters are kept as
//global state variables

alt_64 b_min;

alt_64 a_min;

int a_leap_interval;

int b_leap_interval;

alt_64 d_a;

alt_64 d_b;

alt_64 c_rea;

alt_64 c_img;

//Helper variables used to compute Julia set parameters
alt_64 b_max;

alt_64 a_max;

alt_64 a_delt;

alt_64 b_delt;

alt_64 a_leap_total;

alt_64 b_leap_total;

int curr_speed = 1;
int speeds[] = {60000, 70000, 80000, 90000, 100000};

//Control flags

alt_8 iterate = 0;
alt_8 color = 0;
alt_8 fract = 0;
alt_8 control = 0;

//Some funky fresh pre-sets

alt_64 cr_consts[] = {68055867794LL, 68289980007LL,
68049461838LL, 395007542LL,
67891644661LL, 389091824LL,
67965967674LL, 67965967674LL,
67860483277LL, 67914170368LL};

43

alt_64 ci_consts[] = {0, 644245094LL,

467077693LL, 678734281LL,
68627725498LL, 343597383LL,
68604049490LL, 68306945128LL,

167503724LL, 68504728372LL};

//Recomputes the window parameters based on the min and max values

static void recompute_window ()
{
//total change in window
a_delt = (a_max - a_min);
b_delt = (b_max - b_min);

//amount to add each iteration
d_a = (a_delt/VGA_WIDTH) ;
d_b = (b_delt/VGA_HEIGHT) ;

for a and b

//leap total is the number of times we’ll need to increment our sum by 1

a_leap_total = a_delt%VGA_WIDTH;
b_leap_total = b_delt%VGA_HEIGHT;

//leap interval is the number of cycles between leaps
int a_leap_interval;
if (a_leap_total != 0)

a_leap_interval = VGA_WIDTH/a_leap_total;
else

a_leap_interval = VGA_WIDTH;
int b_leap_interval;
if (b_leap_total != 0)

b_leap_interval = VGA_HEIGHT/b_leap_total;
else

b_leap_interval = VGA_HEIGHT;

//Send refresh instructions to the board
static void refresh()
{

printf ("REFRESHING\n") ;

//bring 0 lo
control = (fract << FRACT_O) | (0 << REF_O) | (color << COLOR_O) |
(iterate << ITER_O) | (0 << RES_O);

IOWR_8DIRECT (RAM_SIGNAL_BASE, 0, control);
int 1i;

//bring 5 hi
control = (fract << FRACT_O) | (1 << REF_O) | (color << COLOR_O) |
(iterate << ITER_O) | (0 << RES_O);

TOWR_8DIRECT (RAM_SIGNAL_BASE, 0, control);
for(i = 0; i < RMR_REFRESH; i++)

’

//bring 5 lo

control = (fract << FRACT_O) | (0 << REF_O) | (color << COLOR_O) |
(iterate << ITER_O) | (0 << RES_O);

IOWR_8DIRECT (RAM_SIGNAL_BASE, 0, control);

for(i = 0; 1 < speeds[curr_speed]; i++)

’

//bring 0 hi
control = (fract << FRACT_O) | (0 << REF_O) | (color << COLOR_O) |
(iterate << ITER_O) | (1 << RES_O);

44

IOWR_8DIRECT (RAM_SIGNAL_BASE, 0, control);
}

//Send the parameter set to the board
static void redraw()
{

recompute_window () ;

int payload[1l5];

payload[0] = ((a_min & TOP_18_MASK) >> 18);
payload[l] = (a_min & BOT_18_MASK) ;
payload[2] = ((b_min & TOP_18_MASK) >> 18);
payload[3] = (b_min & BOT_18_MASK) ;
payload[4] = ((d_a & TOP_18_MASK) >> 18);
payload[5] = (d_a & BOT_18_MASK);

payload[6] = ((d_b & TOP_18_MASK) >> 18);
payload[7] = (d_b & BOT_18_MASK);

payload([8] = (a_leap_interval);

payload[9] = (b_leap_interval);

payload[10] = ((c_rea & TOP_18_MASK) >> 18);
payload[ll] = (c_rea & BOT_18_MASK);
payload[1l2] = ((c_img & TOP_18_MASK) >> 18);
payload[13] = (c_img & BOT_18_MASK);
payload[l4] = 1;

int 1i;

for(i = 0; i < 14; i++4){
IOWR_32DIRECT (RAM_BASE, ix4, payload[il);
//printf ("0x%x\n", (payload[i]l<<14));

