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About This Handbook

Introduction This volume describes intellectual property (IP) cores provided by 
Altera® for embedded systems design. These cores are installed with the 
Quartus® II software, and you can use them free of charge in Altera 
devices. Each core is SOPC Builder ready and can be instantiated in any 
SOPC Builder system. Most cores provide software driver support for the 
Altera Nios® II processor, and work seemlessly in Nios II systems.

Each chapter provides complete reference for a core, including the 
following information:

■ Hardware structure
■ Features and interface(s) to the core
■ Available options when instantiating the core in SOPC Builder
■ Hardware simulation considerations, if any
■ Software programming model, including a description of the 

registers and driver functions.
■ Device and tools support

How to Contact 
Altera

For the most up-to-date information about Altera products, see the 
following table.

Contact (1) Contact 
Method Address

Technical support Website www.altera.com/support 

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature 

Altera literature services Email literature@altera.com 

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative. 

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com
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Typographic 
Conventions

This document uses the typographic conventions shown in the following 
table.

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. 
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, 
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files (e.g., the AHDL 
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in 
Courier. 

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ ● • Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury 
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic. 
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Section I. Memory
Peripherals

This section describes memory components and interfaces provided by 
Altera®. These components provide access to on-chip or off-chip memory 
for SOPC Builder systems.

See About This Handbook for further details. 

This section includes the following chapters: 

■ Chapter 1, SDRAM Controller Core
■ Chapter 3, Common Flash Interface Controller Core
■ Chapter 2, CompactFlash Core
■ Chapter 4, EPCS Device Controller Core
■ Chapter 5, On-Chip FIFO Memory Core
■ Chapter 6, Scatter-Gather DMA Controller Core
■ Chapter 7, DMA Controller Core

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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1. SDRAM Controller Core

Core Overview The SDRAM controller core with Avalon® interface provides an Avalon 
Memory-Mapped (Avalon-MM) interface to off-chip SDRAM. The 
SDRAM controller allows designers to create custom systems in an 
Altera® FPGA that connect easily to SDRAM chips. The SDRAM 
controller supports standard SDRAM as described in the PC100 
specification.

SDRAM is commonly used in cost-sensitive applications requiring large 
amounts of volatile memory. While SDRAM is relatively inexpensive, 
control logic is required to perform refresh operations, open-row 
management, and other delays and command sequences. The SDRAM 
controller connects to one or more SDRAM chips, and handles all 
SDRAM protocol requirements. Internal to the FPGA, the core presents 
an Avalon-MM slave port that appears as linear memory (that is, flat 
address space) to Avalon-MM master peripherals.

The core can access SDRAM subsystems with various data widths (8, 16, 
32, or 64 bits), various memory sizes, and multiple chip selects. The 
Avalon-MM interface is latency-aware, allowing read transfers to be 
pipelined. The core can optionally share its address and data buses with 
other off-chip Avalon-MM tri-state devices. This feature is valuable in 
systems that have limited I/O pins, yet must connect to multiple memory 
chips in addition to SDRAM.

The SDRAM controller core with Avalon interface is SOPC Builder-ready 
and integrates easily into any SOPC Builder-generated system. This 
chapter contains the following sections:

■ “Functional Description” on page 1–2
■ “Device and Tools Support” on page 1–6
■ “Instantiating the Core in SOPC Builder” on page 1–6
■ “Hardware Simulation Considerations” on page 1–9
■ “Software Programming Model” on page 1–13
■ “Clock, PLL and Timing Considerations” on page 1–13

NII51005-7.2.0
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Functional 
Description

Figure 1–1 shows a block diagram of the SDRAM controller core 
connected to an external SDRAM chip.

Figure 1–1. SDRAM Controller with Avalon Interface Block Diagram

The following sections describe the components of the SDRAM controller 
core in detail. All options are specified at system generation time, and 
cannot be changed at runtime.

Avalon-MM Interface

The Avalon-MM slave port is the user-visible part of the SDRAM 
controller core. The slave port presents a flat, contiguous memory space 
as large as the SDRAM chip(s). When accessing the slave port, the details 
of the PC100 SDRAM protocol are entirely transparent. The Avalon-MM 
interface behaves as a simple memory interface. There are no 
memory-mapped configuration registers. 

The Avalon-MM slave port supports peripheral-controlled wait states for 
read and write transfers. The slave port stalls the transfer until it can 
present valid data. The slave port also supports read transfers with 
variable latency, enabling high-bandwidth, pipelined read transfers. 
When a master peripheral reads sequential addresses from the slave port, 
the first data returns after an initial period of latency. Subsequent reads 
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can produce new data every clock cycle. However, data is not guaranteed 
to return every clock cycle, because the SDRAM controller must pause 
periodically to refresh the SDRAM.

f For details about Avalon-MM transfer types, refer to the Avalon 
Memory-Mapped Interface Specification.

Off-Chip SDRAM Interface

The interface to the external SDRAM chip presents the signals defined by 
the PC100 standard. These signals must be connected externally to the 
SDRAM chip(s) through I/O pins on the Altera FPGA.

Signal Timing and Electrical Characteristics

The timing and sequencing of signals depends on the configuration of the 
core. The hardware designer configures the core to match the SDRAM 
chip chosen for the system. See “Instantiating the Core in SOPC Builder” 
on page 1–6 for details. The electrical characteristics of the FPGA pins 
depend on both the target device family and the assignments made in the 
Quartus® II software. Some FPGA families support a wider range of 
electrical standards, and therefore are capable of interfacing with a 
greater variety of SDRAM chips. For details, see the handbook for the 
target FPGA family.

Synchronizing Clock and Data Signals

The clock for the SDRAM chip (hereafter "SDRAM clock") must be driven 
at the same frequency as the clock for the Avalon-MM interface on the 
SDRAM controller (hereafter "controller clock"). As in all synchronous 
design, you must ensure that address, data, and control signals at the 
SDRAM pins are stable when a clock edge arrives. As shown in 
Figure 1–1, you can use an on-chip phase-locked loop (PLL) to alleviate 
clock skew between the SDRAM controller core and the SDRAM chip. At 
lower clock speeds, the PLL might not be necessary. At higher clock rates, 
a PLL is necessary to ensure that the SDRAM clock toggles only when 
signals are stable on the pins. The PLL block is not part of the SDRAM 
controller core. If a PLL is necessary, you must instantiate it manually. You 
can instantiate the PLL core interface, which is an SOPC Builder 
component, or instantiate an altpll megafunction outside the SOPC 
Builder system module. 

If you use a PLL, you must tune the PLL to introduce a clock phase shift 
so that SDRAM clock edges arrive after synchronous signals have 
stabilized. See “Clock, PLL and Timing Considerations” on page 1–13 for 
details. 
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f For more information about instantiating a PLL in your SOPC Builder 
system, refer to the PLL Core chapter in volume 5 of the Quartus II 
Handbook. The Nios® II development tools provide example hardware 
designs that use the SDRAM controller core in conjunction with a PLL, 
which you can use as a reference for your custom designs. The Nios II 
development tools are available free for download from 
www.altera.com.

Clock Enable (CKE) Not Supported

The SDRAM controller does not support clock-disable modes. The 
SDRAM controller permanently asserts the CKE signal on the SDRAM.

Sharing Pins with Other Avalon-MM Tri-State Devices

If an Avalon-MM tri-state bridge is present in the SOPC Builder system, 
the SDRAM controller core can share pins with the existing tri-state 
bridge. In this case, the core’s addr, dq (data) and dqm (byte-enable) pins 
are shared with other devices connected to the Avalon-MM tri-state 
bridge. This feature conserves I/O pins, which is valuable in systems that 
have multiple external memory chips (for example, flash, SRAM, and 
SDRAM), but too few pins to dedicate to the SDRAM chip. See 
“Performance Considerations” for details about how pin sharing affects 
performance.

1 The SDRAM addresses must connect all address bits regardless 
of the size of the word so that the low-order address bits on the 
tri-state bridge align with the low-order address bits on the 
memory device. It is not possible to drop A0 for memories when 
the smallest access size is 16 bits or A0-A1 when the smallest 
access size is 32 bits.

Board Layout and Pinout Considerations

When making decisions about the board layout and FPGA pinout, try to 
minimize the skew between the SDRAM signals. For example, when 
assigning the FPGA pinout, group the SDRAM signals, including the 
SDRAM clock output, physically close together. Also, you can use the 
Fast Input Register and Fast Output Register logic options in the 
Quartus II software. These logic options place registers for the SDRAM 
signals in the I/O cells. Signals driven from registers in I/O cells have 
similar timing characteristics, such as tCO, tSU, and tH. 
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Performance Considerations

Under optimal conditions, the SDRAM controller core’s bandwidth 
approaches one word per clock cycle. However, because of the overhead 
associated with refreshing the SDRAM, it is impossible to reach one word 
per clock cycle. Other factors affect the core’s performance, as described 
below.

Open Row Management 

SDRAM chips are arranged as multiple banks of memory, in which each 
bank is capable of independent open-row address management. The 
SDRAM controller core takes advantage of open-row management for a 
single bank. Continuous reads or writes within the same row and bank 
operate at rates approaching one word per clock. Applications that 
frequently access different destination banks require extra management 
cycles for row closings and openings. 

Sharing Data and Address Pins

When the controller shares pins with other tri-state devices, average 
access time usually increases and bandwidth decreases. When access to 
the tri-state bridge is granted to other devices, the SDRAM requires row 
open and close overhead cycles. Furthermore, the SDRAM controller has 
to wait several clock cycles before it is granted access again. 

To maximize bandwidth, the SDRAM controller automatically maintains 
control of the tri-state bridge as long as back-to-back read or write 
transactions continue within the same row and bank. 

1 This behavior may degrade the average access time for other 
devices sharing the Avalon-MM tri-state bridge. 

The SDRAM controller closes an open row whenever there is a break in 
back-to-back transactions, or whenever a refresh transaction is required. 
As a result: 

■ The controller cannot permanently block access to other devices 
sharing the tri-state bridge.

■ The controller is guaranteed not to violate the SDRAM’s row open 
time limit. 

Hardware Design and Target FPGA 

The target FPGA affects the maximum achievable clock frequency of a 
hardware design. Certain device families achieve higher fM A X 
performance than other families. Furthermore, within a device family 
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faster speed grades achieve higher performance. The SDRAM controller 
core can achieve 100 MHz in Altera’s high-performance device families, 
such as Stratix® series FPGAs. However, the core might not achieve 
100 MHz performance in all Altera FPGA families. 

The fMAX performance also depends on the SOPC Builder system design. 
The SDRAM controller clock can also drive other logic in the system 
module, which might affect the maximum achievable frequency. For the 
SDRAM controller core to achieve fMAX performance of 100 MHz, all 
components driven by the same clock must be designed for a 100 MHz 
clock rate, and timing analysis in the Quartus II software must verify that 
the overall hardware design is capable of 100 MHz operation. 

Device and 
Tools Support

The SDRAM Controller with Avalon interface core supports all Altera 
FPGA families. Different FPGA families support different I/O standards, 
which may affect the ability of the core to interface to certain SDRAM 
chips. For details about supported I/O types, see the handbook for the 
target FPGA family.

Instantiating the 
Core in SOPC 
Builder

Designers use the MegaWizard® Plug-In Manager interface for the 
SDRAM controller in SOPC Builder to specify hardware features and 
simulation features. The SDRAM controller MegaWizard interface has 
two pages: Memory Profile and Timing. This section describes the 
options available on each page.

The Presets list offers several pre-defined SDRAM configurations as a 
convenience. If the SDRAM subsystem on the target board matches one 
of the preset configurations, you can configure the SDRAM controller 
core easily by selecting the appropriate preset value. The following preset 
configurations are defined:

■ Micron MT8LSDT1664HG module
■ Four SDR100 8 MByte × 16 chips
■ Single Micron MT48LC2M32B2-7 chip
■ Single Micron MT48LC4M32B2-7 chip
■ Single NEC D4564163-A80 chip (64 MByte × 16)
■ Single Alliance AS4LC1M16S1-10 chip
■ Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the 
Memory Profile and Timing tabs to match the specific configuration. 
Altering a configuration setting on any page changes the Preset value to 
custom. 
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Memory Profile Page

The Memory Profile page allows designers to specify the structure of the 
SDRAM subsystem, such as address and data bus widths, the number of 
chip select signals, and the number of banks. Table 1–1 lists the settings 
available on the Memory Profile page.

Table 1–1. Memory Profile Page Settings 

Settings Allowed 
Values

Default 
Values Description

Data Width 8, 16, 32, 64 32 SDRAM data bus width. This value determines the 
width of the dq bus (data) and the dqm bus (byte-
enable). 

Architecture 
Settings

Chip Selects 1, 2, 4, 8 1 Number of independent chip selects in the SDRAM 
subsystem. By using multiple chip selects, the SDRAM 
controller can combine multiple SDRAM chips into one 
memory subsystem.

Banks 2, 4 4 Number of SDRAM banks. This value determines the 
width of the ba bus (bank address) that connects to the 
SDRAM. The correct value is provided in the data sheet 
for the target SDRAM.

Address 
Width 
Settings

Row 11, 12, 13, 14 12 Number of row address bits. This value determines the 
width of the addr bus. The Row and Column values 
depend on the geometry of the chosen SDRAM. For 
example, an SDRAM organized as 4096 (212) rows by 
512 columns has a Row value of 12. 

Column >= 8, and 
less than 
Row value

8 Number of column address bits. For example, the 
SDRAM organized as 4096 rows by 512 (29) columns 
has a Column value of 9.

Share pins via tri-state bridge
dq/dqm/addr I/O pins

checked 
(yes), 
unchecked 
(no)

No When set to No, all pins are dedicated to the SDRAM 
chip. When set to Yes, the addr, dq, and dqm pins can 
be shared with a tristate bridge in the system. In this 
case, select the appropriate tristate bridge from the 
pulldown menu.

Include a functional memory 
model in the system 
testbench

Yes, No Yes When on, SOPC Builder creates a functional simulation 
model for the SDRAM chip. This default memory model 
accelerates the process of creating and verifying 
systems that use the SDRAM controller. See 
“Hardware Simulation Considerations” on page 1–9. 
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Based on the settings entered on the Memory Profile page, the wizard 
displays the expected memory capacity of the SDRAM subsystem in units 
of megabytes, megabits, and number of addressable words. Compare 
these expected values to the actual size of the chosen SDRAM to verify 
that the settings are correct.

Timing Page

The Timing page allows designers to enter the timing specifications of the 
SDRAM chip(s) used. The correct values are available in the 
manufacturer’s data sheet for the target SDRAM. Table 1–2 lists the 
settings available on the Timing page.

Regardless of the exact timing values you specify, the actual timing 
achieved for each parameter is an integer multiple of the Avalon clock 
period. For the Issue one refresh command every parameter, the actual 
timing is the greatest number of clock cycles that does not exceed the 

Table 1–2. Timing Page Settings 

Settings Allowed 
Values

Default 
Value Description

CAS latency 1, 2, 3 3 Latency (in clock cycles) from a read command to data out.

Initialization refresh 
cycles 

1 – 8 2 This value specifies how many refresh cycles the SDRAM 
controller performs as part of the initialization sequence after 
reset.

Issue one refresh 
command every

— 15.625 
μs

This value specifies how often the SDRAM controller refreshes 
the SDRAM. A typical SDRAM requires 4,096 refresh 
commands every 64 ms, which can be achieved by issuing one 
refresh command every 64 ms / 4,096 = 15.625 μs.

Delay after power up, 
before initialization

— 100 μs The delay from stable clock and power to SDRAM initialization.

Duration of refresh 
command (t_rfc)

— 70 ns Auto Refresh period.

Duration of precharge 
command (t_rp)

— 20 ns Precharge command period.

ACTIVE to READ or 
WRITE delay (t_rcd)

— 20 ns ACTIVE to READ or WRITE delay.

Access time (t_ac) — 17 ns Access time from clock edge. This value may depend on CAS 
latency.

Write recovery time 
(t_wr, No auto 
precharge)

— 14 ns Write recovery if explicit precharge commands are issued. This 
SDRAM controller always issues explicit precharge commands. 
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target value. For all other parameters, the actual timing is the smallest 
number of clock ticks that provides a value greater than or equal to the 
target value.

Hardware 
Simulation 
Considerations

This section discusses considerations for simulating systems with 
SDRAM. Three major components are required for simulation:

■ A simulation model for the SDRAM controller
■ A simulation model for the SDRAM chip(s), also called the memory 

model
■ A simulation testbench that wires the memory model to the SDRAM 

controller pins.

Some or all of these components are generated by SOPC Builder at system 
generation time.

SDRAM Controller Simulation Model

The SDRAM controller design files generated by SOPC Builder are 
suitable for both synthesis and simulation. Some simulation features are 
implemented in the HDL using “translate on/off” synthesis directives 
that make certain sections of HDL code invisible to the synthesis tool. 

The simulation features are implemented primarily for easy simulation of 
Nios and Nios II processor systems using the ModelSim simulator. The 
SDRAM controller simulation model is not ModelSim specific. However, 
minor changes may be required to make the model work with other 
simulators. 

c If you change the simulation directives to create a custom 
simulation flow, be aware that SOPC Builder overwrites 
existing files during system generation. Take precautions to 
ensure your changes are not overwritten.

f For a demonstration of simulation of the SDRAM controller in the 
context of Nios II embedded processor systems, refer to AN 351: 
Simulating Nios II Processor Designs. 
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SDRAM Memory Model

This section describes the two options for simulating a memory model of 
the SDRAM chip(s).

Using the Generic Memory Model

If the Include a functional memory model the system testbench option 
is enabled at system generation, then SOPC Builder generates an HDL 
simulation model for the SDRAM memory. In the auto-generated system 
testbench, SOPC Builder automatically wires this memory model to the 
SDRAM controller pins. 

Using the automatic memory model and testbench accelerates the process 
of creating and verifying systems that use the SDRAM controller. 
However, the memory model is a generic functional model that does not 
reflect the true timing or functionality of real SDRAM chips. The generic 
model is always structured as a single, monolithic block of memory. For 
example, even for a system that combines two SDRAM chips, the generic 
memory model is implemented as a single entity. 

Using the SDRAM Manufacturer’s Memory Model

If the Include a functional memory model the system testbench option 
is not enabled, the designer is responsible for obtaining a memory model 
from the SDRAM manufacturer, and manually wiring the model to the 
SDRAM controller pins in the system testbench. 
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Example 
Configurations

The following examples show how to connect the SDRAM controller 
outputs to an SDRAM chip or chips. The bus labeled ctl is an aggregate 
of the remaining signals, such as cas_n, ras_n, cke and we_n.

Figure 1–2 shows a single 128-Mbit SDRAM chip with 32-bit data. 
Address, data, and control signals are wired directly from the controller 
to the chip. The result is a 128-Mbit (16-Mbyte) memory space.

Figure 1–2. Single 128-Mbit SDRAM Chip with 32-Bit Data
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Figure 1–3 shows two 64-Mbit SDRAM chips, each with 16-bit data. 
Address and control signals connect in parallel to both chips. Note that 
chipselect (cs_n) is shared by the chips. Each chip provides half of the 
32-bit data bus. The result is a logical 128-Mbit (16-Mbyte) 32-bit data 
memory.

Figure 1–3. Two 64-MBit SDRAM Chips Each with 16-Bit Data
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Figure 1–4 shows two 128-Mbit SDRAM chips, each with 32-bit data. 
Address, data, and control signals connect in parallel to the two chips. 
The chipselect bus (cs_n[1:0]) determines which chip is selected. The 
result is a logical 256-Mbit 32-bit wide memory.

Figure 1–4. Two 128-Mbit SDRAM Chips Each with 32-Bit Data 
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The SDRAM controller behaves like simple memory when accessed via 
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frequencies, the clock naturally falls within the valid window. At higher 
frequencies, you must compensate the SDRAM clock to align with the 
valid window.

addr 

ctl 

cs_n [0] 

cs_n [1] 

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

data 32

128 Mbits
16 Mbytes

32 data width device

128 Mbits
16 Mbytes

32 data width device

32

32
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Determine when the valid window occurs either by calculation or by 
analyzing the SDRAM pins with an oscilloscope. Then use a PLL to adjust 
the phase of the SDRAM clock so that edges occur in the middle of the 
valid window. Tuning the PLL might require trial-and-error effort to align 
the phase shift to the properties of your target board.

f For details about the PLL circuitry in your target device, refer to the 
appropriate device family handbook. For details about configuring the 
PLLs in Altera FPGAs, refer to the altpll Megafunction User Guide.

Factors Affecting SDRAM Timing

The location and duration of the window depends on several factors:

■ Timing parameters of the FPGA and SDRAM I/O pins — I/O timing 
parameters vary based on device family and speed grade. 

■ Pin location on the FPGA — FPGA I/O pins connected to row 
routing have different timing than pins connected to column routing. 

■ Logic options used during the Quartus II compilation — Logic 
options such as the Fast Input Register and Fast Output Register 
logic affect the design fit. The location of logic and registers inside the 
FPGA affects the propagation delays of signals to the I/O pins.

■ SDRAM CAS latency

As a result, the valid window timing is different for different 
combinations of FPGA and SDRAM devices. Furthermore, the window 
depends on the Quartus II software fitting results and pin assignments.

Symptoms of an Untuned PLL

Detecting when the PLL is not tuned correctly might be difficult. Data 
transfers to or from the SDRAM might not fail universally. For example, 
individual transfers to the SDRAM controller might succeed, whereas 
burst transfers fail. For processor-based systems, if software can perform 
read or write data to SDRAM, but cannot run when the code is located in 
SDRAM, then the PLL is probably tuned incorrectly.

Estimating the Valid Signal Window

This section describes how to estimate the location and duration of the 
valid signal window using timing parameters provided in the SDRAM 
datasheet and the Quartus II software compilation report. After finding 
the window, tune the PLL so that SDRAM clock edges occur exactly in the 
middle of the window.
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Calculating the window is a two-step process. First, determine by how 
much time the SDRAM clock can lag the controller clock, and then by 
how much time it can lead. After finding the maximum lag and lead 
values, calculate the midpoint between them. 

1 These calculations provide an estimation only. The following 
delays can also affect proper PLL tuning, but are not accounted 
for by these calculations. 

• Signal skew due to delays on the printed circuit board — 
These calculations assume zero skew.

• Delay from the PLL clock output nodes to destinations — 
These calculations assume that the delay from the PLL 
SDRAM-clock output-node to the pin is the same as the 
delay from the PLL controller-clock output-node to the 
clock inputs in the SDRAM controller. If these clock delays 
are significantly different, you must account for this phase 
shift in your window calculations. 

Figure 1–5 shows how to calculate the maximum length of time that the 
SDRAM clock can lag the controller clock, and Figure 1–6 shows how to 
calculate the maximum lead. Lag is a negative time shift, relative to the 
controller clock, and lead is a positive time shift. The SDRAM clock can 
lag the controller clock by the lesser of the maximum lag for a read cycle 
or that for a write cycle. In other words, Maximum Lag = minimum(Read 
Lag, Write Lag). Similarly, the SDRAM clock can lead by the lesser of the 
maximum lead for a read cycle or for a write cycle. In other words, 
Maximum Lead = minimum(Read Lead, Write Lead).
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Figure 1–5. Calculating the Maximum SDRAM Clock Lag
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Figure 1–6. Calculating the Maximum SDRAM Clock Lead

Example Calculation

This section demonstrates a calculation of the signal window for a Micron 
MT48LC4M32B2-7 SDRAM chip and an FPGA design targeting an Altera 
Stratix II EP2S60F672C5 FPGA. This example uses a CAS latency (CL) of 
3 cycles, and a clock frequency of 50 MHz. All SDRAM signals on the 
FPGA are registered in I/O cells, enabled with the Fast Input Register 
and Fast Output Register logic options in the Quartus II software. 
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Table 1–3 shows the relevant timing parameters excerpted from the 
MT48LC4M32B2 device datasheet.

Table 1–3. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device

Parameter Symbol
Value (ns) in -7 Speed Grade

Min. Max.

Access time from 
CLK (pos. edge)

CL = 3 tAC(3) 5.5

CL = 2 tAC(2) 8

CL = 1 tAC(1) 17

Address hold time tAH 1

Address setup time tAS 2

CLK high-level width tCH 2.75

CLK low-level width tCL 2.75

Clock cycle time CL = 3 tCK(3) 7

CL = 2 tCK(2) 10

CL = 1 tCK(1) 20

CKE hold time tCKH 1

CKE setup time tCKS 2

CS#, RAS#, CAS#, WE#, DQM hold time tCMH 1

CS#, RAS#, CAS#, WE#, DQM setup time tCMS 2

Data-in hold time tDH 1

Data-in setup time tDS 2

Data-out 
high-impedance 
time

CL = 3 tHZ(3) 5.5

CL = 2 tHZ(2) 8

CL = 1 tHZ(1) 17

Data-out low-impedance time tLZ 1

Data-out hold time tOH 2.5
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Table 1–4 shows the relevant FPGA timing information, obtained from 
the Timing Analyzer section of the Quartus II Compilation Report. The 
values in Table 1–4 are the maximum or minimum values among all 
FPGA pins related to the SDRAM. The variance in timing between the 
SDRAM pins on the FPGA is small (less than 100 ps) because the registers 
for these signals are placed in the I/O cell.

1 You must compile the design in the Quartus II software to obtain 
the I/O timing information for the FPGA design. Although 
Altera device family datasheets contain generic I/O timing 
information for each device, the Quartus II Compilation Report 
provides the most precise timing information for your specific 
design. 

c The timing values found in the compilation report can change, 
depending on fitting, pin location, and other Quartus II logic 
settings. When you recompile the design in the Quartus II 
software, verify that the I/O timing has not changed 
significantly. 

With the values from Tables 1–3 and Table 1–4 you can perform the 
calculations from Figures 1–5 and 1–6, as shown below. 

The SDRAM clock can lag the controller clock by the lesser of Read Lag or 
Write Lag:

(1)

or

(2)

Table 1–4. FPGA I/O Timing Parameters

Parameter Symbol Value (ns)

Clock period tCLK 20

Minimum clock-to-output time tCO_MIN 2.399

Maximum clock-to-output time tCO_MAX 2.477

Maximum hold time after clock tH_MAX –5.607

Maximum setup time before clock tSU_MAX 5.936

Read Lag tOH SDRAM( ) tH_MAX FPGA( )–=

Read Lag 2.5ns 5.607ns–( )–=

Read Lag 8.107ns=

Write Lag tCLK tCO_MAX FPGA( )– tDS SDRAM( )–=

Write Lag 20ns 2.477ns–=
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The SDRAM clock can lead the controller clock by the lesser of Read Lead 
or Write Lead:

(3)

or

(4)

Therefore, for this example you can shift the phase of the SDRAM clock 
from –8.107 ns to 1.399 ns relative to the controller clock. Choosing a 
phase shift in the middle of this window results in the value 

.

Referenced 
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ PLL Core chapter in volume 5 the Quartus II Handbook
■ AN 351: Simulating Nios II Processor Designs
■ altpll Megafunction User Guide

Write Lag 15.523ns=

Read Lead tCO_MIN FPGA( ) tDH SDRAM( )–=

Read Lead 2.399ns 1.0ns–=

Read Lead 1.399ns=

Write Lead tCLK tHZ 3( ) SDRAM( )– tSU_MAX FPGA( )–=

Write Lead 20ns 5.5ns– 5.936ns–=

Write Lead 8.564ns=

8.107– 1.399+( ) 2÷ 3.35ns–=

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii53002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
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Revision History

Table 1–5 shows the revision history for this chapter.

Table 1–5. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

No change from previous release. —

May 2007
v7.1.0

● Updated description of Parameter Settings Memory Profile 
page to reflect new mechanism for for sharing pins via a 
tristate bridge.

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies. 

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric.” 

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.” 

For the 6.1 release, 
Altera released the 
Avalon Streaming 
interface, which 
necessitated some 
re-phrasing of existing 
Avalon terminology. 

May 2006
v6.0.0

Chapter title changed, but no change in content from previous 
release. —

December 2005
v5.1.1

● Updated Figure 1-1.
● Updated sections “Off-Chip SDRAM Interface” and “Board 

Layout and Pinout Considerations.”
● Added section “Clock, PLL and Timing Considerations.”

—

October 2005
v5.1.0

No change from previous release. 
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook. —

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—
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2. CompactFlash Core

Core Overview The CompactFlash core allows you to connect SOPC Builder systems to 
CompactFlash storage cards in true IDE mode by providing an Avalon 
Memory-Mapped (Avalon-MM) interface to the registers on the storage 
cards.

The CompactFlash core also provides a register-mapped Avalon-MM 
slave interface which can be used by Avalon-MM master peripherals such 
as a Nios II processor to communicate with the CompactFlash core and 
manage its operations.

The CompactFlash core is SOPC Builder-ready and integrates easily into 
any SOPC Builder-generated systems.

This chapter contains the following sections: 

■ “Functional Description” on page 2–2
■ “Instantiating the Core in SOPC Builder” on page 2–3
■ “Device and Tools Support” on page 2–4
■ “Software Programming Model” on page 2–4

QII55005-7.2.0
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Functional 
Description

Figure 2–1 shows a block diagram of the CompactFlash core in a typical 
system configuration. 

Figure 2–1. SOPC Builder System With a CompactFlash Core

As shown in Figure 2–1, the CompactFlash core provides two Avalon-
MM slave interfaces: the ide slave port for accessing the registers on the 
CompactFlash device and the ctl slave port for accessing the core’s 
internal registers. These registers can be used by Avalon-MM master 
peripherals such as a Nios II processor to control the operations of the 
CompactFlash core and to transfer data to and from the CompactFlash 
device.

You can set the CompactFlash core to generate two active-high interrupt 
requests (IRQs): one signals the insertion and removal of a CompactFlash 
device and the other passes interrupt signals from the CompactFlash 
device.

The CompactFlash core maps the Avalon-MM bus signals to the 
CompactFlash device with proper timing, thus allowing Avalon-MM 
master peripherals to directly access the registers on the CompactFlash 
device.

f For more information, refer to the CF+ and CompactFlash specifications 
at www.compactflash.org.

Avalon-to-
CompactFlash

Avalon-MM
Master

(e.g. CPU)

S
ystem

 Interconnect Fabric

Altera FPGA

CompactFlash
Deviceid

e
A

va
lo

n-
M

M
 S

la
ve

 P
or

t
ct

l
A

va
lo

n-
M

M
 S

la
ve

 P
or

t

data

address

cfctl

idectl

Registers

IRQ

data

address

IRQ

www.compactflash.org


Altera Corporation  2–3
October 2007  

Instantiating the Core in SOPC Builder

Altera Corporation  2–3
October 2007

Instantiating the Core in SOPC Builder

Instantiating the 
Core in SOPC 
Builder

Use the MegaWizard® Plug-In Manager interface for the CompactFlash 
core in SOPC Builder to add the core to a system. There are no user-
configurable settings for this core.

Required 
Connections

Table 2–1 lists the required connections between the CompactFlash core 
and the CompactFlash device.

Table 2–1. Required Connections (Part 1 of 2)

CompactFlash Interface 
Signal Name Pin Type CompactFlash Pin 

Number

addr[0] Output 20

addr[1] Output 19

addr[2] Output 18

addr[3] Output 17

addr[4] Output 16

addr[5] Output 15

addr[6] Output 14

addr[7] Output 12

addr[8] Output 11

addr[9] Output 10

addr[10] Output 8

atasel_n Output 9

cs_n[0] Output 7

cs_n[1] Output 32

data[0] Input/Output 21

data[1] Input/Output 22

data[2] Input/Output 23

data[3] Input/Output 2

data[4] Input/Output 3

data[5] Input/Output 4

data[6] Input/Output 5

data[7] Input/Output 6

data[8] Input/Output 47

data[9] Input/Output 48

data[10] Input/Output 49
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Device and 
Tools Support

The CompactFlash interface core supports all Altera FPGA families. 

Software 
Programming 
Model

This section describes the software programming model for the 
CompactFlash core.

HAL System Library Support

The Altera-provided HAL API functions include a device driver that you 
can use to initialize the CompactFlash core. To perform other operations, 
use the low-level macros provided. For more information on the macros, 
refer to the files listed in the section “Software Files” on page 2–5.

data[11] Input/Output 27

data[12] Input/Output 28

data[13] Input/Output 29

data[14] Input/Output 30

data[15] Input/Output 31

detect Input 25 or 26

intrq Input 37

iord_n Output 34

iordy Input 42

iowr_n Output 35

power Output CompactFlash power 
controller, if present

reset_n Output 41

rfu Output 44

we_n Output 46

Table 2–1. Required Connections (Part 2 of 2)

CompactFlash Interface 
Signal Name Pin Type CompactFlash Pin 

Number
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Software Files

The CompactFlash core provides the following software files. These files 
define the low-level access to the hardware. Application developers 
should not modify these files.

■ altera_avalon_cf_regs.h—The header file that defines the core’s 
register maps.

■ altera_avalon_cf.h, altera_avalon_cf.c—The header and source code 
for the functions and variables required to integrate the driver into 
the HAL system library.

Register Maps

This section describes the register maps for the Avalon-MM slave 
interfaces.

Ide Registers

The ide port in the CompactFlash core allows you to access the IDE 
registers on a CompactFlash device. Table 2–2 shows the register map for 
the ide port.

Table 2–2. Ide Register Map

Offset
Register Names

Read Operation Write Operation

0 RD Data WR Data

1 Error Features

2 Sector Count Sector Count

3 Sector No Sector No

4 Cylinder Low Cylinder Low

5 Cylinder High Cylinder High

6 Select Card/Head Select Card/Head

7 Status Command

14 Alt Status Device Control
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Ctl Registers

The ctl port in the CompactFlash core provides access to the registers 
which control the core’s operation and interface. Table 2–3 shows the 
register map for the ctl port.

Cfctl Register
The cfctl register controls the operations of the CompactFlash core. 
Reading the cfctl register clears the interrupt. Table 2–4 describes the 
cfctl register bits.

Table 2–3. Ctl Register Map 

Offset Register
Fields

31..4 3 2 1 0

0 cfctl Reserved IDET RST PWR DET

1 idectl Reserved IIDE

2 Reserved Reserved

3 Reserved Reserved

Table 2–4. cfctl Register Bits

Bit Number Bit Name Read/Write Description

0 DET RO Detect. This bit is set to 1 when the 
core detects a CompactFlash 
device.

1 PWR RW Power. When this bit is set to 1, 
power is being supplied to the 
CompactFlash device.

2 RST RW Reset. When this bit is set to 1, the 
CompactFlash device is held in a 
reset state. Setting this bit to 0 
returns the device to its active state.

3 IDET RW Detect Interrupt Enable. When this 
bit is set to 1, the CompactFlash 
core generates an interrupt each 
time the value of the det bit 
changes.
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Idectl Register
The idectl register control the interface to the CompactFlash device. 
Table 2–5 describes the idectl register bit. 

Referenced 
Documents

This chapter references the Avalon Memory-Mapped Interface Specification.

Document 
Revision History

Table 2–6 shows the revision history for this chapter.

Table 2–5. idectl Register

Bit Number Bit Name Read/Write Description

0 IIDE RW IDE Interrupt Enable. When this bit 
is set to 1, the CompactFlash core 
generates an interrupt following an 
interrupt generated by the 
CompactFlash device. Setting this 
bit to 0 disables the IDE interrupt.

Table 2–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Initial release.
—

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
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3. Common Flash Interface
Controller Core

Core Overview The common flash interface controller core with Avalon® interface (CFI 
controller) allows you to easily connect SOPC Builder systems to external 
flash memory that complies with the Common Flash Interface (CFI) 
specification. The CFI controller is SOPC Builder-ready and integrates 
easily into any SOPC Builder-generated system. 

For the Nios® II processor, Altera provides hardware abstraction layer 
(HAL) driver routines for the CFI controller. The drivers provide 
universal access routines for CFI-compliant flash memories. Therefore, 
you do not need to write any additional code to program CFI-compliant 
flash devices. The HAL driver routines take advantage of the HAL 
generic device model for flash memory, which allows you to access the 
flash memory using the familiar HAL application programming interface 
(API) and/or the ANSI C standard library functions for file I/O. For 
details about how to read and write flash using the HAL API, refer to the 
Nios II Software Developer’s Handbook.

The Nios II Embedded Design Suite (EDS) provides a flash programmer 
utility based on the Nios II processor and the CFI controller. The flash 
programmer utility can be used to program any CFI-compliant flash 
memory connected to an Altera® FPGA. For details, refer to the Nios II 
Flash Programmer User Guide. 

Further information about the Common Flash Interface specification is 
available at www.intel.com/design/flash/swb/cfi.htm. As an example of 
a flash device supported by the CFI controller, see the data sheet for the 
AMD Am29LV065D-120R, available at www.amd.com.

The common flash interface controller core supersedes previous Altera 
flash cores distributed with SOPC Builder or Nios development kits. All 
flash chips associated with these previous cores comply with the CFI 
specification, and therefore are supported by the CFI controller.

This chapter contains the following sections:

■ “Functional Description” on page 3–2
■ “Device and Tools Support” on page 3–2
■ “Instantiating the Core in SOPC Builder” on page 3–3
■ “Software Programming Model” on page 3–4

NII51013-7.2.0
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Functional 
Description

Figure 3–1 shows a block diagram of the CFI controller in a typical system 
configuration. As shown in Figure 3–1, the Avalon Memory-Mapped 
(Avalon-MM) interface for flash devices is connected through an 
Avalon-MM tristate bridge. The tristate bridge creates an off-chip 
memory bus that allows the flash chip to share address and data pins 
with other memory chips. It provides separate chipselect, read, and write 
pins to each chip connected to the memory bus. The CFI controller 
hardware is minimal: It is simply an Avalon-MM tristate slave port 
configured with waitstates, setup, and hold time appropriate for the 
target flash chip. This slave port is capable of Avalon-MM tristate slave 
read and write transfers. 

Figure 3–1. An SOPC Builder System Integrating a CFI Controller

Avalon-MM master ports can perform read transfers directly from the 
CFI controller’s Avalon-MM port. See “Software Programming Model” 
on page 3–4 for more detail on writing/erasing flash memory.

Device and 
Tools Support

The CFI controller supports the Arria™ GX, Stratix® III, Stratix II GX, 
Stratix II, Stratix GX, Stratix, Cyclone® III, Cyclone II, and Cyclone device 
families. The CFI controller provides drivers for the Nios II HAL system 
library. No software support is provided for the first-generation Nios 
processor. 
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Instantiating the 
Core in SOPC 
Builder

Hardware designers use the MegaWizard® interface for the CFI 
controller in SOPC Builder to specify the core features. The following 
sections describe the available options in the MegaWizard interface.

Attributes Page

The options on this page control the basic hardware configuration of the 
CFI controller. 

Presets Settings

The Presets setting is a drop-down menu of flash chips that have already 
been characterized for use with the CFI controller. After you select one of 
the chips in the Presets menu, the wizard updates all settings on both tabs 
(except for the Board Info setting) to work with the specified flash chip. 

If the flash chip on your target board does not appear in the Presets list, 
you must configure the other settings manually. 

Size Settings

The size setting specifies the size of the flash device. There are two 
settings:

■ Address Width—The width of the flash chip’s address bus.
■ Data Width—The width of the flash chip’s data bus

The size settings cause SOPC Builder to allocate the correct amount of 
address space for this device. SOPC Builder will automatically generate 
dynamic bus sizing logic that appropriately connects the flash chip to 
Avalon-MM master ports of different data widths. Refer to the Avalon 
Memory-Mapped Interface Specification for details about dynamic bus 
sizing. 

Timing Page

The options on this page specify the timing requirements for read and 
write transfers with the flash device. The settings available on the Timing 
page are: 

■ Setup—After asserting chipselect, the time required before 
asserting the read or write signals.

■ Wait—The time required for the read or write signals to be 
asserted for each transfer.

■ Hold—After deasserting the write signal, the time required before 
deasserting the chipselect signal.
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■ Units—The timing units used for the Setup, Wait, and Hold values. 
Possible values include ns, us, ms, and clock cycles.

f For more information about signal timing for the Avalon-MM interface, 
refer to the Avalon Memory-Mapped Interface Specification.

Software 
Programming 
Model

This section describes the software programming model for the CFI 
controller. In general, any Avalon-MM master in the system can read the 
flash chip directly as a memory device. For Nios II processor users, Altera 
provides HAL system library drivers that enable you to erase and write 
the flash memory using the HAL API functions. 