}

refresh ();

int main ()

//configure our window

b_max = 3LL;

b_max = b_max << (RADIX_ SHIFT-1);
a_max = 2LL;

a_max = a_max << (RADIX_SHIFT-0);

b_min = -3LL;
b_min = b_min << (RADIX_SHIFT-1);
a_min = -2LL;

a_min = a_min << (RADIX_SHIFT-0);
c_rea = 0xFFI91F5C29LL;
c_img = 0xFC925460BLL;

redraw () ;

alt_u8 key = 0;
int status 0;

// Initialize the keyboard
printf ("Please wait three seconds to initialize keyboard\n");
clear_FIFO();

switch (get_mode()) {
case PS2_KEYBOARD:
break;

case PS2_MOUSE:
printf ("Error: Mouse detected on PS/2 port\n");
goto ErrorExit;
default:
printf ("Error: Unrecognized or no device on PS/2 port\n");

45

goto ErrorExit;
}
printf ("Ready!\n");

for (;i) |
// wait for the user’s input and get the make code

status = read_make_code (&decode_mode, &key);//under
if (status == PS2_SUCCESS) {

// print out the result

switch (decode_mode) {

case KB_ASCII_MAKE_CODE
printf ("sc", key);
switch (key) {

case 'W': // w
c_img += DC;
redraw () ;
printf ("W\n");

break;

case 'A': // a
c_rea —= DC;
redraw () ;
printf ("A\n");

break;

case 'S’': // s
c_img -= DC;
redraw () ;
printf ("S\n");

break;

case 'D’': // d
c_rea += DC;
redraw () ;
printf ("D\n");

break;

case 'U’: // fractal 00

fract = 0;

redraw () ;

printf ("Fractal 00\n");
break;

case 'P’: // fractal 11

fract = 3;

refresh();

printf ("Fractal 11\n");
break;

case 'I': // fractal 01
fract = 1;
refresh();
printf ("Fractal 01\n");
break;

case '0’: // fractal 10
fract = 2;
refresh () ;
printf ("Fractal 10\n");
break;

case "z’': // fractal 10
color = 0;
refresh();

printf ("color = 000\n");

break;

46

case 'X’: // fractal 10

color = 1;
refresh();

printf ("color = 001\n");

break;

case 'C’: // fractal 10

color = 2;
refresh();

printf ("color = 010\n");

break;

case 'V’: // fractal 10

color = 3;
refresh();

printf ("color = 011\n");

break;

case 'B’: // fractal 10

color = 4;
refresh();

printf ("color = 100\n");

break;

case 'N’: // fractal 10

color = 5;
refresh();

printf ("color = 101\n");

break;

case 'M’': // fractal 10

color = 6;
refresh();

printf ("color = 110\n");

break;
case ’,’: // fractal 10
color = 7;
refresh();
printf ("color = 111\n");
break;
case '-':

if (curr_speed > 0)

curr_speed——;
break;

case '=':

if (curr_speed < MAX_SPEED)

curr_speed++;
break;

case " ‘':
b_max = 3LL;
b_max = b_max <<

a_max = 2LL;
a_max = a_max <<
b_min = -3LL;
b_min = b_min <<
a_min = -2LL;
a_min = a_min <<
redraw () ;

break;

case '0':

case '1’:

case '2':

47

(RADIX_SHIFT-1);

(RADIX_SHIFT-0) ;

(RADIX_SHIFT-1);

(RADIX_SHIFT-O0);

case '3’:

case '4’':

case '5':

case '6':

case '7':

case '8':

case '9’:
c_rea = cr_consts[atoi (&key)];
c_img = ci_consts[atoi (&key)];
redraw () ;

break;

break ;
case KB_LONG_BINARY_MAKE_CODE
printf("%s", " LONG ");
// fall through
case KB_BINARY_MAKE_CODE
switch (key) {
case 0x5a: //enter key: send the msg
printf ("ENTER\n") ;
if(!iterate)

iterate = 1;

else

iterate = 0;

refresh();
break;

case 0x29: //space key
a_min += 0.1 * a_delt;

a_max —-= 0.1 * a_delt;

b_min += 0.1 » b_delt;