HAL System Library Support

The Altera-provided driver implements a HAL flash device driver that 
integrates into the HAL system library for Nios II systems. Programs call 
the familiar HAL API functions to program CFI-compliant flash memory. 
You do not need to know anything about the details of the underlying 
drivers. 

f The HAL API for programming flash, including C code examples, is 
described in detail in the Nios II Software Developer’s Handbook. The 
Nios II EDS also provides a reference design called Flash Tests that 
demonstrates erasing, writing, and reading flash memory. 

Limitations

Currently, the Altera-provided drivers for the CFI controller support 
only AMD and Intel flash chips.

Software Files

The CFI controller provides the following software files. These files 
define the low-level access to the hardware, and provide the routines for 
the HAL flash device driver. Application developers should not modify 
these files.

■ altera_avalon_cfi_flash.h, altera_avalon_cfi_flash.c—The header 
and source code for the functions and variables required to integrate 
the driver into the HAL system library.

■ altera_avalon_cfi_flash_funcs.h, altera_avalon_cfi_flash_table.c—
The header and source code for functions concerned with accessing 
the CFI table. 

■ altera_avalon_cfi_flash_amd_funcs.h, 
altera_avalon_cfi_flash_amd.c—The header and source code for 
programming AMD CFI-compliant flash chips.
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■ altera_avalon_cfi_flash_intel_funcs.h, 
altera_avalon_cfi_flash_intel.c—The header and source code for 
programming Intel CFI-compliant flash chips.

Referenced 
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ Nios II Software Developer’s Handbook

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
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Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

No change from previous release. —

May 2007
v7.1.0

● Added Arria™ GX, Stratix II GX and Stratix GX to 
“Device and Tools Support” on page 3–2.

● Removed Board Info section from MegaWizard interface 
because it is no longer included with the device in 7.1.

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

Added Cyclone III support. Version 7.0 of the Quartus II 
software added Cyclone III 
support. 

November 2006
v6.1.0

● Updated Avalon terminology because of changes to 
Avalon technologies

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon 
Memory-Mapped interface” 

● Added support for Stratix III devices

For the 6.1 release, added 
Stratix III device support. 
Additionally, Altera released 
the Avalon Streaming 
interface,  which necessitated 
some rephrasing of existing 
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook. —

December 2004
v1.2

Added Cyclone II support. 
—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—
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4. EPCS Device Controller
Core

Core Overview The EPCS device controller core with Avalon® interface allows Nios® II 
systems to access an Altera® EPCS serial configuration device. Altera 
provides drivers that integrate into the Nios II hardware abstraction layer 
(HAL) system library, allowing you to read and write the EPCS device 
using the familiar HAL application program interface (API) for flash 
devices. 

Using the EPCS controller, Nios II systems can:

■ Store program code in the EPCS device. The EPCS controller 
provides a boot-loader feature that allows Nios II systems to store 
the main program code in an EPCS device.

■ Store nonvolatile program data, such as a serial number, a NIC 
number, and other persistent data. 

■ Manage the FPGA configuration data. For example, a 
network-enabled embedded system can receive new FPGA 
configuration data over a network, and use the EPCS controller to 
program the new data into an EPCS serial configuration device. 

The EPCS controller is SOPC Builder-ready and integrates easily into any 
SOPC Builder-generated system. The flash programmer utility in the 
Nios II IDE allows you to manage and program data contents into the 
EPCS device.

f For information about the EPCS serial configuration device family, refer 
to the Serial Configuration Devices (EPCS1 & EPCS4) Data Sheet. For 
details about using the Nios II HAL API to read and write flash memory, 
refer to the Nios II Software Developer’s Handbook. For details about 
managing and programming the EPCS memory contents, refer to the 
Nios II Flash Programmer User Guide.

1 For Nios II processor users, the EPCS controller core supersedes 
the Active Serial Memory Interface (ASMI) device. New designs 
should use the EPCS controller instead of the ASMI core.

NII51012-7.2.0
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Functional 
Description

Figure 4–1 shows a block diagram of the EPCS controller in a typical 
system configuration. As shown in Figure 4–1, the EPCS device’s 
memory can be thought of as two separate regions:

■ FPGA configuration memory—FPGA configuration data is stored in 
this region.

■ General-purpose memory—If the FPGA configuration data does not fill 
up the entire EPCS device, any left-over space can be used for 
general-purpose data and system startup code. 

Figure 4–1. Nios II System Integrating an EPCS Controller

By virtue of the HAL generic device model for flash devices, accessing the 
EPCS device using the HAL API is the same as accessing any flash 
memory. The EPCS device has a special-purpose hardware interface, so 
Nios II programs must read and write the EPCS memory using the 
provided HAL flash drivers.

The EPCS controller core contains an on-chip memory for storing a 
boot-loader program. When used in conjunction with Cyclone®, 
Cyclone II, and Cyclone III devices, the core requires 512 bytes of 
boot-loader ROM. For Stratix® II and Stratix III devices, the core requires 
1 Kbyte of boot-loader ROM. The Nios II processor can be configured to 
boot from the EPCS controller. To do so, set the Nios II reset address to the 
base address of the EPCS controller. In this case, after reset the CPU first 
executes code from the boot-loader ROM, which copies data from the 
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EPCS general-purpose memory region into a RAM. Then, program 
control transfers to the RAM. The Nios II IDE provides facilities to 
compile a program for storage in the EPCS device, and create a 
programming file to program into the EPCS device. 

f Refer to the Nios II Flash Programmer User Guide. 

The Altera EPCS configuration device connects to the FPGA through 
dedicated pins on the FPGA, not through general-purpose I/O pins. In all 
Altera device families except Cyclone III, the EPCS controller core does 
not create any I/O ports on the top-level SOPC Builder system module. If 
the EPCS device and the FPGA are wired together on a board for 
configuration using the EPCS device (in other words, active serial 
configuration mode), no further connection is necessary between the 
EPCS controller and the EPCS device. When you compile the SOPC 
Builder system in the Quartus II software, the EPCS controller core 
signals are routed automatically to the device pins for the EPCS device. 

1 If you program the EPCS device using the Quartus® II 
Programmer, all previous content is erased. To program the 
EPCS device with a combination of FPGA configuration data 
and Nios II program data, use the Nios II IDE flash programmer 
utility.

In Cyclone III, the EPCS controller does not automatically assign its 
output pins to the dedicated configuration pins on the FPGA. Instead, the 
output pins are exported to the top level design, giving users the 
flexibility to connect to any EPCS devices. For more information on the 
configuration pins in Cyclone III, refer to the Pin-Out Files for Altera 
Device page.

Avalon-MM Slave Interface and Registers

The EPCS controller core has a single Avalon-MM slave interface that 
provides access to both boot-loader code and registers that control the 
core. As shown in Table 4–1 on page 4–4, the first 256 words are dedicated 
to the boot-loader code, and the next seven words are control and data 
registers. A Nios II CPU can read 256 instruction words, starting from the 
EPCS controller’s base address as flat memory space, which enables the 
CPU to reset into the EPCS controller’s address space.

The EPCS controller core includes an interrupt signal that can be used to 
interrupt the CPU when a transfer has completed.

http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y
http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y
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Device and 
Tools Support

The EPCS controller supports all Altera FPGA families that support the 
EPCS configuration device, such as the Cyclone device family. The EPCS 
controller must be connected to a Nios II processor. The core provides 
drivers for HAL-based Nios II systems, and the precompiled boot loader 
code compatible with the Nios II processor. No software support is 
provided for any other processor, including the first-generation Nios. 

Instantiating the 
Core in SOPC 
Builder

Hardware designers use the EPCS controller’s SOPC Builder 
configuration wizard to add the EPCS controller to a system. There are no 
user-configurable settings for this component.

Only one EPCS controller can be instantiated in each FPGA design. 

Software 
Programming 
Model

This section describes the software programming model for the EPCS 
controller. Altera provides HAL system library drivers that enable you to 
erase and write the EPCS memory using the HAL API functions. Altera 
does not publish the usage of the cores registers. Therefore, you must use 
the HAL drivers provided by Altera to access the EPCS device.

Table 4–1. EPCS Controller Register Map 

Offset Register Name R/W
Bit Description

31...0

0×000

Boot ROM Memory R Boot Loader Code...

0×0FF

0×100 Read Data R (1)

0×101 Write Data W (1)

0×102 Status R/W (1)

0×103 Control R/W (1)

0×104 Reserved — (1)

0×105 Slave Enable R/W (1)

0×106 End of Packet R/W (1)

Note to Table 4–1:
(1) Altera does not publish the usage of the control and data registers. To access the EPCS device, you must use the 

HAL drivers provided by Altera.
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HAL System Library Support

The Altera-provided driver implements a HAL flash device driver that 
integrates into the HAL system library for Nios II systems. Programs call 
the familiar HAL API functions to program the EPCS memory. You do not 
need to know the details of the underlying drivers to use them. 

f The HAL API for programming flash, including C-code examples, is 
described in detail in the Nios II Software Developer’s Handbook. For details 
about managing and programming the EPCS device contents, refer to 
the Nios II Flash Programmer User Guide.

Software Files

The EPCS controller provides the following software files. These files 
provide low-level access to the hardware and drivers that integrate into 
the Nios II HAL system library. Application developers should not 
modify these files.

■ altera_avalon_epcs_flash_controller.h, 
altera_avalon_epcs_flash_controller.c—Header and source files 
that define the drivers required for integration into the HAL system 
library.

■ epcs_commands.h, epcs_commands.c—Header and source files 
that directly control the EPCS device hardware to read and write the 
device. These files also rely on the Altera SPI core drivers.
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Table 4–2 shows the revision history for this chapter.

Table 4–2. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 4 was formerly Chapter 3.
● Added sentence stating that to boot from EPCS controller 

memory set Nios II reset address to the base address of the 
EPCS controller.

● Added description on output pins assignment for Cyclone III in 
the Functional Description section.

—

May 2007
v7.1.0

● Removed text about reference designator from section on the 
configuration wizard because this setting is no longer 
available.

● Added sentence describing the purpose of the interrupt 
signal.

Version 7.1 updates 
text for changes in the 
parameter sheets and 
to clarify use of the 
interrupt signal.

March 2007
v7.0.0

Added Cyclone III support. Version 7.0 of the 
Quartus II software 
added Cyclone III 
support. 

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies. Changed old “Avalon interface” terms to “Avalon 
Memory-Mapped interface”

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric”

● Added ROM memory requirements for Cyclone, Cyclone II 
and Stratix II devices in section “Functional Description” on 
page 3–2

● Added Stratix III device support

For the 6.1 release, 
added Stratix II 
support. Additionally, 
Altera released the 
Avalon Streaming 
interface, which 
necessitated some 
rephrasing of existing 
Avalon terminology. 
Other changes to the 
document serve only to 
clarify existing 
behavior.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release. 
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook. —

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—



Altera Corporation   5–1
October 2007  

5. On-Chip FIFO Memory
Core

Core Overview The on-chip FIFO memory core is a configurable component used to 
buffer data and provide flow control in an SOPC Builder system. The 
FIFO can operate with a single clock or with separate clocks for the input 
and output ports. 

The input interface to the FIFO may be an Avalon® Memory Mapped 
(Avalon-MM) write slave or an Avalon Streaming (Avalon-ST) sink. The 
output interface can be a an Avalon-ST source or an Avalon-MM read 
slave. The data is delivered to the output interface in the same order that 
it was received at the input interface, regardless of the value of channel, 
packet, frame, or any other signals.

In single clock mode, the on-chip FIFO memory includes an optional 
status interface that provides information about the fill-level of the FIFO. 
In dual clock mode, separate, optional status interfaces can be included 
for the input and output interfaces. The status interface also includes 
registers to set and control interrupts. 

The on-chip FIFO memory core is SOPC Builder-ready and integrates 
easily into any SOPC Builder-generated system. Device drivers are 
provided in the HAL system library allowing software to access the core 
using ANSI C.

This chapter contains the following sections:

■ “Functional Description”
■ “Device and Tools Support” on page 5–7
■ “Instantiating the Core in SOPC Builder” on page 5–7
■ “Software Programming Model” on page 5–9
■ “Programming with the On-Chip FIFO Memory” on page 5–10
■ “On-Chip FIFO Memory API” on page 5–17

Functional 
Description

The on-chip FIFO memory has four configurations:

■ Avalon-MM write slave to Avalon-MM read slave
■ Avalon-ST sink to Avalon-ST source
■ Avalon-MM write slave to Avalon-ST source
■ Avalon-ST sink to Avalon-MM read slave

QII55002-7.2.0
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In all configurations, the input and output interfaces can use the optional 
backpressure signals to prevent underflow and overflow conditions. For 
the Avalon-MM interface, backpressure is implemented using the 
waitrequest signal. For Avalon-ST interfaces, backpressure is 
implemented using the ready and valid signals. For the on-chip FIFO 
memory, the delay between the sink asserts ready and the source drives 
valid data is one cycle. Bursting to a FIFO is not supported.

Avalon-MM Write Slave to Avalon-MM Read Slave

In this mode, the FIFO’s input is a zero-address-width Avalon-MM write 
slave. An Avalon-MM write master pushes data into the FIFO by writing 
to the input interface, and a read master (possibly the same master) pops 
data by reading from its output interface. The FIFO’s input and output 
data must be the same width.

If Allow backpressure is turned on, the waitrequest signal is asserted 
whenever the data_in master tries to write to a full FIFO. 
waitrequest is only deasserted when there is enough space in the FIFO 
for a new transaction to complete. waitrequest is asserted for read 
operations when there is no data to be read from the FIFO, and is 
deasserted when the FIFO has data. 

Figure 5–1. FIFO with Avalon-MM Input and Output Interfaces

Avalon-ST Sink to Avalon-ST Source

This FIFO has streaming input and output interfaces as illustrated in 
Figure 5–2. You can parameterize most aspects of the Avalon-ST 
interfaces including the bits per symbol, symbols per beat, and the width 
of error and channel signals. The input and output interfaces must be 
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the same width. If Allow backpressure is on in the SOPC Builder 
MegaWizard, both interfaces use the ready and valid signals to 
indicate when space is available in the FIFO and when valid data is 
available. 

f For more information about the Avalon-ST interface protocol, refer to 
the Avalon Streaming Interface Specification available at www.altera.com.

Figure 5–2. FIFO with Avalon-ST Input and Output Interfaces

Avalon-MM Write Slave to Avalon-ST Source

In this mode, the FIFO’s input is an Avalon-MM write slave with a width 
of 32 bits as shown in Figure 5–3. The Avalon-ST output (source) data 
width must also be 32 bits. You can configure output interface 
parameters, including: bits per symbol, symbols per beat, and the width 
of the channel and error signals. The FIFO performs the endian 
conversion to conform to the output interface protocol.

The signals that comprise this interface are mapped into bits in the 
Avalon’s address space. If Allow backpressure is on, the input interface 
asserts waitrequest to indicate that the FIFO does not have enough 
space for the transaction to complete.
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Figure 5–3. FIFO with Avalon-MM Input Interface and Avalon-ST Output 
Interface

The example memory map in Table 5–1 illustrates the layout of memory 
for a FIFO with a 32-bit Avalon-MM input interface and an Avalon-ST 
output interface. The output interface has 8-bit symbols, a 5-bit channel 
signal, and a 3-bit error signal, with packet support.

If Enable packet data is off, the Avalon-MM write master writes all data 
at address offset 0 repeatedly to push data into the FIFO.

If Enable packet data is on, the Avalon-MM write master starts by 
writing the SOP, error (optional), channel (optional), EOP, and empty 
packet status information at address offset 1. Writing to address offset 1 
does not push data into the FIFO. The Avalon-MM master then writes 
packet data to the FIFO repeatedly at address offset 0, pushing 8-bit 
symbols into the FIFO. Whenever a valid write occurs at address offset 0, 
the data and its respective packet information is pushed into the FIFO. 
Subsequent data is written at address offset 0 without the need to clear 
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Table 5–1.  Avalon-MM to Avalon-ST Memory Map 
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base + 0 Symbol 3 Symbol 2 Symbol 1 Symbol 0

base + 1 reserved reserved error resrvd. channel reserved empty
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the SOP. Rewriting to address offset 1 is not required each time if the 
subsequent data to be pushed into the FIFO is not the end-of-packet data, 
as long as error and channel do not change. 

At the end of each packet, the Avalon-MM master writes to the address 
at offset 1 to set the EOP bit to 1, before writing the last symbol of the 
packet at offset 0. The write master uses the empty field to indicate the 
number of unused symbols at the end of the transfer. If the last packet 
data is not aligned with the symbols per beat, then the empty field 
indicates the number of empty symbols in the last packet data. For 
example, if the Avalon-ST interface has symbols-per-beat of 4, and the 
last packet only has 3 symbols, then the empty field will be 1, indicating 
that one symbol (the least significant symbol in the memory map) is 
empty.

Avalon-ST Sink to Avalon-MM Read Slave

In this mode, the FIFO’s input is an Avalon-ST sink and the output is an 
Avalon-MM read slave with a width of 32 bits (Figure 5–4). The 
Avalon-ST input (sink) data width must also be 32 bits. You can configure 
input interface parameters, including: bits per symbol, symbols per beat, 
and the width of the channel and error signals. The FIFO performs the 
endian conversion to conform to the output interface protocol.

An Avalon-MM master reads the data from the FIFO. The signals are 
mapped into bits in the Avalon's address space. If Allow backpressure is 
on in the SOPC Builder MegaWizard, the input (sink) interface uses the 
ready and valid signals to indicate when space is available in the FIFO 
and when valid data is available. For the output interface, waitrequest 
is asserted for read operations when there is no data to be read from the 
FIFO. It is deasserted when the FIFO has data to send.
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Figure 5–4. FIFO with Avalon-ST Input and Avalon-MM Output

As shown in Table 5–2, the memory map for the Avalon-ST to 
Avalon-MM slave FIFO is exactly the same as for Avalon-MM to 
Avalon-ST FIFO.

If Enable packet data is off, read data repeatedly at address offset 0 to 
pop the data from the FIFO.

If Enable packet data is on, the Avalon-MM read master starts reading 
from address offset 0. If the read is valid, that is, the FIFO is not empty, 
both data and packet status information are popped from the FIFO. The 
packet status information is obtained by reading at address offset 1. 
Reading from address offset 1 does not pop data from the FIFO. The 
error, channel, SOP, EOP and empty fields are available at address 
offset 1 to determine the status of the packet data read from address offset 
0.
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The empty field indicates the number of empty symbols in the data field. 
For example, if the Avalon-ST interface has symbols-per-beat of 4, and the 
last packet data only has 1 symbol, then the empty field will be 3 to 
indicate that 3 symbols (the 3 least significant symbols in the memory 
map) are empty.

Status Interfaces

The FIFO provides two optional status interfaces, one for the master 
writing to the input interface and a second for the read master reading 
from the output interface. For FIFOs that operate in a single domain, a 
single status interface is sufficient to monitor the status of the FIFO. For 
FIFOs using a dual clocking scheme, a second status interface using the 
output clock is necessary to accurately monitor the status of the FIFO in 
both clock domains. 

Clocking Modes

When single clock mode is used, the FIFO being used is SCFIFO. When 
dual-clock mode is chosen, the FIFO being used is DCFIFO. In dual-clock 
mode, input data and write-side status interfaces use the write side clock 
domain; the output data and read-side status interfaces use the read-side 
clock domain.

Device and 
Tools Support

The on-chip FIFO memory supports the Arria™ GX, Stratix® III, 
Stratix II GX, Stratix II, Stratix GX, Stratix, Cyclone® III, Cyclone II, 
Cyclone and Hardcopy® II device families. 

Instantiating the 
Core in SOPC 
Builder

Designers use the MegaWizard® interface for the on-chip FIFO memory 
in SOPC Builder to specify the core configuration. The following sections 
describe the available options in the MegaWizard interface.

FIFO Settings

The following sections outline the settings that pertain to the FIFO as a 
whole.

Depth 

Depth indicates the depth of the FIFO, in Avalon-ST beats or Avalon-MM 
words. The default depth is 16. When dual clock mode is used, the actual 
FIFO depth is equal to depth-3. This is due to clock crossing and to avoid 
FIFO overflow.
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Clock Settings

The two options are Single clock mode and Dual clock mode. In single 
clock mode, all interface ports use the same clock. In dual clock mode, 
input data and input side status are on the input clock domain. Output 
data and output side status are on the output clock domain.

Status Port

The optional status ports are Avalon-MM slaves. To include the optional 
input side status interface, turn on Create status interface for input on 
the SOPC Builder MegaWizard. For FIFOs whose input and output ports 
operate in separate clock domains, you can include a second status 
interface by turning on Create status interface for output. Turning on 
Enable IRQ for status ports adds an interrupt signal to the status ports.

FIFO Implementation

This option determines if the FIFO is built from registers or embedded 
memory blocks. The default is to construct the FIFO from embedded 
memory blocks. 

Interface Parameters

The following sections outline the options for the input and output 
interfaces.

Input

Available input interfaces are Avalon-MM write slave and Avalon-ST 
sink.

Output

Available output interfaces are Avalon-MM read slave and Avalon-ST 
source.

Allow Backpressure

When Allow backpressure is on, an Avalon-MM interface will include 
the waitrequest signal which is asserted to prevent a master from 
writing to a full FIFO or reading from an empty FIFO. An Avalon-ST 
interface will include the ready and valid signals to prevent underflow 
and overflow conditions.
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Avalon-MM Port Settings

Valid Data widths are 8, 16, and 32 bits.

If Avalon-MM is selected for one interface and Avalon-ST for the other, 
the data width is fixed at 32 bits.

The Avalon-MM interface accesses data 4 bytes at a time. For data widths 
other than 32 bits, be cautious of potential overflow and underflow 
conditions.

Avalon-ST Port Settings

The following parameters allow you to specify the size and error 
handling of the Avalon-ST port or ports:

● Bits per symbol 
● Symbols per beat 
● Channel width 
● Error width

If the symbol size is not a power of two, it is rounded up to the next power 
of two. For example, if the bits per symbol is 10, the symbol will be 
mapped to a 16-bit memory location. With 10-bit symbols, the maximum 
number of symbols per beat is two.

Enable packet data provides an option for packet transmission.

Software 
Programming 
Model

The following sections describe the software programming model for the 
on-chip FIFO memory core, including the register map and software 
declarations to access the hardware. For Nios II processor users, Altera 
provides HAL system library drivers that enable you to access the 
on-chip FIFO memory core using its HAL API. 

HAL System Library Support

The Altera-provided driver implements a HAL device driver that 
integrates into the HAL system library for Nios II systems. HAL users 
should access the on-chip FIFO memory via the familiar HAL API, rather 
than accessing the registers directly. 
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Software Files

Altera provides the following software files for the on-chip FIFO memory 
core:  

■ altera_avalon_fifo_regs.h—This file defines the core’s register map, 
providing symbolic constants to access the low-level hardware. 

■ altera_avalon_fifo_util.h—This file defines functions to access the 
on-chip FIFO memory core hardware. It provides utilities to 
initialize the FIFO, read and write status, enable flags and read 
events.

■ altera_avalon_fifo.h— This file provides the public interface to the 
on-chip FIFO memory

■ altera_avalon_fifo_util.c—This file implements the utilities 
listed in altera_avalon_fifo_util.h.

Programming 
with the On-Chip 
FIFO Memory

This section describes the low-level software constructs for manipulating 
the on-chip FIFO memory core hardware. Table 5–3 lists all of the 
available functions. 

Table 5–3. On-Chip FIFO Memory Functions (Part 1 of 2)

Function Name Description

altera_avalon_fifo_init() Initializes the FIFO.

altera_avalon_fifo_read_status() Returns the integer value of the specified bit of the 
status register. To read all of the bits at once, use the 
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_ienable() Returns the value of the specified bit of the interrupt 
enable register. To read all of the bits at once, use the 
ALTERA_AVALON_FIFO_EVENT_ALL mask.

altera_avalon_fifo_read_almostfull() Returns the value of the almostfull register.

altera_avalon_fifo_read_almostempty() Returns the value of the almostempty register.

altera_avalon_fifo_read_event() Returns the value of the specified bit of the event 
register. All of the event bits can be read at once by 
using the ALTERA_AVALON_FIFO_STATUS_ALL 
mask.

altera_avalon_fifo_read_level() Returns the fill level of the FIFO.

altera_avalon_fifo_clear_event() Clears the specified bits and the event register and 
performs error checking.

altera_avalon_fifo_write_ienable() Writes the specified bits of the interruptenable 
register and performs error checking.



Altera Corporation  5–11
October 2007

On-Chip FIFO Memory Core

Software Control

Table 5–4 provides the register map for the status register. The layout of 
status register for the input and output interfaces is identical. 

Table 5–5 outlines the use of the various fields of the status register.

altera_avalon_fifo_write_almostfull() Writes the specified value to the almostfull 
register and performs error checking.

altera_avalon_fifo_write_almostempty() Writes the specified value to the almostempty 
register and performs error checking.

altera_avalon_fifo_write_fifo() Writes the specified data to the write_address.

altera_avalon_fifo_write_other_info() Writes the packet status information to the 
write_address. Only valid when Enable packet 
data is on.

altera_avalon_fifo_read_fifo() Reads data from the specified read_address.

altera_avalon_fifo_read__other_info() Reads the packet status information from the 
specified read_address. Only valid when Enable 
packet data is on.

Table 5–3. On-Chip FIFO Memory Functions (Part 2 of 2)

Function Name Description

Table 5–4. FIFO Status Register Memory Map

offset 31 24 23 16 15 8 7 6 5 4 3 2 1 0

base fill_level

base + 1 i_status

base + 2 event

base + 3 interruptenable

base + 4 almostfull

base + 5 almostempty

Table 5–5.  FIFO Status Field Descriptions (Part 1 of 2)

Field Type Description

fill_level RO The instantaneous fill level of the FIFO, provided in units of symbols for a FIFO 
with an Avalon-ST FIFO and words for an Avalon-MM FIFO.

i_status RO A 6-bit register that shows the FIFO’s instantaneous status. See Table 5–6 for the 
meaning of each bit field.
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Table 5–6 describes the instantaneous status bits. 

event RW1C A 6-bit register with exactly the same fields as i_status. When a bit in the 
i_status register is set, the same bit in the event register is set. The bit in the 
event register is only cleared when software writes a 1 to that bit.

interruptenable RW A 6-bit interrupt enable register with exactly the same fields as the event and 
i_status registers. When a bit in the event register transitions from a 0 to a 
1, and the corresponding bit in interruptenable is set, the master Is 
interrupted.

almostfull RW A threshold level used for interrupts and status. Can be written by the Avalon-MM 
status master at any time. The default threshold value for DCFIFO is Depth-4. 
The default threshold value for SCFIFO is Depth-1. The valid range of the 
threshold value is from 1 to the default. 1 will be used when attempting to write a 
value smaller than 1. The default will be used when attempting to write a value 
larger than the default.

almostempty RW A threshold level used for interrupts and status. Can be written by the Avalon-MM 
status master at any time. The default threshold value for DCFIFO is 1. The 
default threshold value for SCFIFO is 1. The valid range of the threshold value is 
from 1 to the maximum allowable almostfull threshold. 1 will be used when 
attempting to write a value smaller than 1. The maximum allowable will be used 
when attempting to write a value larger than the maximum allowable.

Table 5–5.  FIFO Status Field Descriptions (Part 2 of 2)

Field Type Description

Table 5–6. Status Bit Field Descriptions

Bit(s) Name Description

1 FULL Has a value of 1 if the FIFO is currently full.

0 EMPTY Has a value of 1 if the FIFO is currently empty.

3 ALMOSTFULL Has a value of 1 if the fill level of the FIFO is greater than 
the almostfull value.

2 ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO is less than 
the almostempty value.

4 OVERFLOW Is set to 1 for 1 cycle every time the FIFO overflows. The 
FIFO overflows when an Avalon write master writes to a 
full FIFO. OVERFLOW is only valid when Allow 
backpressure is off.

5 UNDERFLOW Is set to 1 for 1 cycle every time the FIFO underflows. 
The FIFO underflows when an Avalon read master 
reads from an empty FIFO. UNDERFLOW is only valid 
when Allow backpressure is off.
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Table 5–7 lists the bit fields of the event register. These fields are identical 
to those in the status register and are set at the same time; however, 
these fields are only cleared when software writes a one to clear (W1C). 
The event fields can be used to determine if a particular event has 
occurred. 

Table 5–8 provides a mask for the six STATUS fields. When a bit in the 
event register transitions from a zero to a one, and the corresponding 
bit in the interruptenable register is set, the master is interrupted. 

Table 5–7. Event Bit Field Descriptions

Bit(s) Name Description

1 E_FULL Has a value of 1 if the FIFO has been full and the bit has 
not been cleared by software.

0 E_EMPTY Has a value of 1 if the FIFO has been empty and the bit 
has not been cleared by software.

3 E_ALMOSTFULL Has a value of 1 if the fill level of the FIFO has been 
greater than the almostfull threshold value and the 
bit has not been cleared by software.

2 E_ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO has been less 
than the almostempty value and the bit has not been 
cleared by software.

4 E_OVERFLOW Has a value of 1 if the FIFO has overflowed and the bit 
has not been cleared by software. 

5 E_UNDERFLOW Has a value of 1 if the FIFO has underflowed and the bit 
has not been cleared by software. 

Table 5–8. InterruptEnable Bit Field Descriptions (Part 1 of 2)

Bit(s) Name Description

1 IE_FULL Enables an interrupt if the FIFO is currently full.

0 IE_EMPTY Enables an interrupt if the FIFO is currently empty.

3 IE_ALMOSTFULL Enables an interrupt if the fill level of the FIFO is greater 
than the value of the almostfull register.

2 IE_ALMOSTEMPTY Enables an interrupt if the fill level of the FIFO is less 
than the value of the almostempty register.

4 IE_OVERFLOW Enables an interrupt if the FIFO overflows. The FIFO 
overflows when an Avalon write master writes to a full 
FIFO.



5–14  Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Macros to access all of the registers are defined in 
altera_avalon_fifo_regs.h. For example, this file includes the following 
macros to access the status register.

#define ALTERA_AVALON_FIFO_LEVEL_REG 0
#define ALTERA_AVALON_FIFO_STATUS_REG 1
#define ALTERA_AVALON_FIFO_EVENT_REG 2
#define ALTERA_AVALON_FIFO_IENABLE_REG 3
#define ALTERA_AVALON_FIFO_ALMOSTFULL_REG 4
#define ALTERA_AVALON_FIFO_ALMOSTEMPTY_REG 5

f For a complete list of predefined macros and utilities to access the 
on-chip FIFO hardware, see: 
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo
\HAL\inc\alatera_avalon_fifo.h and 
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo
\HAL\inc\alatera_avalon_fifo_util.h.

Software Example

An extensive programming example for the on-chip FIFO memory 
appears next to this document on the Quartus II literature page. Visit 
www.altera.com/literature/quartus2/lit-qts-peripherals.jsp.

5 IE_UNDERFLOW Enables an interrupt is the FIFO underflows. The FIFO 
underflows when an Avalon read master reads from an 
empty FIFO.

6 ALL Enables all 6 status conditions to interrupt.

Table 5–8. InterruptEnable Bit Field Descriptions (Part 2 of 2)

Bit(s) Name Description



Altera Corporation  5–15
October 2007

On-Chip FIFO Memory Core

Example 5–1. Sample Code for the On-Chip FIFO Memory
/***********************************************************************/
//Includes
#include "altera_avalon_fifo_regs.h"
#include "altera_avalon_fifo_util.h"
#include "system.h"
#include "sys/alt_irq.h"
#include <stdio.h>
#include <stdlib.h>

#define ALMOST_EMPTY 2 
#define ALMOST_FULL OUTPUT_FIFO_OUT_FIFO_DEPTH-5

volatile int input_fifo_wrclk_irq_event;
    
void print_status(alt_u32 control_base_address)
{
    printf("--------------------------------------\n");
    printf("LEVEL = %u\n", 
altera_avalon_fifo_read_level(control_base_address) );
    printf("STATUS = %u\n", 
altera_avalon_fifo_read_status(control_base_address, 
ALTERA_AVALON_FIFO_STATUS_ALL) );
    printf("EVENT = %u\n", 
altera_avalon_fifo_read_event(control_base_address, 
ALTERA_AVALON_FIFO_EVENT_ALL) );
    printf("IENABLE = %u\n", 
altera_avalon_fifo_read_ienable(control_base_address, 
ALTERA_AVALON_FIFO_IENABLE_ALL) ); 
    printf("ALMOSTEMPTY = %u\n", 
altera_avalon_fifo_read_almostempty(control_base_address) );
    printf("ALMOSTFULL = %u\n\n", 
altera_avalon_fifo_read_almostfull(control_base_address));
}

static void handle_input_fifo_wrclk_interrupts(void* context, alt_u32 id)
{
    /* Cast context to input_fifo_wrclk_irq_event's type. It is important
     * to declare this volatile to avoid unwanted compiler optimization.
     */
    volatile int* input_fifo_wrclk_irq_event_ptr = (volatile int*) context;

    /* Store the value in the FIFO's irq history register in *context. */
    *input_fifo_wrclk_irq_event_ptr = 
altera_avalon_fifo_read_event(INPUT_FIFO_IN_CSR_BASE, 
ALTERA_AVALON_FIFO_EVENT_ALL);
    printf("Interrupt Occurs for %#x\n", INPUT_FIFO_IN_CSR_BASE);
    print_status(INPUT_FIFO_IN_CSR_BASE);

    /* Reset the FIFO's IRQ History register. */
    altera_avalon_fifo_clear_event(INPUT_FIFO_IN_CSR_BASE, 
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ALTERA_AVALON_FIFO_EVENT_ALL);
}
    
/* Initialize the fifo */
static int init_input_fifo_wrclk_control()
{
    int return_code = ALTERA_AVALON_FIFO_OK;
        
    /* Recast the IRQ History pointer to match the alt_irq_register() 
function
     * prototype. */
    void* input_fifo_wrclk_irq_event_ptr = (void*) 
&input_fifo_wrclk_irq_event;
    /* Enable all interrupts. */
  
    /* Clear event register, set enable all irq, set almostempty and 
almostfull threshold */
    return_code = altera_avalon_fifo_init(INPUT_FIFO_IN_CSR_BASE,
                                          0, // Disabled interrupts
                                          ALMOST_EMPTY,
                                          ALMOST_FULL);
    
    /* Register the interrupt handler. */
    alt_irq_register( INPUT_FIFO_IN_CSR_IRQ, 
input_fifo_wrclk_irq_event_ptr, handle_input_fifo_wrclk_interrupts );
    return return_code;
}
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On-Chip FIFO 
Memory API

This section describes the application programming interface (API) for 
the on-chip FIFO memory core.
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altera_avalon_fifo_init()

Prototype: int altera_avalon_fifo_init(alt_u32 address, alt_u32 ienable, 
alt_u32 emptymark, alt_u32 fullmark)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
ienable—the value to write to the interruptenable register
emptymark—the value for the almost empty threshold level
fullmark—the value for the almost full threshold level 

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR for clear errors, 
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR for interrupt enable write errors, 
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR for errors writing the 
almostfull and almostempty registers.

Description: Clears the event register, writes the interruptenable register, and sets the 
almostfull register and almostempy registers.
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altera_avalon_fifo_read_status()

Prototype: int altera_avalon_fifo_read_status(alt_u32 address, alt_u32 
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the status register

Returns: Returns the fill level of the FIFO. 

Description: Gets the fill level of the FIFO which is the AND of the value of the addressed register and 
the mask.
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altera_avalon_fifo_read_ienable()

Prototype: int altera_avalon_fifo_read_ienable(alt_u32 address, alt_u32 
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the interruptenable register

Returns: Returns the logical AND of the interruptenable register and the mask.

Description: Gets the logical AND of the interruptenable register and the mask.
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altera_avalon_fifo_read_almostfull()

Prototype: int altera_avalon_fifo_read_almostfull(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostfull register.

Description: Gets the value of the almostfull register.
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altera_avalon_fifo_read_almostempty()

Prototype: int altera_avalon_fifo_read_almostempty(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostempty register.

Description: Gets the value of the almostempty register.
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altera_avalon_fifo_read_event()

Prototype: int altera_avalon_fifo_read_event(alt_u32 address, alt_u32 
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the event register

Returns: Returns the logical AND of the event register and the mask.

Description: Gets the logical AND of the event register and the mask. To read single bits of the event 
register use the single bit masks, for example: 
ALTERA_AVALON_FIFO_FIFO_EVENT_F_MSK. To read the entire event register use 
the full mask: ALTERA_AVALON_FIFO_EVENT_ALL.
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altera_avalon_fifo_read_level()

Prototype: int altera_avalon_fifo_read_level(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the fill level of the FIFO. 

Description: Gets the fill level of the FIFO. 
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altera_avalon_fifo_clear_event()

Prototype: int altera_avalon_fifo_clear_event(alt_u32 address, alt_u32 
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the mask to use for bit-clearing (1 means clear this bit, 0 means don’t)

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR if unsuccessful.

Description: Clears the specified bits of the event register.
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altera_avalon_fifo_write_ienable()

Prototype: int altera_avalon_fifo_write_ienable(alt_u32 address, alt_u32 
mask

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the value to write to the interruptenable register. See 
altera_avalon_fifo_regs.h for individual interrupt bit masks.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR if unsuccessful.

Description: Writes the specified bits of the interruptenable register.
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altera_avalon_fifo_write_almostfull()

Prototype: int altera_avalon_fifo_write_almostfull(alt_u32 address, 
alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostfull register.
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altera_avalon_fifo_write_almostempty()

Prototype: int altera_avalon_fifo_write_almostempty(alt_u32 address, 
alt_u23 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost empty threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostempty register.
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altera_avalon_write_fifo()

Prototype: int altera_avalon_write_fifo(alt_u32 write_address, alt_u32 
ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the value to write to address offset 0 for Avalon-MM to Avalon-ST transfers, the 
value to write to the single address available for Avalon-MM t o Avalon-MM transfers. 
See the Avalon Memory-Mapped and Avalon Streaming Interface Specifications for the 
data ordering.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_FULL if unsuccessful.

Description: Writes data to the specified address if the FIFO is not full.
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altera_avalon_write_other_info()

Prototype: int altera_avalon_write_other_info(alt_u32 write_address, 
alt_u32 ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the packet status information to write to address offset 1 of the Avalon interface. 
See the Avalon Memory-Mapped and Avalon Streaming Interface Specifications for the 
ordering of the packet status information.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful, 
ALTERA_AVALON_FIFO_FULL if unsuccessful.

Description: Writes the packet status information to the write_address. Only valid when Enable 
packet data is on.
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altera_avalon_fifo_read_fifo()

Prototype: int altera_avalon_fifo_read_fifo(alt_u32 read_address, 
alt_u32 ctrl_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave
ctrl_address—the base address of the FIFO control slave

Returns: Returns the data from address offset 0, or 0 if the FIFO is empty.

Description: Gets the data addressed by read_address.



5–32  Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_read_other_info()

Prototype: int altera_avalon_fifo_read_other_info(alt_u32 read_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

Returns: Retunrs the packet status information from address offset 1 of the Avalon interface. See 
the Avalon Memory-Mapped and Avalon Streaming Interface Specifications for the 
ordering of the packet status information.

Description: Reads the packet status information from the specified read_address. Only valid 
when Enable packet data is on.
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Referenced 
Documents 

This chapter references the Avalon Streaming Interface Specification.

Document 
Revision History

Table 5–9 shows the revision history for this chapter.

Table 5–9. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

Chapter 5 was formerly Chapter 4. —

May 2007
v7.1.0

Initial release. —

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
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6. Scatter-Gather DMA
Controller Core

Core Overview The Scatter-Gather direct memory access (SG-DMA) controller core 
implements high-speed data transfer between two devices. The SG-DMA 
core can be used to transfer data from: 

■ memory to memory
■ data stream to memory
■ memory to data stream

The SG-DMA controller core transfers and merges non-contiguous 
memory to a continuous address space. It also transfers contiguous 
memory to non-contiguous memory. The core operates by reading a 
series of descriptors that specify the data to be transferred. 

For applications requiring more than one DMA channel, multiple 
instantiations of the core can provide the required throughput. Each 
SG-DMA controller has its own series of descriptors specifying the data 
transfers. A single software module controls all of the DMA channels. 

The SG-DMA controller core is SOPC Builder-ready and integrates easily 
into any SOPC Builder-generated system. For the Nios® II processor, 
device drivers are provided in the HAL system library, allowing software 
to access the core using the ANSI C Standard Library stdio.h routines. 