b_max -= 0.1 » b_delt;

redraw () ;

printf ("SPACE\n");
break;

case 0x66: //backspace

a_min -= 0.1 * a_delt;
a_max += 0.1 * a_delt;
b_min -= 0.1 x b_delt;
b_max += 0.1 » b_delt;
redraw () ;

printf ("SPACE\n") ;
printf ("BACKSPACE\n") ;
break;

case 0x75: //up arrow
b_min += 0.1 » b_delt;
b_max += 0.1 » b_delt;
printf ("UP\n");

redraw () ;

break;

case 0x72: //down arrow
b_min —= 0.1 » b_delt;
b_max -= 0.1 » b_delt;
printf ("DOWN\n") ;
redraw () ;

break;

case 0x74: //right arrow
a_min += 0.1 * a_delt;
a_max += 0.1 * a_delt;
printf ("RIGHT\n") ;
redraw () ;

break;

48

case Ox6b: //left arrow

a_min —= 0.1 * a_delt;
a_max —-= 0.1 * a_delt;
printf ("RIGHT\n") ;
redraw () ;

break;

default:

printf (" MAKE CODE :\t%X\n", key); //print other unknown
breakcode

}

break ;

case KB_BREAK_CODE
// do nothing
default
break ;
}
}
else {
printf (" Keyboard error\n");
}
}

ErrorExit:
printf ("Program terminated with an error condition\n");

return 0;

Other C Sources / Libraries

Other C modules used include:
1. PS/2 Controller Sources written by Stephen Edwards
2. Altera NIOS Libraries

A.3 Python
julia_gen.py

FHE A R
#julia_gen.py

#

#A floating point Julia set generator written in Python

#

#Author: Stephen Pratt

FHEFF AR AAAAAAAAAAR

class JuliaSetGenerator:

def _ _init_ (self, z_c):
self.z_c = z_c
self .MAX_ITER = 127

def iterate(self, z_i):
z_3 = z_ix*x2 + self.z_c
return z_j

def test_point (self, z_0):
unbound_iteration = 0
z_1i = 2z_0
while abs(z_1i) < 2 and unbound_iteration < self.MAX ITER:
z_1i = self.iterate(z_1)
unbound_iteration += 1

if abs(z_i) < 2:
return -1

49

else:
return unbound_iteration

test_ifm.py

#HEFF AR R R R R R
#test_ifm.py

#

#A python script for parsing and validating integration

#Test Bench dumps

#

#Author: Stephen Pratt

#HEFF AR R R R R

import test_ifm_utils
from JuliaGen import JuliaSetGenerator
import sys

if len(sys.argv) < 3:
print ’'Usage "test_ifm [model_sim_outfile] [epsilon]"’

#read in file

filename = sys.argv[l]
f = open(filename, ’r’)
epsilon = sys.argv[2]

#read constants from header
header = f.readline () .split ()
if len (header) < 3:

print ’Unparseable file header’

c_real = test_ifm utils.from_fixed (int (header[1l], 2))
c_img = test_ifm utils.from_ fixed (int (header([2], 2))

#create our floating point generator

j = JuliaSetGenerator (complex (c_real, c_img))
test_count = 0
wrong_count = 0

print "Commencing test"
print "-—————-———————— "
print
for line in f:
data = line.split ()
if len(data) < 4:
print "Unparseable entry at line %s"%$datal[0]

#grab the point and its count from the file

a = test_ifm utils.from_fixed(int (data[l], 2))
b = test_ifm_utils.from fixed (int (data([2], 2))
count = int (data[3])
if count == 127:

count = -1
else:

count += 1

#compute our own count

actual_count = j.test_point (complex(a, b))

if abs(actual_count - count) > epsilon:
print "Invalid count at line %s for value (%s, %s)"%(datal[O], a, b)
print "Actual count is %s vs recorded %s"% (actual_count, count)
print nn
wrong_count += 1

test_count += 1

50

#report results
correct_count = (test_count - wrong_count)
print "Test completed successfully"
if test_count != 0:
print "%s correct of %s tested (%$s%% accuracy)"% (correct_count, test_count, (
float (correct_count) /test_count))
else:
print "No points tested."