Example Systems

Figure 6–1 shows a SG-DMA controller core in a block diagram for the 
DMA subsystem of a printed circuit board. The SG-DMA core in the 
FPGA reads streaming data from an internal streaming component and 
writes data to an external memory. A Nios II processor provides overall 
system control. The descriptor table, containing the linked list of 
descriptors specifying data transfers to be executed, can be located in the 
FPGA or an external memory. Locating this table in an external memory 
will free up resources in the FPGA; however, an external descriptor table 
will increase the overhead involved when the descriptor processor reads 
and updates the table. The SG-DMA core has an internal FIFO to store 
descriptors read from memory, which allows it to perform descriptor 
read, execute, and write back operations in parallel, hiding the descriptor 
read latency.

QII55003-7.2.1
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Figure 6–1. Scatter-Gather DMA Controller Core with Streaming Peripheral and External Memory 

Figure 6–2 shows a different use of the SG-DMA controller core. In 
Figure 6–2, SG-DMA core transfers data between an internal and external 
memory. The host processor and memory are on the system bus, typically 
either a PCI-Express or Serial RapidIO™. 
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Figure 6–2. Scatter-Gather DMA Controller Core with Internal and External Memory

Figures 6–1 and 6–2 illustrate systems using the SG-DMA controller core 
and omit some of the internals of the core itself. Figure 6–3 on page 6–7 
illustrates all of the SG-DMA controller core internals.

Resource Usage and Performance

Resource utilization for the core is 600–1400 LEs, depending upon the 
width of the datapath, the parameterization of the core, and the type of 
data transfer. Table 6–1 provides resource utilization for a SG-DMA 
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controller core used for memory to memory transfer. The core is highly 
parameterized and the resource utilization will vary with the 
configuration specified. 

The core operating frequency varies with the device and the size of the 
datapath. Table 6–2 provides an example of expected performance for 
SG-DMA cores instantiated in several different device families.

Comparison of SG-DMA Controller Core and DMA Controller 
Core

The SG-DMA controller core provides a significant performance 
enhancement over the previously available DMA controller core, which 
could only perform a single DMA transfer at a time. With the older DMA 
controller core, a CPU performed separate reads for each entry of the 
DMA descriptor table and then executed separate IO writes to program 
the DMA controller to perform the transfer. Transfers to non-contiguous 
memory could not be linked; consequently, the CPU overhead was 
substantial for small transfers, degrading overall system performance. In 
contrast, the SG-DMA controller core reads a series of descriptors from 
memory that describe the required transactions and performs all of the 
transfers without additional intervention from the CPU. 

Table 6–1. SG-DMA Estimated Resource Usage

Datapath Cyclone® II Stratix® (Approx. 
LEs)

Stratix II (Approx. 
ALUTs)

8-bit datapath 850 650 600

32-bit datapath 1100 850 700

64-bit datapath 1250 1250 800

Table 6–2. SG-DMA Performance Estimates

Device Datapath Fmax Throughput

Cyclone II 64 bits 150 MHz 9.6 Gbps

Cyclone III 64 bits 160 MHz 10.2 Gbps

Stratix II/Stratix II GX 64 bits 250 MHz 16.0 Gbps

Stratix III 64 bits 300 MHz 19.2 Gbps
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Functional 
Description

The SG-DMA controller core comprises three major blocks: a descriptor 
processor, a DMA read block and a DMA write block. (See Figure 6–3 on 
page 6–7.) These blocks are combined to create three different 
configurations:

■ memory to memory
■ memory to stream
■ stream to memory

For the memory-to-memory configuration, the core includes all three 
blocks. If the core is configured for memory-to-stream transactions, only 
the descriptor processor and read blocks are required. If the core is 
configured for stream-to-memory transactions, only the descriptor 
processor and write blocks are required. In the memory-to-memory 
configuration, an internal FIFO holds data being transferred between the 
read and write blocks. In the other two configurations, an external FIFO 
might be required depending upon the throughput of the components 
being connected. For designs requiring an external FIFO, the on-chip 
FIFO memory available in SOPC Builder can be used.

The following sections describe the three configurations of the SG-DMA 
controller core and the behavior of the internal modules for each 
configuration.

Memory-to-Memory Configuration

As Figure 6–3 illustrates, the memory-to-memory configuration includes 
five Avalon-MM ports. The descriptor processor block uses read and 
write Avalon-MM master ports to access and update descriptors. The 
DMA read block has an Avalon-MM master read port to read data from 
memory; it has an Avalon-ST port to pass data to the DMA write block. 
The DMA write block has an Avalon-ST port to receive data from the read 
block and an Avalon-MM master write port to write the data to memory. 
Software accesses an Avalon-MM slave port to read and write the 
control and status registers.

In the memory-to-memory configuration, the descriptor processor reads 
descriptors from the descriptor table and pushes the appropriate 
commands onto the input FIFOs of the DMA read and write blocks. It also 
receives a status token from the read or write block after each descriptor 
has been processed. The status token contains information about the 
status of the transfer, including the number of bytes transferred. The 
descriptor processor then writes this information back to the appropriate 
entry in the descriptor table. 
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In the memory-to-memory configuration, an internal data FIFO stores 
data being transferred between the read and write blocks to provide 
buffering and flow control.

To execute a DMA read transfer between memories, the following steps 
are executed:

1. Software writes the descriptor into memory.

2. Software writes the location of the first descriptor address to 
SG-DMA controller hardware and initiates the transfer by setting 
the RUN bit of the SG-DMA control register. 

3. The descriptor processor reads the descriptors from memory and 
writes them into a command FIFO which feeds commands to both 
the DMA read and write blocks.

4. The DMA read block gets the source address from its command 
FIFO and reads data to fill the FIFO on its stream port. The read 
block continues reading until the specified number of bytes have 
been transferred. If the data FIFO ever fills, the read block pauses 
until the FIFO can accept more data.

5. The DMA write block gets the destination address from its 
command FIFO. The write block continues to execute writes until 
the specified number of bytes have been transferred. It then sends a 
status update to the DMA controller. If the data FIFO ever empties, 
the write block pauses until the FIFO has more data to write. 

6. The descriptor processor updates the appropriate entry in the 
descriptor table.

Figure 6–3 illustrates one possible configuration for the memory-to-
memory SG-DMA controller with an internal Nios II processor and 
descriptor table.
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Figure 6–3. Scatter-Gather DMA Controller Core for Memory-to-Memory Configuration

Memory-to-Stream Configuration

The memory-to-stream configuration includes the descriptor processor 
and the DMA read block. As Figure 6–3 illustrates, this configuration 
includes four Avalon-MM ports and one Avalon-ST port. The descriptor 
processor block includes read and write Avalon-MM master ports to 
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access and update descriptors. The DMA read block has an Avalon-MM 
master read port to read data from memory and an Avalon-ST port to 
write the data to a streaming component. An Avalon-MM slave port is 
used to read and write the control and status registers.

Figure 6–4 on page 6–9 illustrates a SG-DMA controller in the 
memory-to-stream configuration. In this example, the Nios II processor 
and descriptor table are inside the FPGA. Data from an external DDR2 
memory is read by the SG-DMA controller and written to an internal 
streaming peripheral. The read block returns status to the descriptor 
processor upon completion of each descriptor. 
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Figure 6–4. Scatter-Gather DMA Controller Memory-to-Stream Configuration 

The transfer operation includes the following steps:

1. Software writes the descriptor into memory.

2. Software writes the location of first descriptor address to SG-DMA 
controller hardware and initiates the transfer by setting the RUN bit 
of the SG-DMA control register.
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3. The descriptor processor reads the descriptors from memory and 
writes them into the input command FIFO in the read block.

4. The read block reads from the source address and pushes the data to 
its stream port. The read block continues reads until the specified 
number of bytes have been transferred. It then sends a status update 
to the descriptor processor.

5. The descriptor processor updates the appropriate entry in the 
descriptor table.

Stream-to-Memory Configuration

The stream-to-memory configuration includes the descriptor processor 
and the DMA write block. The write block returns status to the descriptor 
processor upon completion of each descriptor. This configuration is 
similar to the memory-to-stream configuration except that the data flows 
from a streaming component to a memory device as Figure 6–5 illustrates. 
In this example, an On-Chip FIFO Memory component is used to provide 
a buffer between the streaming component and the DMA write.

The transfer operation includes the following steps:

1. Software writes the descriptor into memory.

2. Software writes the location of the first descriptor address to 
SG-DMA controller hardware and initiates the transfer by writing 
the RUN bit of the SG-DMA control register.

3. The descriptor processor reads the descriptors from memory and 
writes them into the write block.

4. The write block reads from its stream port and writes the data to its 
Avalon master port. The write block continues reads until the 
specified number of bytes have been transferred. It then sends a 
status update to the descriptor processor. 

5. The descriptor processor updates the appropriate entry in the 
descriptor table.
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Figure 6–5. Scatter-Gather DMA Controller Stream-to-Memory Configuration
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Possible Sources of Errors

The SG-DMA core has a parameterizable error width. Error signals are 
wired directly to the Avalon-ST source or sink to which the SG-DMA core 
is connected. Table 6–3 lists the error signals when the core is operating in 
the memory to stream configuration and connected to the transmit FIFO 
interface of the Altera Triple-Speed Ethernet MegaCore®.

Table 6–4 lists the error signals when the core is operating in the 
stream-to-memory configuration and connected to the transmit FIFO 
interface of the Altera Triple-Speed Ethernet MegaCore.

Table 6–3.  Avalon-ST Transmit Channel Error Types

Signal Type Description

TSE_transmit_error[0] Transmit Frame Error. Asserted to indicate that the transmitted frame should be 
viewed as invalid by the Ethernet MAC. The frame is then transferred onto the 
GMII interface with an error code during the frame transfer.

Table 6–4.  Avalon-ST Receive Channel Error Types

Signal Type Description

TSE_receive_error[0] Receive Frame Error. This signal indicates that an error has occurred. It is the 
logical OR of receive errors 1 through 5.

TSE_receive_error[1] Invalid Length Error. Asserted when the received frame has an invalid length as 
defined by the IEEE 802.3 standard.

TSE_receive_error[2] CRC Error. Asserted when the frame has been received with a CRC-32 error.

TSE_receive_error[3] Receive Frame Truncated. Asserted when the received frame has been 
truncated due to receive FIFO overflow.

TSE_receive_error[4] Received Frame corrupted due to PHY error. (The PHY has asserted an error on 
the receive GMII interface.)

TSE_receive_error[5] Collision Error. Asserted when the frame was received with a collision.
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Detailed 
Description of 
Each Block

The following sections provide a detailed description of each functional 
block.

Descriptor Processor Block

The descriptor processor reads descriptors from memory using its 
Avalon-MM descriptor read master port and pushes commands onto the 
command FIFOs of the DMA read and write blocks. The command 
includes the following fields to specify the transfers: 

■ source address
■ destination address
■ read  size
■ write  size
■ bytes to transfer
■ increment read address after each transfer
■ increment write address after each transfer
■ generate end of packet

DMA Read Block

The DMA read block reads commands from its input command FIFO. For 
each command, it reads data from the source address on its Avalon-MM 
port. In the memory-to-memory configuration, it pushes the data into the 
data FIFO. In the memory-to-stream configuration, it immediately writes 
the data to the Avalon-ST source port. 

1 The DMA read block will not begin an Avalon-MM  read unless 
its data FIFO has enough space to store all of the data read. This 
restriction requires the external FIFO be at least as deep as the 
maximum supported read  size. 

DMA Write Block

The DMA write block reads commands from its input command FIFO. 
For each command, it writes data received on its Avalon-ST sink port to 
the destination address. In the memory-to-memory and the stream-to-
memory configurations, it reads the data from its Avalon-ST port and 
writes to its Avalon-MM port.

Device Support 
and Tools

The SG-DMA controller core supports the Arria™ GX, Stratix® III, 
Stratix II GX, Stratix II, Stratix, Cyclone® III, Cyclone II, Cyclone and 
Hardcopy® II device families.
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Instantiating the 
Core in SOPC 
Builder

Hardware designers use the MegaWizard interface for the SG-DMA 
controller core in SOPC Builder to specify the core configuration. 

1 If an SOPC Builder system contains both the SG-DMA controller 
and JTAG UART cores, set the IRQs for the SG-DMA controller 
core to a higher priority than the IRQs for the JTAG UART core.

The following sections describe the available options in the configuration 
wizard.

Transfer Mode

This list allows you to select between the Memory To Memory, Memory 
To Stream, and Stream To Memory configurations. For more information 
about these configurations, see “Memory-to-Memory Configuration” on 
page 6–5, “Memory-to-Stream Configuration” on page 6–7, and “Stream-
to-Memory Configuration” on page 6–10. 

Allow Unaligned Transfers

If Allow unaligned transfers is on, data transfers for data widths that are 
not a power of two will be aligned on word boundaries. Unaligned 
transfers require extra logic that may negatively impact system 
performance.

Data and Error Widths

The Data width list allows you to select data width in bits for the 
Avalon-MM read and write ports. The Source error width and Sink error 
width lists allow you to select widths of the error signals for the 
Avalon-ST source and sink ports.

FIFO Depth

The Data transfer FIFO depth list sets the depth for all three descriptor 
FIFOs: 

■ the Descriptor Processor block FIFO
■ the DMA read block FIFO
■ the DMA write block FIFO

The Data transfer FIFO depth list also sets the depth for the internal data 
FIFO used in the memory-to-memory configuration. These FIFOs are all 
illustrated in Figure 6–3 on page 6–7. 
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Hardware 
Simulation 
Considerations

Signals for hardware simulation are automatically generated and show 
up as part of the Nios II simulation accessible from the Nios II IDE. On the 
Run menu, point to Run As and click Nios II Modelsim.

Software 
Programming 
Model

The following sections describe the software programming model for the 
SG-DMA controller core. 

HAL System Library Support

The Altera-provided driver implements a HAL device driver that 
integrates into the HAL system library for Nios II systems. HAL users 
should access the SG-DMA controller core via the familiar HAL API and 
the ANSI C standard library.

Software Files

The SG-DMA controller provides the following software files. These files 
provide low-level access to the hardware and drivers that integrate into 
the Nios II HAL system library. Application developers should not 
modify these files.

■ altera_avalon_sgdma_regs.h—defines the core’s register map, 
providing symbolic constants to access the low-level hardware

■ altera_avalon_sgdma.h—provides definitions for the Altera Avalon 
SG-DMA buffer control and status flags.

■ altera_avalon_sgdma.c—provides function definitions for the code 
that implements the SG-DMA controller core.

■ altera_avalon_sgdma_descriptor.h—defines the core’s descriptor, 
providing symbolic constants to access the low-level hardware.
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Programming 
with the 
SG-DMA 
Controller

This section describes the software constructs for programming the 
SG-DMA Controller. 

Software Control

The host processor programs the SG-DMA by writing to its control 
register. The host processor reads SG-DMA status register to determine 
the current status. 

Table 6–5. SG-DMA Controller Functions

Function Name Description

alt_avalon_sgdma_do_async_transfer() Sets up and begins a non-blocking transfer of one or 
more descriptors or a descriptor chain.

alt_avalon_sgdma_do_sync_transfer() Sends a fully formed descriptor, or list of descriptors, to 
the SG-DMA Controller for transfer. This function will 
block both before transfer if the controller is busy and 
until the requested transfer has completed.

alt_avalon_sgdma_construct_mem_to_mem
_desc()

Constructs a single SG-DMA descriptor in the specified 
memory for an Avalon-MM to Avalon-MM transfer.

alt_avalon_sgdma_construct_stream_to_
mem_desc()

Constructs a single SG-DMA descriptor in the specified 
memory for an Avalon-ST to Avalon-MM transfer.

alt_avalon_sgdma_construct_mem_to_str
eam_desc()

Constructs a single SG-DMA descriptor in the specified 
memory for an Avalon-MM to Avalon-ST transfer.

alt_avalon_sgdma_check_
descriptor_status()

Reads the status register of the descriptor.

alt_avalon_sgdma_register_callback() Associates a user-specific routine with the SG-DMA 
interrupt handler.

alt_avalon_sgdma_start() Starts the DMA engine.

alt_avalon_sgdma_stop() Stops the DMA engine.

alt_avalon_sgdma_open() Retrieves a pointer to the SG-DMA controller with the 
given name.
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Table 6–6 shows the offsets for the control and status registers.  

Software writes the control register to specify the behavior of the 
SG-DMA controller. This register determines the conditions under which 
the SG-DMA controller will generate an interrupt. It also includes the 
control bits used to start and stop processing descriptors.

1 Bursting to the control port is not supported.

Table 6–7 provides a bit-map for the control register.

Table 6–6. SG-DMA Control and Status Slave Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 next_descriptor_pointer

Table 6–7. SG-DMA Control Register Map (Part 1 of 2)

Bit Bit Name Rd/Wr/Clr Description

0 IE_ERROR R/W Assert an interrupt when (ERROR = 1).

1 IE_EOP_ENCOUNTERED R/W Assert an interrupt when (EOP_ENCOUNTERED 
= 1).

2 IE_DESCRIPTOR_COMPLETED R/W Assert an interrupt when 
(DESCRIPTOR_COMPLETED = 1).

3 IE_CHAIN_COMPLETED R/W Assert an interrupt when (CHAIN COMPLETED 
=1).

4 IE_GLOBAL R/W Global signal to enable all interrupts.

5 RUN R/W The SG-DMA processes descriptors in its queue 
as long as RUN = 1. The SG-DMA will not 
process the next descriptor in its queue when RUN 
= 0. Setting RUN starts the descriptor processor 
that initiates DMA transactions. Clearing RUN will 
not stop processing of a descriptor if processing 
has already begun.

6 STOP_DMA_ER R/W Stops DMA after current descriptor if ERROR is 
detected.

7 IE_MAX_DESC_
PROCESSED (1)

R/W Enables interrupts when 
MAX_DESC_PROCESSED is reached.

8 .. 15 MAX_DESC_
PROCESSED (1)

R/W Specifies the number of descriptors to process 
before invoking interrupt.
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Table 6–8 provides a bit-map for the status register.

Next Descriptor Pointer

Software writes the address of the first descriptor to this register as part 
of the system initialization sequence. When RUN = 1, the SG-DMA 
updates this register with the location of the next descriptor to be fetched. 
To stop execution of the SG-DMA core, software clears the RUN bit. When 
RUN is 0, the SG-DMA hardware completes the data transfers for the 
current descriptor and then stops processing. Software can then modify 
the remaining linked-list and restart the SG-DMA hardware. 

16 SW_RESET R/W Resets the SG-DMA hardware and stops all 
operations immediately.

17 PARK R/W Enables the hardware to repeatedly use the same 
descriptor without software intervention. The bit 
owned_by_hw is not cleared, thus allowing the 
hardware to reuse the descriptor.

18..30 Reserved

31 CLEAR INTERRUPT R/W Set this bit to 1 to clear pending interrupts.

Note to Table 6–7:
(1) Available if interrupt coalescing is selected in the synthesis options.

Table 6–7. SG-DMA Control Register Map (Part 2 of 2)

Bit Bit Name Rd/Wr/Clr Description

Table 6–8. SG-DMA Status Register Map

Bit Bit Name Rd/Wr/Clr Description

0 ERROR R/C (1)(2) Avalon-ST error encountered during transfer.

1 EOP_ENCOUNTERED R/C Transfer terminated by Avalon-ST EOP.

2 DESCRIPTOR_COMPLETED R/C (1)(2) A descriptor was processed to completion.

3 CHAIN_COMPLETED R/C (1)(2) Unable to process next descriptor because 
Owned by HW = 0.

4 BUSY R/C (1)(3)) Indicates that descriptors are being processed; 
the linked list of descriptors is not yet completed. 

5 .. 31 reserved

Notes to Table 6–8:
(1) This bit must be cleared after a read is performed. Write one to clear this bit. 
(2) This bit is updated by hardware after each DMA transfer completes. It remains set until software writes one to clear.
(3) This bit is continuously updated by the hardware. 
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1 While BUSY = 1, the next descriptor pointer is updated by 
hardware. The next descriptor pointer can only be reliably read 
by software when BUSY = 0.

DMA Descriptors 

The DMA descriptors specify all information required to perform data 
transfers, including: the source address, destination address, and the 
number of bytes to be transferred. The descriptors are stored in a table 
that is written by software. This table can be stored in FPGA memory or 
an external memory device as a linked list. The descriptor must be 
initialized by user applications and aligned on a 256-bit boundary.

Table 6–9 shows the layout of a descriptor entry.  

Table 6–10 describes the function of the various fields. 