test_ifm_utils.py

FHEFFE AR AR A R
#test_ifm utils.py

#

#Some python functions useful when dealing with our IFMs

#

#Author: Stephen Pratt

FHEHAHFHE AR R R R

NUM_BITS = 36

RADIX_SHIFT = 30

BIT_MASK = OxFFFFFFFFC0000000
MASK_36 = OxXFFFFFFFFF
SIGN_BIT = 0x800000000

#Converts the value into a fixed point expression
def to_fixed(val):
shifted = int ((val % (1 << RADIX_SHIFT)))
return shifted & MASK_36

#Takes a value in fixed point form and converts it to
#decimal
def from_ fixed(val):

sum = 0

bit_mag = 1.0 / (2 << RADIX_SHIFT);

for i in range (NUM_BITS-1):
bit_mag = bit_mag * 2

if (val & (1 << 1i)):
sum += bit_mag

bit_mag x= -2
if(val & (1 << (NUM_BITS-1))):

sum += bit_mag

return sum

test_image.py

#!/usr/bin/env python

FHEHH A A A R R R R A R R R R
#test_image.py

#

#A python script for rendering Julia set image from data stored
#in a pickle

#

#Author: Nathan Hwang

FHEH A A R R R R R R

convert test_out.txt data to an image

import sys
import numpy as np

51

from PIL import Image
import pickle

use steve’s stuff
import test_ifm utils as ifm

def main(path):
read the file
f open (path)
line f.readline ()
init the image
img
find the

ra

np.zeros ((480,640),
nge of the data

throw away first line

np.uint8)

arange_min = 0
arange_max = 0
brange_min = 0
brange_max = 0
i=20
try:
fd = open("test_data.pickle")
data, arange, brange = pickle.load(fd)
print "Loading pre-uniqueified data"
except:
print "Need to load the data"
print "Finding the range of the data"
data = None

if not (data):
find the ranges
data {}
for line in f:
elems
d

arange_min =
arange_max
brange_min
brange_max
writing once
data[d]
count
i4+=1
if 1 %

min

<

100000
print i
(arange_min,

(brange_min,

arange =
brange

line.split ("
(ifm.from_fixed(int (elems([1],
ifm.from_ fixed(int (elems([2],
min (arange_min,
max (arange_min,

(
(
(

max (brange_min,

")
2))
2)))
d[0])

d[o])
brange_min,)
dfll])

int (elems[3])

arange_max)
brange_max)

write out the ranges + data

fd
pickle.dump ((data,
print arange
print brange

go through,
print
for coord,

write out the data

open ("test_data.pickle",
arange,

")

brange), f£d)

line by line
"Filling out the image"
count 1in data.iteritems() :

x = round((coord[0]—-arange[0])/ (arange[l]-arange[0]) x640) %640

y round (
img[y] [x]
write out the file
im Image.fromarray (img,
im.save ("ifm_test.png")

(

if _ _name__ =="__main__":
default path
if len(sys.argv)
path sys.argv[l]
else:

coord[1l]-brange[0])/ (brange[l]-brange[0])*480)%480
round ((count/127.0)**0.5 * 255.0)

mode="L")

52

path = "test_out.txt"
main (path)

color_gen.py

#!/usr/bin/python

#HEFHE AR A R R R R
#color_gen.py

#

#A python script for building color schemes and producing ROM
#encodings

#

#Author: Nathan Hwang

#HEFHE AR A R R R

import pygtk
pygtk.require ("2.0"
import gtk

import os
import pickle

import math

BITS = 7
CAP = 2%xBITS

DEFAULT_SIZE = (640,480)

caching
def load_img(window, size, const):
if not os.path.exists ("cache"):
os.makedirs ("cache")
try:

o

f = open("cache/%s.pickle" % (window, size, const).__hash__ ())

print ("Loading up cached fractal...")
a = pickle.load(f)
print ("Finished loading")
return a

except IOError:
return None

def save_img(window, size, const, img):

convert img from numpy to normal lists

if not os.path.exists ("cache"):
os.makedirs ("cache")

try:

o

f = open("cache/%s.pickle" % (window, size, const).__hash__())

print ("Already cached, not going to write")
except IOError:
print ("Writing fractal to the cache...")

[

f = open("cache/%s.pickle" % (window, size, const).__hash__ (), "w")

pickle.dump (img, £f)
print ("Finished writing")

fractal generator

def generate_fractal (window=((1.95,1.5), (-1.95,-1.5)), size=(640,480), const=0):

img = load_img(window, size, const)
if not (img is None) :
return img
print ("Generating fractal...")
img = [[0 for i in range(size[0])] for J in range(sizel[l])]
for x in range(size[0]):
print "row %d" % x
for y in range(size[l]):
px = (window[0][0] - window[1][0])* (float (x)/size[0])
py = (window[0][1l] - window[1][1])* (float(y)/size[l])

53

+ window[1] [0]
+ window[1][1]

p = px + py*lj
it =0
while abs(p) < 2 and it < CAP - 1:
p = p *x 2 + const
it += 1
imgly]l [x] = it
save_img (window, size, const, img)
return img

colorizer

def

def

def

def

color_img(counts, d):
size = (len(counts[0]), len(counts))
img = [[[0 for k in range(3)] for i in range(size[0])]
for j in range(size[l])]
for x in range(size[l]):
for y in range(size[0]):
c = counts[x] [y]
color = dlc]

img[x] [y] [0] = color[0]
img([x] [y][1] = color[1l]
img[x] [y] [2] = color[2]

return img

linear_color_map (begin=(0,0,0), end=(255,0,0)):
def crange(a, b, t):
return (b-a)*t + a

d = {}
for i in range (CAP) :
d[i] = (crange(begin[0], end[0], float (i) /CAP),

crange (begin[1l], end[1l], float (i)/CAP),
crange (begin[2], end[2], float (i) /CAP))
return d
sgrt_color_map (begin=(0,0,0), end=(255,0,0)):
def crange(a, b, t):
return (b-a)*t + a
d = {}
for 1 in range (CAP) :
ii = round(((float (i) /CAP)*%x0.5) = CAP)

d[i] = (crange (begin[0], end[0], float (ii)/CAP),
crange (begin[1], end[l], float(ii)/CAP),
crange (begin[2], end[2], float(ii)/CAP))

return d

convert_string (img) :
s = "n
for row in img:
for elem in row:
for ¢ in elem:
s += str(chr(int(c)))
return s

class Base:

def delete_event (self, widget, data=None):
return False

def destroy(self, widget, data=None):
print ("Goodbye!")
gtk.main_quit ()

def build_color_map(self):

cr = self.color_r.get_vector()
cg = self.color_g.get_vector ()
cb = self.color_b.get_vector()
cr = [min(max(c, 0), 2+xself.prec-1) for c in cr]
cg = [min(max(c, 0), 2+xself.prec-1) for c in cg]
cb = [min(max(c, 0), 2+xself.prec-1) for c in cb]

have to renormalize between len(cr) and CAP
def interpolate (points, x):

54

def

def

def

def

def

def

def

def

def

"""points: the series of points
x: where you want the value

nnn

indl = int (math.floor (x*xlen(points)))

indh = int (math.ceil (x*len(points)))

ip = (xxlen(points) - indl)

return (points[indh] - points[indl])*ip + points[indl]

d = {}
for i in range (CAP):

d[i] = (interpolate(cr, float (i) /CAP),
interpolate (cg, float (i) /CAP),
interpolate (cb, float (i)/CAP))

return d
build_bmp_color_map (self):
d = self.build_color_map ()
for i in range (CAP) :

d[i] = (max(min(round(d[i][0]/4), 2+x8-1), 0),
max (min (round (d[i] [1]1/4), 2%x8-1), 0),
max (min (round (d[i][2]/4), 2x%8-1), 0))

return d

gen_clut (self, widget, data=None):
def convert_bin (num) :
s = nw
for i in range(self.prec):
if int (round(num)) & 1 ==
s ="1" + s
else:
s = "0" + s
num /= 2
return s
d = self.build_color_map ()

ss = ["\"%$s5%s%s\"" % (convert_bin (int (round(d[i][0]))),
convert_bin (int (round (d[i][1]))),
convert_bin (int (round (d[i][2]))))
for i in range (CAP)]
print ",\n".join(ss)

refractal (self, widget, data=None):
print ("Recalculating fractal geometry")

real = self.realin.get_value()
comp = self.compin.get_value ()
self.fractal = generate_fractal (const = real+compxlj)

self.recolor (None)
recolor (self, widget, data=None):
print ("Recalculating fractal colormap")
img = color_img(self.fractal, self.build_bmp_color_map())
s = convert_string(img)
buf = gtk.gdk.pixbuf_new_from_data (s, gtk.gdk.COLORSPACE_RGB,
False, 8,
self.size[0], self.size[l], 3%x640)
self.img.set_from_pixbuf (buf)

set_ex1 (self, widget, data=None):
self.realin.set_value (-0.835)
self.compin.set_value (-0.2321)
set_ex2 (self, widget, data=None):
self.realin.set_value(-0.4)
self.compin.set_value (0.6)
set_ex3(self, widget, data=None):
self.realin.set_value (-0.7018)
self.compin.set_value (-0.3842)
set_ex4 (self, widget, data=None):
self.realin.set_value (-0.8)
self.compin.set_value (0.156)