Table 6–9. Descriptor Layout

Offset
Bit Field Names

31 24 23 16 15 8 7 0

base SOURCE

base + 1 RESERVED

base + 2 DESTINATION

base + 3 RESERVED

base + 4 NEXT_DESC_PTR

base + 5 RESERVED

base + 6 WRITE_SIZE READ_SIZE BYTES_TO_TRANSFER

base + 7 DESC_CONTROL DESC_STATUS ACTUAL_BYTES_TRANSFERRED

Table 6–10. Descriptor Field Descriptions (Part 1 of 2)

Field Name Rd/Wr/Clr Description

SOURCE R/W Specifies the address of data to be read. This address is 
set to 0 if the input source is an Avalon Streaming 
(Avalon-ST) interface. 

DESTINATION R/W Specifies the address to which data should be written. 
This address is set to 0 if the write data is an Avalon-ST 
interface. 

NEXT_DESC_PTR R/W Specifies the next descriptor in the linked list.
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The descriptor processor reads the DESC_CONTROL fields to determine 
how to proceed with the DMA transaction. Table 6–11 provides a bit-map 
for theses fields.

BYTES_TO_

TRANSFER
R/W Specifies the number of bytes to transfer. If BYTES_TO 

_TRANSFER = 0, the transaction will be terminated by 
an EOP. 

READ_SIZE R/W Specifies the read size in bytes for a read from Avalon 
devices (memory).

WRITE_SIZE R/W Specifies the write size in bytes for a write to Avalon 
Devices (memory).

ACTUAL_BYTES_
TRANSFERRED

R Specifies the number of bytes that are successfully 
transferred by the DMA hardware. 

DESC_CONTROL R/W See Table 6–12 for descriptions of each bit.

DESC_STATUS R/W See Table 6–11 for descriptions of each bit.

Table 6–10. Descriptor Field Descriptions (Part 2 of 2)

Field Name Rd/Wr/Clr Description

Table 6–11.  Desc_Control Field Map

Bits Field Name Rd/Wr/Clr Description

0 Generate_EOP W When set, DMA Read should generate an EOP on 
the final word.

1 Read_Fixed_Address R/W For Avalon-MM ports, when set to 1, DMA Read 
does not increment the memory address. When 0, 
the read address increments after each read. 

When used in Memory-to-Stream mode, the read 
engine generates a startofpacket signal on 
the first word.

2 Write_Fixed_Address R/W Used only for Avalon-MM ports. When set to 1, 
DMA Write does not increment the memory 
address. When 0, the write address increments 
after each write. 
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After completing a DMA transaction, the descriptor processor updates 
the DESC_STATUS fields to indicate how the transaction proceeded. The 
error conditions these fields record can only occur on an Avalon-ST 
interface. Table 6–12 provides a bit-map for the DESC_STATUS fields.

Macros to access all of the registers are defined in 
altera_avalon_sgdma_regs.h. For example, this file includes macros to 
access the status register, including the following macros:

#define IOADDR_ ALTERA_AVALON_SGDMA_STATUS(base) __IO_CALC_ADDRESS_DYNAMIC(base, 0)

3 .. 6 Avalon-ST_Channel_Number R/W DMA Read drives this value onto the Avalon-ST 
channel port for each word in the transaction. The 
DMA Write replaces this value with the Avalon-ST 
channel number for its sink port.

7 Owned_by_HW R/W This bit determines whether hardware or software 
has write access to the descriptor of the SG-DMA 
control and status register. When 
Owned_by_HW=1 the hardware can update this 
pointer. When Owned_by_HW=0, software can 
update this pointer.

Table 6–11.  Desc_Control Field Map

Bits Field Name Rd/Wr/Clr Description

Table 6–12. Descriptor Desc_Status Bit Map

Bit Bit Name Rd/Wr/Clr Description

0 E_CRC R When set, indicates that a CRC error occurred on 
the Avalon-ST interface.

1 E_PARITY R When set, indicates that a parity error occurred on 
the Avalon-ST interface.

2 E_OVERFLOW R When set, indicates that an overflow occurred on 
the Avalon-ST interface.

3 E_SYNC R When set, indicates that an out-of-sync error 
occurred on the Avalon-ST interface.

4 E_UEOP R When set, indicates that an unexpected EOP error 
occurred on the Avalon-ST interface.

5 E_MEOP R When set, indicates that a missing EOP error 
occurred on the Avalon-ST interface.

6 E_MSOP R When set, indicates that a missing SOP error 
occurred on the Avalon-ST interface.

7 Terminated_by_ 
EOP

R When set, indicates that a write transaction was 
terminated by EOP.
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#define IORD_ALTERA_AVALON_SGDMA_STATUS(base) IORD(base, 0)
#define IOWR_ALTERA_AVALON_SGDMA_STATUS(base, data) IOWR(base, 0, data)
#define ALTERA_AVALON_SGDMA_STATUS_ERROR_MSK (0x1)
#define ALTERA_AVALON_SGDMA_STATUS_ERROR_OFST (0)
#define ALTERA_AVALON_SGDMA_STATUS_EOP_ENCOUNTERED_MSK (0x2)
#define ALTERA_AVALON_SGDMA_STATUS_EOP_ENCOUNTERED_OFST (1)

For a complete list of predefined macros and utilities to access the 
SG-DMA Controller hardware, see:

■ <install_dir>\quartus\sopc_builder\components\altera_avalon_sg
dma\inc\altera_avalon_sgdma_regs.h,

■ <install_dir>\quartus\sopc_builder\components\altera_avalon_sg
dma\HAL\inc\altera_avalon_sgdma.h, and

■ <install_dir>\quartus\sopc_builder\components\altera_avalon_sg
dma\HAL\inc\altera_avalon_sgdma_descriptor.h.

Timeouts

The SG-DMA controller does not implement internal counters to detect 
stalls. Software can instantiate a timer component if this functionality is 
required. 

SG-DMA 
Controller API

This section describes the application programming interface (API) for 
the SG-DMA controller core.
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alt_avalon_sgdma_do_async_transfer()

Prototype: int alt_avalon_do_async_transfer(alt_sgdma_dev *dev, 
alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its "next" 
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the 
chain.

Returns: Returns 0 success. Other return codes are defined in errno.h.

Description: Set up and begin a non-blocking transfer of one or more descriptors or a descriptor 
chain. If the SG-DMA controller is busy at the time of this call, the routine will immediately 
return -EBUSY; the application can then decide how to proceed without being blocked. 
If a callback routine has been previously registered with this particular SG-DMA 
controller, the transfer will be set up to issue an interrupt on error, EOP, or chain 
completion. Otherwise, no interrupt is registered and it is the responsibility of the 
application developer to check for and handle errors and completion.
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alt_avalon_sgdma_do_sync_transfer()

Prototype: alt_u8 alt_avalon_sgdma_do_sync_transfer(alt_sgdma_dev *dev, 
alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Not recommended.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its "next" 
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the 
chain.

Returns: Returns the contents of the status register.

Description: Sends a fully formed descriptor or list of descriptors to the SG-DMA controller for 
transfer. This function blocks both before transfer, if the SG-DMA controller is busy, and 
until the requested transfer has completed. If an error is detected during the transfer, it 
is abandoned and the controller’s status register contents are returned to the caller. 
Additional error information is available in the status bits of each descriptor that the 
SG-DMA processed. It is the responsibility of the user application to search through the 
descriptor or list of descriptors to gather specific error information.
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alt_avalon_sgdma_construct_mem_to_mem_desc()

Prototype: void 
alt_avalon_sgdma_construct_mem_to_mem_desc(alt_sgdma_descrip
tor *desc, alt_sgdma_descriptor *next, alt_u32 *read_addr, 
alt_u32 *write_addr, alt_u16 length, int read_fixed, int 
write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the "next" descriptor. This does not need to be a complete or 
functional descriptor, but must be properly allocated.
*read_addr—the first read address for the SG-DMA transfer.
*write_addr—the first write address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA will read from a fixed address.
write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in 
alt_avalon_sgdma_descriptor *desc for an Avalon-MM to Avalon-MM transfer. The 
function sets the OWNED_BY_HW bit in the descriptor's control field, marking the 
completed descriptor as ready to run. The descriptor is processed when the SG-DMA 
controller receives the descriptor and the RUN bit of the SG-DMA control register is 
asserted.

The next field of the descriptor being constructed is set to the address in *next. The 
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA 
completes processing of the *desc, it will not process the descriptor at *next until its 
OWNED_BY_HW bit is set. To create a descriptor chain, you can repeatedly call this 
function using the previous call's *next pointer in the *desc parameter. 

You are responsible for properly allocating memory for the creation of both the descriptor 
under construction as well as the next descriptor in the chain. 

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain 
read and chain write Avalon master ports. Care must be taken to ensure that both 
*desc and *next point to areas of memory mastered by the controller.
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alt_avalon_sgdma_construct_stream_to_mem_desc()

Prototype: void 
alt_avalon_sgdma_construct_stream_to_mem_desc(alt_sgdma_desc
riptor *desc, alt_sgdma_descriptor *next, alt_u32 
*write_addr, alt_u16 length_or_eop, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the "next" descriptor. This does not need to be a complete or 
functional descriptor, but must be properly allocated.
*write_addr—the first write address for the SG-DMA transfer.
length_or_eop—the number of bytes for the transfer. If set to zero (0x0), the transfer 
will continue until an EOP signal is received from the Avalon-ST interface.
write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in 
alt_avalon_sgdma_descriptor *desc for an Avalon-ST to Avalon-MM transfer. The 
source (read) data for the transfer comes from the Avalon-ST interface connected to the 
SG-DMA controller's streaming read port.

The function sets the OWNED_BY_HW bit in the descriptor's control field, marking the 
completed descriptor as ready to run. The descriptor is processed when the SG-DMA 
controller receives the descriptor and the RUN bit of the SG-DMA control register is 
asserted.

The next field of the descriptor being constructed is set to the address in *next. The 
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA 
completes processing of the *desc, it will not process the descriptor at *next until its 
OWNED_BY_HW bit is set. To create a descriptor chain, you can repeatedly call this 
function using the previous call's *next pointer in the *desc parameter. 

You are responsible for properly allocating memory for the creation of both the descriptor 
under construction as well as the next descriptor in the chain. 

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain 
read and chain write Avalon master ports. Care must be taken to ensure that both 
*desc and *next point to areas of memory mastered by the controller.
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alt_avalon_sgdma_construct_mem_to_stream_desc()

Prototype: void 
alt_avalon_sgdma_construct_mem_to_stream_desc(alt_sgdma_desc
riptor *desc, alt_sgdma_descriptor *next, alt_u32 *read_addr, 
alt_u16 length, int read_fixed, int generate_sop, int 
generate_eop, alt_u8 atlantic_channel)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the "next" descriptor. This does not need to be a complete or 
functional descriptor, but must be properly allocated.
*read_addr—the first read address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA will read from a fixed address.
generate_sop—if non-zero, the SG-DMA will generate a start-of-packet (SOP) on the 
Avalon Streaming interface when commencing the transfer.
generate_eop—if non-zero, the SG-DMA will generate a end-of-packet (EOP) on the 
Avalon Streaming interface when completing the transfer.
atlantic_channel—an 8-bit channel identification number that will be passed to the 
Avalon-ST interface.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in 
alt_avalon_sgdma-descriptor *desc for an Avalon-MM to Avalon-ST transfer. The 
destination (write) data for the transfer goes to the Avalon-ST interface connected to the 
SG-DMA controller's streaming write port. The function sets the OWNED_BY_HW bit in 
the descriptor's control field, marking the completed descriptor as ready to run. The 
descriptor is processed when the SG-DMA controller receives the descriptor and the 
RUN bit of the SG-DMA control register is asserted.

The next field of the descriptor being constructed is set to the address in *next. The 
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA 
completes processing of the *desc, it will not process the descriptor at *next until its 
OWNED_BY_HW bit is set. To create a descriptor chain, you can repeatedly call this 
function using the previous call's *next pointer in the *desc parameter. 

You are responsible for properly allocating memory for the creation of both the descriptor 
under construction as well as the next descriptor in the chain. Descriptors must be in a 
memory device mastered by the SG-DMA controller’s chain read and chain write Avalon 
master ports. Care must be taken to ensure that both *desc and *next point to areas 
of memory mastered by the controller.
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alt_avalon_sgdma_check_descriptor_status()

Prototype: int 
alt_avalon_sgdma_check_descriptor_status(alt_sgdma_descripto
r *desc)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the constructed descriptor to examine.

Returns: Returns 0 if the descriptor is error-free, not owned by hardware, or a previously 
requested transfer completed normally. Other return codes are defined in errno.h.

Description: Checks a descriptor previously owned by hardware for any errors reported in a previous 
transfer. The routine reports: errors reported by the SG-DMA controller, the buffer in use.
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alt_avalon_sgdma_register_callback()

Prototype: void alt_avalon_sgdma_register_callback(alt_sgdma_dev *dev, 
alt_avalon_sgdma_callback callback, alt_u16 chain_control, 
void *context)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.
callback—a pointer to the callback routine to execute at interrupt level.
chain_control—the SG-DMA control register contents.
*context—a pointer used to pass context-specific information to the
ISR. context can point to any ISR-specific information.

Returns: void

Description: Associates a user-specific routine with the SG-DMA interrupt handler. If a callback is 
registered, all non-blocking transfers will enable interrupts that will cause the callback to 
be executed. The callback runs as part of the interrupt service routine, and great care 
must be taken to follow the guidelines for acceptable interrupt service routine behavior 
as described in the Nios II Software Developer’s Handbook.

To disable callbacks after registering one, call this routine with 0x0 as the callback 
argument.
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alt_avalon_sgdma_start()

Prototype: void alt_avalon_sgdma_start(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Starts the DMA engine and processes the descriptor pointed to in the controller's next 
descriptor pointer and all subsequent descriptors in the chain. It is not necessary to call 
this function when do_sync or do_async is used.
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alt_avalon_sgdma_stop()

Prototype: void alt_avalon_sgdma_stop(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Stops the DMA engine following completion of the current buffer descriptor. It is not 
necessary to call this function when do_sync or do_async is used.



6–32  Altera Corporation
January 2008

Quartus II Handbook, Volume 5

alt_avalon_sgdma_open()

Prototype: alt_sgdma_dev* alt_avalon_sgdma_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>, 
<altera_avalon_sgdma_regs.h>

Parameters: name—the name of the SG-DMA device to open.

Returns: A pointer to the SG-DMA device structure associated with the supplied name, or NULL 
if no corresponding SG-DMA device structure was found. 

Description: Retrieves a pointer to a hardware SG-DMA device structure.
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alt_avalon_sgdma_stop()

Document 
Revision History

Table 6–13 shows the revision history for this chapter.

Table 6–13. Document Revision History

Date and 
Document Version Changes Made Summary of Changes

January 2008
v7.2.1

Updated Table 6–10. Updated description of field 
names READ_ and WRITE_ 
in Table 6–10.

October 2007 
v7.2.0

● Chapter 6 was formerly Chapter 5.
● Updated the description for the following sections and 

APIs: Instantiating the Core in SOPC Builder, Software 
Control, DMA Descriptors, alt_avalon_sgdma_start() 
and alt_avalon_sgdma_stop()

—

May 2007
v7.1.0

Initial release. —
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7. DMA Controller Core

Core Overview The direct memory access (DMA) controller core with Avalon® interface 
performs bulk data transfers, reading data from a source address range 
and writing the data to a different address range. An Avalon-MM master 
peripheral, such as a CPU, can offload memory transfer tasks to the DMA 
controller. While the DMA controller performs memory transfers, the 
master is free to perform other tasks in parallel. 

The DMA controller transfers data as efficiently as possible, reading and 
writing data at the maximum pace allowed by the source or destination. 
The DMA controller is capable of performing Avalon transfers with flow 
control, enabling it to automatically transfer data to or from a slow 
peripheral with flow control (for example, a universal asynchronous 
receiver/transmitter [UART]), at the maximum pace allowed by the 
peripheral.

The DMA controller is SOPC Builder-ready and integrates easily into any 
SOPC Builder-generated system. For the Nios® II processor, device 
drivers are provided in the HAL system library. See “Software 
Programming Model” on page 7–6 for details of HAL support.

This chapter contains the following sections:

■ “Functional Description”
■ “Instantiating the Core in SOPC Builder” on page 7–4
■ “Device and Tools Support” on page 7–6
■ “Software Programming Model” on page 7–6

Functional 
Description

The DMA controller is used to perform direct memory-access data 
transfers from a source address-space to a destination address-space. The 
source and destination may be either an Avalon-MM slave peripheral 
(i.e., a constant address) or an address range in memory. The DMA 
controller can be used in conjunction with peripherals with flow control, 
which allows data transactions of fixed or variable length. The DMA 
controller can signal an interrupt request (IRQ) when a DMA transaction 
completes. A transaction is a sequence of one or more Avalon transfers 
initiated by the DMA controller core.

The DMA controller has two Avalon-MM master ports—a master read 
port and a master write port—and one Avalon-MM slave port for 
controlling the DMA as shown in Figure 7–1. 

NII51006-7.2.0
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Figure 7–1. DMA Controller Block Diagram

A typical DMA transaction proceeds as follows:

1. A CPU prepares the DMA controller for a transaction by writing to 
the control port.

2. The CPU enables the DMA controller. The DMA controller then 
begins transferring data without additional intervention from the 
CPU. The DMA’s master read port reads data from the read address, 
which may be a memory or a peripheral. The master write port 
writes the data to the destination address, which can also be a 
memory or peripheral. A shallow FIFO buffers data between the 
read and write ports.

3. The DMA transaction ends when a specified number of bytes are 
transferred (i.e., a fixed-length transaction), or an end-of-packet 
signal is asserted by either the sender or receiver (in other words, a 
variable-length transaction). At the end of the transaction, the DMA 
controller generates an interrupt request (IRQ) if it was configured 
by the CPU to do so.

4. During or after the transaction, the CPU can determine if a 
transaction is in progress, or if the transaction ended (and how) by 
examining the DMA controller’s status register.

Setting Up DMA Transactions

An Avalon-MM master peripheral sets up and initiates DMA transactions 
by writing to registers via the control port. The Avalon-MM master 
programs the DMA engine using byte addresses which are byte aligned. 
The master peripheral configures the following options:

■ Read (source) address location
■ Write (destination) address location
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■ Size of the individual transfers: Byte (8-bit), halfword (16-bit), word 
(32-bit), doubleword (64-bit) or quadword (128-bit) 

■ Enable interrupt upon end of transaction
■ Enable source or destination to end the DMA transaction with 

end-of-packet signal
■ Specify whether source and destination are memory or peripheral

The master peripheral then sets a bit in the control register to initiate 
the DMA transaction. 

The Master Read and Write Ports

The DMA controller reads data from the source address through the 
master read port, and then writes to the destination address through the 
master write port. The DMA controller is programmed using byte 
addresses. Read and write start addresses should be aligned to the 
transfer size. For example, to transfer data words, if the start address is 0, 
the address will increment to 4, 8 and 12. For heterogeneous systems 
where a number of different slave devices are of different widths, the data 
width for read and write masters matches the width of the widest data-
width slave addressed by either the read or the write master. For bursting 
transfers, the burst length is set to the DMA transaction length with the 
appropriate unit conversion. For example, if a 32-bit data width DMA is 
programmed for a word transfer of 64 bytes, the length registered is 
programmed with 64 and the burst count port will be 16. If a 64-bit data 
width DMA is programmed for a doubleword transfer of 8 bytes, the 
length register is programmed with 8 and the burst count port will be 1.

There is a shallow FIFO buffer between the master read and write ports. 
The default depth is 2, which makes the write action depend on the 
data-available status of the FIFO, rather than on the status of the master 
read port. 

Both the read and write master ports are capable of performing Avalon 
transfers with flow control, which allows the slave peripheral to control 
the flow of data and terminate the DMA transaction.

f For details about flow control in Avalon-MM data transfers and 
Avalon-MM peripherals, refer to the Avalon Memory-Mapped Interface 
Specification.
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Addressing and Address Incrementing

When accessing memory, the read (or write) address increments by 1, 2, 
4, 8 or 16 after each access, depending on the width of the data. On the 
other hand, a typical peripheral device (such as UART) has fixed register 
locations. In this case, the read/write address is held constant throughout 
the DMA transaction. 

The rules for address incrementing are, in order of priority:

■ If the control register’s RCON (or WCON) bit is set, the read (or write) 
increment value is 0.

■ Otherwise, the read and write increment values are set according to 
the transfer size specified in the control register, as shown in 
Table 7–1. 