__init_ (self):
self.img = gtk.Image ()

95

self.size
self.prec

DEFAULT_SIZE
10

color curves

self.color_r = gtk.Curve()

self.color_r.set_range (0, CAP, 0, 2x*self.prec)
self.color_g = gtk.Curve()

self.color_g.set_range (0, CAP, 0, 2x*self.prec)
self.color_b = gtk.Curve()

self.color_b.set_range (0, CAP, 0, 2x*self.prec)

adjustment tools

realadj = gtk.Adjustment (0.0, -1.0, 1.0, 0.01)

compadj = gtk.Adjustment (0.0, -1.0, 1.0, 0.01)

self.realin = gtk.SpinButton (adjustment=realadij, digits=4)
self.compin = gtk.SpinButton(adjustment=compadj, digits=4)
buttons

self.recolorb = gtk.Button("Recalculate Colormap")
self.refractalb = gtk.Button("Recalculate Fractal")
self.clutb = gtk.Button ("Output CLUT")

self.exlb = gtk.Button("Ex1")

self.ex2b = gtk.Button ("Ex2")

self.ex3b = gtk.Button ("Ex3")

self.ex4b = gtk.Button("Ex4")

self.window = gtk.Window (gtk.WINDOW_TOPLEVEL)

signals
self.
self.

window.
window.

connect ("delete_event", self.delete_event)
connect ("destroy", self.destroy)

self.recolorb.connect ("clicked", self.recolor)
self.refractalb.connect ("clicked", self.refractal)
self.clutb.connect ("clicked", self.gen_clut)

self.
self.
self.
self.

exlb.
ex2b.
ex3b.
ex4db.

self.set_exl
self.set_ex2
self.set_ex3
self.set_ex4

connect ("clicked",)
connect ("clicked",)
connect ("clicked",)
connect ("clicked",)

packing

self.const_input_pane gtk.HBox ()
self.const_input_pane.pack_start (self.realin)
self.const_input_pane.pack_start (self.compin)

self.
self.

example_pane

gtk.HBox ()
exlb

self.
self.
self.

example_pane
example_pane
example_pane
example_pane

.pack_start (self.
.pack_start (self.
.pack_start (self.
.pack_start (self.

ex2b
ex3b
ex4b

self.side_pane
self.side_pane.
self.side_pane.

gtk.VBox ()

pack_start (self.
pack_start (self.
self.side_pane.pack_start (self.

(
(color_r)
(
(
self.side_pane.pack_start (self.
(
(
(
(

color_g)

color_b)
const_input_pane)
example_pane)
recolorb)
refractalb)
clutb)

self.side_pane.pack_start (self.
self.side_pane.pack_start (self.
self.side_pane.pack_start (self.
self.side_pane.pack_start (self.

self.
self.
self.

gtk.HBox ()
pack_start (self.
pack_start (self.

main_pane
main_pane.
main_pane.

img, expand=False)
side_pane, expand=True)

self.window.add (self.main_pane)

56

showing things

self

self

self.
self.
self.

self.
self.
self.
self.
self.

self.
self.
self.
self.

self.
self.
self.

calculate the initial fractal
self.

.color_r.show()
self.
.color_b.show ()

color_g.show ()

realin.show ()
compin.show ()
const_input_pane.show ()

exlb.show ()
ex2b.show ()
ex3b.show ()
ex4b.show ()
example_pane.show ()

img.show ()
recolorb.show ()
refractalb.show ()
clutb.show ()

side_pane.show ()

main_pane.show ()
window. show ()

refractal (None)

def main(self):
gtk.main ()

if name == "__main

base

n.

= Base ()
base.main ()

Other Python Sources / Libraries

1. PyGTK
2. PIL

o7