1 In systems with heterogeneous data widths, care must be taken 
to present the correct address or offset when configuring the 
DMA to access native-aligned slaves. For example, in a system 
using a 32-bit Nios II processor and a 16-bit DMA, the base 
address for the UART txdata register must be divided by the 
dma_data_width/cpu_data_width—2 in this example.

Instantiating the 
Core in SOPC 
Builder

Use the MegaWizard® interface for the DMA controller in SOPC Builder 
to specify the core’s configuration. Instantiating the DMA controller in 
SOPC Builder creates one slave port and two master ports. You must 
specify which slave peripherals can be accessed by the read and write 
master ports. Likewise, you must specify which other master 
peripheral(s) can access the DMA control port and initiate DMA 
transactions. The DMA controller does not export any signals to the top 
level of the system module. 

Table 7–1. Address Increment Values

Transfer Width Increment

byte 1

halfword 2

word 4

doubleword 8

quadword 16
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Instantiating the Core in SOPC Builder

DMA Parameters (Basic)

This section describes the parameters you can configure on the DMA 
Parameters page.

Transfer Size 

The parameter Width of the DMA Length Register specifies the 
minimum width of the DMA’s transaction length register, which can be 
between 1 and 32. The length register determines the maximum number 
of transfers possible in a single DMA transaction. 

By default, the length register is wide enough to span any of the slave 
peripherals mastered by the read or write ports. Overriding the length 
register may be necessary if the DMA master port (read or write) masters 
only data peripherals, such as a UART. In this case, the address span of 
each slave is small, but a larger number of transfers may be desired per 
DMA transaction.

Burst Transactions

When Enable Burst Transfers is turned on, the DMA controller performs 
burst transactions on its master read and write ports. The parameter 
Maximum Burst Size determines the maximum burst size allowed in a 
transaction. 

In burst mode, the length of a transaction must not be longer than the 
configured maximum burst size. Otherwise, the transaction must be 
performed as multiple transactions.

FIFO Implementation

This option determines the implementation of the FIFO buffer between 
the master read and write ports. Select Construct FIFO from Registers to 
implement the FIFO using one register per storage bit. This has a strong 
impact on logic utilization when the DMA controller’s data width is 
large. See “Advanced Options” on page 7–6. 

To implement the FIFO using embedded memory blocks available in the 
FPGA, select Construct FIFO from Memory Blocks.
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Advanced Options

This section describes the parameters you can configure on the Advanced 
Options page.

Allowed Transactions

You can choose the transfer datawidth(s) supported by the DMA 
controller hardware. The following datawidth options can be enabled or 
disabled:

■ Byte
■ Halfword (two bytes)
■ Word (four bytes)
■ Doubleword (eight bytes)
■ Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the amount of on-chip 
logic resources consumed by the DMA controller core. For example, if a 
system has both 16-bit and 32-bit memories, but the DMA controller will 
only transfer data to the 16-bit memory, then 32-bit transfers could be 
disabled to conserve logic resources.

Device and 
Tools Support

The DMA Controller Core with Avalon Interface supports all Altera 
FPGA families.

Software 
Programming 
Model

This section describes the programming model for the DMA controller, 
including the register map and software declarations to access the 
hardware. For Nios II processor users, Altera provides HAL system 
library drivers that enable you to access the DMA controller core using 
the HAL API for DMA devices. 

HAL System Library Support

The Altera-provided driver implements a HAL DMA device driver that 
integrates into the HAL system library for Nios II systems. HAL users 
should access the DMA controller via the familiar HAL API, rather than 
accessing the registers directly. 

c If your program uses the HAL device driver to access the DMA 
controller, accessing the device registers directly will interfere 
with the correct behavior of the driver.
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The HAL DMA driver provides both ends of the DMA process; the driver 
registers itself as both a receive channel (alt_dma_rxchan) and a transmit 
channel (alt_dma_txchan). The Nios II Software Developer’s Handbook 
provides complete details of the HAL system library and the usage of 
DMA devices. 

ioctl() Operations

ioctl() operation requests are defined for both the receive and transmit 
channels, which allows you to control the hardware-dependent aspects of 
the DMA controller. Two ioctl() functions are defined for the receiver 
driver and the transmitter driver: alt_dma_rxchan_ioctl() and 
alt_dma_txchan_ioctl(). Table 7–2 lists the available operations. 
These are valid for both the transmit and receive channels. 

Limitations

Currently the Altera-provided drivers do not support 64-bit and 128-bit 
DMA transactions.

Table 7–2. Operations for alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl() 

Request Meaning

ALT_DMA_SET_MODE_8 Transfers data in units of 8 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_16 Transfers data in units of 16 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_32 Transfers data in units of 32 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_64 Transfers data in units of 64 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_128 Transfers data in units of 128 bits. The value of “arg” is ignored.

ALT_DMA_RX_ONLY_ON (1) Sets a DMA receiver into streaming mode. In this case, data is read 
continuously from a single location. The “arg” parameter specifies the 
address to read from.

ALT_DMA_RX_ONLY_OFF (1) Turns off streaming mode for a receive channel. The value of “arg” is 
ignored.

ALT_DMA_TX_ONLY_ON (1) Sets a DMA transmitter into streaming mode. In this case, data is written 
continuously to a single location. The “arg” parameter specifies the address 
to write to.

ALT_DMA_TX_ONLY_OFF (1) Turns off streaming mode for a transmit channel. The value of “arg” is 
ignored.

Note to Table 7–2:
(1) These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old names 

(ALT_DMA_TX_STREAM_ON, ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and 
ALT_DMA_RX_STREAM_OFF) are still valid, but new designs should use the new names. 
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This function is not thread safe. If you want to access the DMA controller 
from more than one thread then you should use a semaphore or mutex to 
ensure that only one thread is executing within this function at any time. 

Software Files

The DMA controller is accompanied by the following software files. 
These files define the low-level interface to the hardware. Application 
developers should not modify these files.

■ altera_avalon_dma_regs.h—This file defines the core’s register map, 
providing symbolic constants to access the low-level hardware. The 
symbols in this file are used only by device driver functions.

■ altera_avalon_dma.h, altera_avalon_dma.c—These files implement 
the DMA controller’s device driver for the HAL system library. 

Register Map

Programmers using the HAL API never access the DMA controller 
hardware directly via its registers. In general, the register map is only 
useful to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device 
registers directly. If you are writing a device driver, and the 
HAL driver is active for the same device, your driver will 
conflict and fail to operate.
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Table 7–3 shows the register map for the DMA controller. Device drivers 
control and communicate with the hardware through five 
memory-mapped 32-bit registers. 

status Register

The status register consists of individual bits that indicate conditions 
inside the DMA controller. The status register can be read at any time. 
Reading the status register does not change its value.

Table 7–3. DMA Controller Register Map 

Offset Register Name Read/Write 31 . . 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 status (1) RW (2)

LE
N

W
E

O
P

R
E

O
P

B
U

S
Y

D
O

N
E

1 readaddress RW Read master start address

2 writeaddress RW Write master start address

3 length RW DMA transaction length (in bytes)

4 — — Reserved (3)

5 — — Reserved (3)

6 control RW  (2)

S
O

FT
W

A
R

E
R

ES
E

T

Q
U

A
D

W
O

R
D

D
O

U
BL

EW
O

R
D

W
C

O
N

R
C

O
N

LE
E

N

W
E

E
N

R
E

E
N

I_
E

N

G
O

W
O

R
D

H
W

B
Y

TE

7 — — Reserved (3)

Notes to Table 7–3:
(1) Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.
(2) These bits are reserved. Read values are undefined. Write zero.
(3) This register is reserved. Read values are undefined. The result of a write is undefined.
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The status register bits are shown in Table 7–4.

readaddress Register

The readaddress register specifies the first location to be read in a DMA 
transaction. The readaddress register width is determined at system 
generation time. It is wide enough to address the full range of all slave 
ports mastered by the read port. 

writeaddress Register

The writeaddress register specifies the first location to be written in a 
DMA transaction. The writeaddress register width is determined at 
system generation time. It is wide enough to address the full range of all 
slave ports mastered by the write port.

length Register

The length register specifies the number of bytes to be transferred from 
the read port to the write port. The length register is specified in bytes. 
For example, the value must be a multiple of 4 for word transfers, and a 
multiple of 2 for halfword transfers.

The length register is decremented as each data value is written by the 
write master port. When length reaches 0 the LEN bit is set. The length 
register does not decrement below 0. 

The length register width is determined at system generation time. It is at 
least wide enough to span any of the slave ports mastered by the read or 
write master ports, and it can be made wider if necessary.

Table 7–4. status Register Bits

Bit Number Bit Name Read/Write/Clear Description

0 DONE R/C A DMA transaction is completed. The DONE bit is set to 1 when 
an end of packet condition is detected or the specified 
transaction length is completed. Write zero to the status register 
to clear the DONE bit. 

1 BUSY R The BUSY bit is 1 when a DMA transaction is in progress.

2 REOP R The REOP bit is 1 when a transaction is completed due to an 
end-of-packet event on the read side.

3 WEOP R The WEOP bit is 1 when a transaction is completed due to an end 
of packet event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to 
zero.
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control Register

The control register is composed of individual bits that control the DMA’s 
internal operation. The control register’s value can be read at any time. 
The control register bits determine which, if any, conditions of the DMA 
transaction result in the end of a transaction and an interrupt request.

The control register bits are shown in Table 7–5. 

Table 7–5. control Register Bits (Part 1 of 2)

Bit 
Number Bit Name Read/Write/Clear Description

0 BYTE RW Specifies byte transfers. 

1 HW RW Specifies halfword (16-bit) transfers. 

2 WORD RW Specifies word (32-bit) transfers. 

3 GO RW Enables DMA transaction. When the GO bit is set to 0, 
the DMA is prevented from executing transfers. When 
the GO bit is set to 1 and the length register is non-zero, 
transfers occur.

4 I_EN RW Enables interrupt requests (IRQ). When the I_EN bit is 
1, the DMA controller generates an IRQ when the status 
register’s DONE bit is set to 1. IRQs are disabled when 
the I_EN bit is 0. 

5 REEN RW Ends transaction on read-side end-of-packet. When the 
REEN bit is set to 1, a slave port with flow control on the 
read side may end the DMA transaction by asserting its 
end-of-packet signal.

6 WEEN RW Ends transaction on write-side end-of-packet. When the 
WEEN bit is set to 1, a slave port with flow control on the 
write side may end the DMA transaction by asserting its 
end-of-packet signal.

7 LEEN RW Ends transaction when the length register reaches 
zero. When the LEEN bit is 1, the DMA transaction ends 
when the length register reaches 0. When this bit is 0, 
length reaching 0 does not cause a transaction to 
end. In this case, the DMA transaction must be 
terminated by an end-of-packet signal from either the 
read or write master port.
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The data width of DMA transactions is specified by the BYTE, HW, WORD, 
DOUBLEWORD, and QUADWORD bits. Only one of these bits can be set at a 
time. If more than one of the bits is set, the DMA controller behavior is 
undefined. The width of the transfer is determined by the narrower of the 
two slaves read and written. For example, a DMA transaction that reads 
from a 16-bit flash memory and writes to a 32-bit on-chip memory 
requires a halfword transfer. In this case, HW must be set to 1, and BYTE, 
WORD, DOUBLEWORD, and QUADWORD must be set to 0.

To successfully perform transactions of a specific width, that width must 
be enabled in hardware using the Allowed Transaction hardware option. 
For example, the DMA controller behavior is undefined if quadword 
transfers are disabled in hardware, but the QUADWORD bit is set during a 
DMA transaction. 

c Executing a DMA software reset when a DMA transfer is active 
may result in permanent bus lockup (until the next system 
reset). The SOFTWARERESET bit should therefore not be written 
except as a last resort.

8 RCON RW Reads from a constant address. When RCON is 0, the 
read address increments after every data transfer. This 
is the mechanism for the DMA controller to read a range 
of memory addresses. When RCON is 1, the read 
address does not increment. This is the mechanism for 
the DMA controller to read from a peripheral at a 
constant memory address. For details, see “Addressing 
and Address Incrementing” on page 7–4. 

9 WCON RW Writes to a constant address. Similar to the RCON bit, 
when WCON is 0 the write address increments after every 
data transfer; when WCON is 1 the write address does not 
increment. For details, see “Addressing and Address 
Incrementing” on page 7–4.

10 DOUBLEWORD RW Specifies doubleword transfers.

11 QUADWORD RW Specifies quadword transfers.

12 SOFTWARERESET RW Software can reset the DMA engine by writing this bit to 
1 twice. Upon the second write of 1 to the 
SOFTWARERESET bit, the DMA control will be reset 
identically to a system reset. The logic which sequences 
the software reset process then resets itself 
automatically.

Table 7–5. control Register Bits (Part 2 of 2)

Bit 
Number Bit Name Read/Write/Clear Description
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Interrupt Behavior

The DMA controller has a single IRQ output that is asserted when the 
status register’s DONE bit equals 1 and the control register’s I_EN bit 
equals 1.

Writing the status register clears the DONE bit and acknowledges the 
IRQ. A master peripheral can read the status register and determine 
how the DMA transaction finished by checking the LEN, REOP, and WEOP 
bits.

Referenced 
Document

This chapter references the Avalon Memory-Mapped Interface 
Specification manual.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
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Document 
Revision History

Table 7–6 shows the revision history for this chapter.

Table 7–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

● Chapter 7 was formerly Chapter 6.
● Updated the description on Burst Transactions parameters. —

May 2007
v7.1.0

● Chapter 6 was formerly Chapter 4.
● Added “Device and Tools Support” on page 7–6 section.
● Added note on addressing native-aligned peripherals.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies. Changed old “Avalon interface” terms to 
“Avalon Memory-Mapped interface.”

● Added description of SOFTWARERESET bit to control 
register in Table 4–5 on page 4–10.

● Added more information about DMA addressing and the fact 
that addresses are aligned to the size of the data transfer in 
“The Master Read and Write Ports” on page 4–3.

For the 6.1 release, 
Altera released the 
Avalon Streaming 
interface, which 
necessitated some re-
phrasing of existing 
Avalon terminology. 
Other changes to the 
document serve only to 
clarify existing behavior.

May 2006
v6.0.0

Chapter title changed, but no change in content from previous 
release. —

December 2005
v5.1.1

Changed Avalon “streaming” terminology to “flow control” based 
on a change to the Avalon Interface Specification

—

October 2005
v5.1.0

No change from previous release. 
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook. —

December 2004
v1.2

● Updated description of the GO bit.
● Updated descriptions of ioctl() macros in table 6-2. —

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—
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Section II. Communication
Peripherals

This section describes communication peripherals provided by Altera. 
These components provide communication interfaces for SOPC Builder 
systems.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 8, JTAG UART Core
■ Chapter 9, UART Core
■ Chapter 10, SPI Core

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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8. JTAG UART Core

Core Overview The JTAG universal asynchronous receiver/transmitter (UART) core 
with Avalon® interface implements a method to communicate serial 
character streams between a host PC and an SOPC Builder system on an 
Altera® FPGA. In many designs, the JTAG UART core eliminates the need 
for a separate RS-232 serial connection to a host PC for character I/O. The 
core provides a simple register-mapped Avalon interface that hides the 
complexities of the JTAG interface from embedded software 
programmers. Master peripherals (such as a Nios® II processor) 
communicate with the core by reading and writing control and data 
registers. 

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs, 
and provides host access via the JTAG pins on the FPGA. The host PC can 
connect to the FPGA via any Altera JTAG download cable, such as the 
USB-Blaster™ cable. Software support for the JTAG UART core is 
provided by Altera. For the Nios II processor, device drivers are provided 
in the HAL system library, allowing software to access the core using the 
ANSI C Standard Library stdio.h routines. For the host PC, Altera 
provides JTAG terminal software that manages the connection to the 
target, decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is SOPC Builder-ready and integrates easily into 
any SOPC Builder-generated system. This chapter contains the following 
sections:

■ “Functional Description” on page 8–2
■ “Device and Tools Support” on page 8–4
■ “Instantiating the Core in SOPC Builder” on page 8–4
■ “Hardware Simulation Considerations” on page 8–7
■ “Software Programming Model” on page 8–7

NII51009-7.2.0
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Functional 
Description

Figure 8–1 shows a block diagram of the JTAG UART core and its 
connection to the JTAG circuitry inside an Altera FPGA. The following 
sections describe the components of the core.

Figure 8–1. JTAG UART Core Block Diagram

Avalon Slave Interface and Registers

The JTAG UART core provides an Avalon slave interface to the JTAG 
circuitry on an Altera FPGA. The user-visible interface to the JTAG UART 
core consists of two 32-bit registers, data and control, that are accessed 
through an Avalon slave port. An Avalon master, such as a Nios II 
processor, accesses the registers to control the core and transfer data over 
the JTAG connection. The core operates on 8-bit units of data at a time; 
eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can 
request an interrupt when read data is available, or when the write FIFO 
is ready for data. For further details see “Interrupt Behavior” on 
page 8–13. 
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Read and Write FIFOs

The JTAG UART core provides bidirectional FIFOs to improve 
bandwidth over the JTAG connection. The FIFO depth is parameterizable 
to accommodate the available on-chip memory. The FIFOs can be 
constructed out of memory blocks or registers, allowing you to trade off 
logic resources for memory resources, if necessary.

JTAG Interface

Altera FPGAs contain built-in JTAG control circuitry between the 
device’s JTAG pins and the logic inside the device. The JTAG controller 
can connect to user-defined circuits called “nodes” implemented in the 
FPGA. Because several nodes may need to communicate via the JTAG 
interface, a JTAG hub (that is, a multiplexer) is necessary. During logic 
synthesis and fitting, the Quartus® II software automatically generates 
the JTAG hub logic. No manual design effort is required to connect the 
JTAG circuitry inside the device; the process is presented here only for 
clarity.

Host-Target Connection

Figure 8–2 shows the connection between a host PC and an 
SOPC Builder-generated system containing a JTAG UART core. 

Figure 8–2. Example System Using the JTAG UART Core
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The JTAG controller on the FPGA and the download cable driver on the 
host PC implement a simple data-link layer between host and target. All 
JTAG nodes inside the FPGA are multiplexed through the single JTAG 
connection. JTAG server software on the host PC controls and decodes the 
JTAG data stream, and maintains distinct connections with nodes inside 
the FPGA. 

The example system in Figure 8–2 contains one JTAG UART core and a 
Nios II processor. Both agents communicate with the host PC over a 
single Altera download cable. Thanks to the JTAG server software, each 
host application has an independent connection to the target. Altera 
provides the JTAG server drivers and host software required to 
communicate with the JTAG UART core. 

1 Systems with multiple JTAG UART cores are possible, and all 
cores communicate via the same JTAG interface. To maintain 
coherent data streams, only one processor should communicate 
with each JTAG UART core.

Device and 
Tools Support

The JTAG UART core supports the Arria™ GX, Stratix® III, Stratix II, 
Stratix II GX, Stratix GX, Stratix, Cyclone® III, Cyclone II, and Cyclone 
device families. The JTAG UART core is supported by the Nios II 
hardware abstraction layer (HAL) system library. No software support is 
provided for the first-generation Nios processor. 

To view the character stream on the host PC, the JTAG UART core must 
be used in conjunction with the JTAG terminal software provided by 
Altera. Nios II processor users access the JTAG UART via the Nios II IDE 
or the nios2-terminal command-line utility. 

f For further details, refer to the Nios II Software Developer's Handbook or 
the Nios II IDE online help 

Instantiating the 
Core in SOPC 
Builder

Designers use the MegaWizard® interface for the JTAG UART core in 
SOPC Builder to specify the core features. The following sections describe 
the available options in the MegaWizard interface.

Configuration Page

The options on this page control the hardware configuration of the JTAG 
UART core. The default settings are pre-configured to behave optimally 
with the Altera-provided device drivers and JTAG terminal software. 
Most designers should not change the default values, except for the 
Construct using registers instead of memory blocks option. 
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Write FIFO Settings

The write FIFO buffers data flowing from the Avalon interface to the host. 
The following settings are available:

■ Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only 
powers of two are allowed. Larger values consume more on-chip 
memory resources. A depth of 64 is generally optimal for 
performance, and larger values are rarely necessary.

■ IRQ Threshold—The write IRQ threshold governs how the core 
asserts its IRQ in response to the FIFO emptying. As the JTAG 
circuitry empties data from the write FIFO, the core asserts its IRQ 
when the number of characters remaining in the FIFO reaches this 
threshold value. For maximum bandwidth, a processor should 
service the interrupt by writing more data and preventing the write 
FIFO from emptying completely. A value of 8 is typically optimal. 
See “Interrupt Behavior” on page 8–13 for further details. 

■ Construct using registers instead of memory blocks—Turning on 
this option causes the FIFO to be constructed out of on-chip logic 
resources. This option is useful when memory resources are limited. 
Each byte consumes roughly 11 logic elements (LEs), so a FIFO depth 
of 8 (bytes) consumes roughly 88 LEs.

Read FIFO Settings

The read FIFO buffers data flowing from the host to the Avalon interface. 
Settings are available to control the depth of the FIFO and the generation 
of interrupts.

■ Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only 
powers of two are allowed. Larger values consume more on-chip 
memory resources. A depth of 64 is generally optimal for 
performance, and larger values are rarely necessary.

■ IRQ Threshold—The IRQ threshold governs how the core asserts its 
IRQ in response to the FIFO filling up. As the JTAG circuitry fills up 
the read FIFO, the core asserts its IRQ when the amount of space 
remaining in the FIFO reaches this threshold value. For maximum 
bandwidth, a processor should service the interrupt by reading data 
and preventing the read FIFO from filling up completely. A value of 
8 is typically optimal. See “Interrupt Behavior” on page 8–13 for 
further details.
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■ Construct using registers instead of memory blocks—Turning on 
this option causes the FIFO to be constructed out of logic resources. 
This option is useful when memory resources are limited. Each byte 
consumes roughly 11 LEs, so a FIFO depth of 8 (bytes) consumes 
roughly 88 LEs.

Simulation Settings

At system generation time, when SOPC Builder generates the logic for the 
JTAG UART core, a simulation model is also constructed. The simulation 
model offers features to simplify simulation of systems using the JTAG 
UART core. Changes to the simulation settings do not affect the behavior 
of the core in hardware; the settings affect only functional simulation.

Simulated Input Character Stream

You can enter a character stream that will be simulated entering the read 
FIFO upon simulated system reset. The MegaWizard interface accepts an 
arbitrary character string, which is later incorporated into the test bench. 
After reset, this character string is pre-initialized in the read FIFO, giving 
the appearance that an external JTAG terminal program is sending a 
character stream to the JTAG UART core. 

Prepare Interactive Windows

At system generation time, the JTAG UART core generator can create 
ModelSim® macros to open interactive windows during simulation. 
These windows allow the user to send and receive ASCII characters via a 
console, giving the appearance of a terminal session with the system 
executing in hardware. The following options are available:

■ Do not generate ModelSim aliases for interactive windows—This 
option does not create any ModelSim macros for character I/O.

■ Create ModelSim alias to open a window showing output as ASCII 
text—This option creates a ModelSim macro to open a console 
window that displays output from the write FIFO. Values written to 
the write FIFO via the Avalon interface are displayed in the console 
as ASCII characters.

■ Create ModelSim alias to open an interactive stimulus/response 
window—This option creates a ModelSim macro to open a console 
window that allows input and output interaction with the core. 
Values written to the write FIFO via the Avalon interface are 
displayed in the console as ASCII characters. Characters typed into 
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the console are fed into the read FIFO, and can be read via the Avalon 
interface. When this option is enabled, the simulated character input 
stream option is ignored.

Hardware 
Simulation 
Considerations

The simulation features were created for easy simulation of Nios II 
processor systems when using the ModelSim simulator. The simulation 
model is implemented in the JTAG UART core’s top-level HDL file. The 
synthesizable HDL and the simulation HDL are implemented in the same 
file. Some simulation features are implemented using “translate on/off” 
synthesis directives that make certain sections of HDL code visible only 
to the synthesis tool. 

1 Refer to AN 351: Simulating Nios II Processor Designs for complete 
details about simulating the JTAG UART core in Nios II systems. 

Other simulators can be used, but require user effort to create a custom 
simulation process. You can use the auto-generated ModelSim scripts as 
references to create similar functionality for other simulators. 

c Do not edit the simulation directives if you are using Altera’s 
recommended simulation procedures. If you change the 
simulation directives to create a custom simulation flow, be 
aware that SOPC Builder overwrites existing files during system 
generation. Take precautions to ensure your changes are not 
overwritten.

Software 
Programming 
Model

The following sections describe the software programming model for the 
JTAG UART core, including the register map and software declarations to 
access the hardware. For Nios II processor users, Altera provides HAL 
system library drivers that enable you to access the JTAG UART using the 
ANSI C standard library functions, such as printf() and getchar(). 

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device 
driver that integrates into the HAL system library for Nios II systems. 
HAL users should access the JTAG UART via the familiar HAL API and 
the ANSI C standard library, rather than accessing the JTAG UART 
registers. ioctl() requests are defined that allow HAL users to control 
the hardware-dependent aspects of the JTAG UART.

c If your program uses the Altera-provided HAL device driver to 
access the JTAG UART hardware, accessing the device registers 
directly will interfere with the correct behavior of the driver.
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For Nios II processor users, the HAL system library API provides 
complete access to the JTAG UART core's features. Nios II programs treat 
the JTAG UART core as a character mode device, and send and receive 
data using the ANSI C standard library functions, such as getchar() 
and printf(). 

Example 8–1 demonstrates the simplest possible usage, printing a 
message to stdout using printf(). In this example, the SOPC Builder 
system contains a JTAG UART core, and the HAL system library is 
configured to use this JTAG UART device for stdout.

Example 8–1. Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>
int main ()
{
  printf("Hello world.\n");
  return 0;
}

Example 8–2 demonstrates reading characters from and sending 
messages to a JTAG UART core using the C standard library. In this 
example, the SOPC Builder system contains a JTAG UART core named 
jtag_uart that is not necessarily configured as the stdout device. In this 
case, the program treats the device like any other node in the HAL file 
system.
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Example 8–2. Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
  char* msg = "Detected the character 't'.\n";
  FILE* fp;
  char prompt = 0;

  fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
  if (fp)
  {
    while (prompt != 'v') 
    {  // Loop until we receive a 'v'.
      prompt = getc(fp);  // Get a character from the JTAG UART.
      if (prompt == 't')
      {  // Print a message if character is 't'.
        fwrite (msg, strlen (msg), 1, fp);
      }

      if (ferror(fp))// Check if an error occurred with the file pointer
        clearerr(fp);// If so, clear it.
    }

    fprintf(fp, "Closing the JTAG UART file handle.\n");
    fclose (fp);
  }
  
  return 0;
}

In this example, the ferror(fp) is used to check if an error occurred on 
the JTAG UART connection, such as a disconnected JTAG connection. In 
this case, the driver detects that the JTAG connection is disconnected, 
reports an error (EIO), and discards data for subsequent transactions. If 
this error ever occurs, the C library latches the value until you explicitly 
clear it with the clearerr() function. 

The Nios II Software Developer's Handbook provides complete details of the 
HAL system library. The Nios II Embedded Design Suite (EDS) provides 
a number of software example designs that use the JTAG UART core.

Driver Options: Fast versus Small Implementations

To accommodate the requirements of different types of systems, the JTAG 
UART driver has two variants, a fast version and a small version. The fast 
behavior is used by default. Both the fast and small drivers fully support 
the C standard library functions and the HAL API. 



8–10  Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–10  Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The fast driver is an interrupt-driven implementation, which allows the 
processor to perform other tasks when the device is not ready to send or 
receive data. Because the JTAG UART data rate is slow compared to the 
processor, the fast driver can provide a large performance benefit for 
systems that could be performing other tasks in the interim. In addition, 
the fast version of the Altera Avalon JTAG UART monitors the connection 
to the host. The driver discards characters if no host is connected, or if the 
host is not running an application that handles the I/O stream. 

The small driver is a polled implementation that waits for the JTAG 
UART hardware before sending and receiving each character. The 
performance of the small driver is poor if you are sending large amounts 
of data. The small version assumes that the host is always connected, and 
will never discard characters. Therefore, the small driver will hang the 
system if the JTAG UART hardware is ever disconnected from the host 
while the program is sending or receiving data. There are two ways to 
enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project. 
This option affects device drivers for all devices in the system.

■ Specify the preprocessor option 
-DALTERA_AVALON_JTAG_UART_SMALL. Use this option if you 
want the small, polled implementation of the JTAG UART driver, but 
you do not want to affect the drivers for other devices.

ioctl() Operations

The fast version of the JTAG UART driver supports the ioctl() function 
to allow HAL-based programs to request device-specific operations. 
Specifically, you can use the ioctl() operations to control the timeout 
period, and to detect whether or not a host is connected. The fast driver 
defines the ioctl() operations shown in Table 8–1.

Table 8–1. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT Set the timeout (in seconds) after which the driver will 
decide that the host is not connected. A timeout of 0 
makes the target assume that the host is always 
connected. The ioctl arg parameter passed in must 
be a pointer to an integer.

TIOCGCONNECTED Sets the integer arg parameter to a value that 
indicates whether the host is connected and acting as 
a terminal (1), or not connected (0). The ioctl arg 
parameter passed in must be a pointer to an integer.
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f For details about the ioctl() function, refer to the Nios II Software 
Developer's Handbook. 

Software Files

The JTAG UART core is accompanied by the following software files. 
These files define the low-level interface to the hardware, and provide the 
HAL drivers. Application developers should not modify these files.

■ altera_avalon_jtag_uart_regs.h—This file defines the core's register 
map, providing symbolic constants to access the low-level hardware. 
The symbols in this file are used only by device driver functions.

■ altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files 
implement the HAL system library device driver. 

Accessing the JTAG UART Core via a Host PC

Host software is necessary for a PC to access the JTAG UART core. The 
Nios II IDE supports the JTAG UART core, and displays character I/O in 
a console window. Altera also provides a command-line utility called 
nios2-terminal that opens a terminal session with the JTAG UART core.

f For further details, refer to the Nios II Software Developer's Handbook and 
the Nios II IDE online help. 

Register Map

Programmers using the HAL API never access the JTAG UART core 
directly via its registers. In general, the register map is only useful to 
programmers writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device 
registers directly. If you are writing a device driver, and the 
HAL driver is active for the same device, your driver will 
conflict and fail to operate.
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Table 8–2 shows the register map for the JTAG UART core. Device drivers 
control and communicate with the core through the two 32-bit 
memory-mapped registers. 

Data Register

Embedded software accesses the read and write FIFOs via the data 
register. Table 8–3 describes the function of each bit. 

A read from the data register returns the first character from the FIFO (if 
one is available) in the DATA field. Reading also returns information 
about the number of characters remaining in the FIFO in the RAVAIL 
field. A write to the data register stores the value of the DATA field in the 
write FIFO. If the write FIFO is full, then the character is lost.

Table 8–2. JTAG UART Core Register Map

Offset Register 
Name R/W

Bit Description

31 ... 16 15 14 ... 11 10 9 8 7 ... 2 1 0

0 data RW RAVAIL RVALID (1) DATA

1 control RW WSPACE (1) AC WI RI (1) WE RE

Note to Table 8–2:
(1) Reserved. Read values are undefined. Write zero.

Table 8–3. data Register Bits

Bit Number Bit/Field Name Read/Write/Clear Description

0 .. 7 DATA R/W The value to transfer to/from the JTAG core. When 
writing, the DATA field holds a character to be written to 
the write FIFO. When reading, the DATA field holds a 
character read from the read FIFO. 

15 RVALID R Indicates whether the DATA field is valid. If RVALID=1, 
then the DATA field is valid, otherwise DATA is undefined.

16 .. 32 RAVAIL R The number of characters remaining in the read FIFO 
(after the current read).
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Control Register

Embedded software controls the JTAG UART core’s interrupt generation 
and reads status information via the control register. Table 8–4 
describes the function of each bit.

A read from the control register returns the status of the read and 
write FIFOs. Writes to the register can be used to enable/disable 
interrupts, or clear the AC bit. 

The RE and WE bits enable interrupts for the read and write FIFOs, 
respectively. The WI and RI bits indicate the status of the interrupt 
sources, qualified by the values of the interrupt enable bits (WE and RE). 
Embedded software can examine RI and WI to determine the condition 
that generated the IRQ. See “Interrupt Behavior” on page 8–13 for further 
details.

The AC bit indicates that an application on the host PC has polled the 
JTAG UART core via the JTAG interface. Once set, the AC bit remains set 
until it is explicitly cleared via the Avalon interface. Writing 1 to AC clears 
it. Embedded software can examine the AC bit to determine if a 
connection exists to a host PC. If no connection exists, the software may 
choose to ignore the JTAG data stream. When the host PC has no data to 
transfer, it can choose to poll the JTAG UART core as infrequently as once 
per second. Delays caused by other host software using the JTAG 
download cable could cause delays of up to 10 seconds between polls.

Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual 
interrupt conditions is pending and enabled. 

Table 8–4. control Register Bits

Bit Number Bit/Field Name Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts

1 WE R/W Interrupt-enable bit for write interrupts

8 RI R Indicates that the read interrupt is pending

9 WI R Indicates that the write interrupt is pending

10 AC R/C Indicates that there has been JTAG activity since the bit 
was cleared. Writing 1 to AC clears it to 0.

16 .. 32 WSPACE R The number of spaces available in the write FIFO.
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1 Interrupt behavior is of interest to device driver programmers 
concerned with the bandwidth performance to the host PC. 
Example designs and the JTAG terminal program provided with 
Nios II Embedded Design Suite (EDS) are pre-configured with 
optimal interrupt behavior. 

The JTAG UART core has two kinds of interrupts: write interrupts and 
read interrupts. The WE and RE bits in the control register 
enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly 
empty. The “nearly empty” threshold, write_threshold, is specified at 
system generation time and cannot be changed by embedded software. 
The write interrupt condition is set whenever there are 
write_threshold or fewer characters in the write FIFO. It is cleared by 
writing characters to fill the write FIFO beyond the write_threshold. 
Embedded software should only enable write interrupts after filling the 
write FIFO. If it has no characters remaining to send, embedded software 
should disable the write interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full. 
The “nearly full” threshold value, read_threshold, is specified at 
system generation time and cannot be changed by embedded software. 
The read interrupt condition is set whenever the read FIFO has 
read_threshold or fewer spaces remaining. The read interrupt 
condition is also set if there is at least one character in the read FIFO and 
no more characters are expected. The read interrupt is cleared by reading 
characters from the read FIFO.

For optimum performance, the interrupt thresholds should match the 
interrupt response time of the embedded software. For example, with a 
10-MHz JTAG clock, a new character is provided (or consumed) by the 
host PC every 1µs. With a threshold of 8, the interrupt response time must 
be less than 8µs. If the interrupt response time is too long, then 
performance will suffer. If it is too short, then interrupts will occur too 
frequently. 

1 For Nios II processor systems, read and write thresholds of 8 are 
an appropriate default.

Referenced 
Document

This chapter references the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
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Table 8–5 shows the revision history for this chapter.

Table 8–5. Document Revision History

Date and 
Document Version Changes Made Summary of Changes

October 2007 
v7.2.0

Chapter 8 was formerly Chapter 7. —

May 2007
v7.1.0

● Chapter 7 was formerly chapter 5.
● Added Arria™ GX to “Device and Tools Support” on 

page 8–4.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

Added Cyclone III and Stratix III support. Version 7.0 of the 
Quartus II software 
added Cyclone III 
support. 

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies. 

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric.” 

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.” 

For version 6.1, added 
Stratix III support. 
Additionally, Altera 
released the Avalon 
Streaming interface, 
which necessitated some 
rephrasing of existing 
Avalon terminology.

May 2006
v6.0.0

No change from previous release. —

October 2005
v5.1.0

No change from previous release. —

May 2005
v5.0.0

No change from previous release. 
Previously in the Nios II Processor Reference Handbook.

—

December 2004
v1.2 

Added Cyclone II support. —

September 2004
v1.1

Updates for Nios II 1.01 release. —

May 2004
v1.0

Initial release.
—
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9. UART Core

Core Overview The universal asynchronous receiver/transmitter core with Avalon® 
interface (UART core) implements a method to communicate serial 
character streams between an embedded system on an Altera® FPGA and 
an external device. The core implements the RS-232 protocol timing, and 
provides adjustable baud rate, parity, stop and data bits, and optional 
RTS/CTS flow control signals. The feature set is configurable, allowing 
designers to implement just the necessary functionality for a given 
system.

The core provides a simple register-mapped Avalon Memory-Mapped 
(Avalon-MM) slave interface that allows Avalon-MM master peripherals 
(such as a Nios® II processor) to communicate with the core simply by 
reading and writing control and data registers. 

The UART core is SOPC Builder-ready and integrates easily into any 
SOPC Builder-generated system. This chapter contains the following 
sections:

■ “Functional Description” on page 9–2
■ “Device and Tools Support” on page 9–4
■ “Instantiating the Core in SOPC Builder” on page 9–5
■ “Hardware Simulation Considerations” on page 9–9
■ “Software Programming Model” on page 9–9

NII51010-7.2.0
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Functional 
Description

Figure 9–1 shows a block diagram of the UART core. 

Figure 9–1. Block Diagram of the UART Core in a Typical System

The core has two user-visible parts:

■ The register file, which is accessed via the Avalon-MM slave port
■ The RS-232 signals, RXD, TXD, CTS, and RTS

Avalon-MM Slave Interface and Registers

The UART core provides an Avalon-MM slave interface to the internal 
register file. The user interface to the UART core consists of six 16-bit 
registers: control, status, rxdata, txdata, divisor, and 
endofpacket. A master peripheral, such as a Nios II processor, accesses 
the registers to control the core and transfer data over the serial 
connection. 

The UART core provides an active-high interrupt request (IRQ) output 
that can request an interrupt when new data has been received, or when 
the core is ready to transmit another character. For further details, refer 
“Interrupt Behavior” on page 9–20. 
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The Avalon-MM slave port is capable of transfers with flow control. The 
UART core can be used in conjunction with a direct memory access 
(DMA) peripheral with Avalon-MM flow control to automate continuous 
data transfers between, for example, the UART core and memory. 

f For more information, refer to the Timer Core chapter in volume 5 of the 
Quartus II Handbook. For details about the Avalon-MM interface, refer to 
the Avalon Memory-Mapped Interface Specification.

RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive 
logic. The UART core sends and receives serial data via the TXD and RXD 
ports. The I/O buffers on most Altera FPGA families do not comply with 
RS-232 voltage levels, and may be damaged if driven directly by signals 
from an RS-232 connector. To comply with RS-232 voltage signaling 
specifications, an external level-shifting buffer is required (for example, 
Maxim MAX3237) between the FPGA I/O pins and the external RS-232 
connector. 

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter 
inside the FPGA can be used to reverse the polarity of any of the RS-232 
signals, if necessary.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register 
and a corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM 
master peripherals write the txdata holding register via the Avalon-MM 
slave port. The transmit shift register is loaded from the txdata register 
automatically when a serial transmit shift operation is not currently in 
progress. The transmit shift register directly feeds the TXD output. Data is 
shifted out to TXD least-significant bit (LSB) first.

These two registers provide double buffering. A master peripheral can 
write a new value into the txdata register while the previously written 
character is being shifted out. The master peripheral can monitor the 
transmitter’s status by reading the status register’s transmitter ready 
(TRDY), transmitter shift register empty (tmt), and transmitter overrun 
error (toe) bits.

The transmitter logic automatically inserts the correct number of start, 
stop, and parity bits in the serial TXD data stream as required by the 
RS-232 specification.
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Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and 
a corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM 
master peripherals read the rxdata holding register via the Avalon-MM 
slave port. The rxdata holding register is loaded from the receiver shift 
register automatically every time a new character is fully received.

These two registers provide double buffering. The rxdata register can 
hold a previously received character while the subsequent character is 
being shifted into the receiver shift register.

A master peripheral can monitor the receiver’s status by reading the 
status register’s read-ready (rrdy), receiver-overrun error (roe), break 
detect (BRK), parity error (pe), and framing error (fe) bits. The receiver 
logic automatically detects the correct number of start, stop, and parity 
bits in the serial RXD stream as required by the RS-232 specification. The 
receiver logic checks for four exceptional conditions in the received data 
(frame error, parity error, receive overrun error, and break), and sets 
corresponding status register bits (fe, pe, roe, or BRK).

Baud Rate Generation

The UART core’s internal baud clock is derived from the Avalon-MM 
clock input. The internal baud clock is generated by a clock divider. The 
divisor value can come from one of the following sources:

■ A constant value specified at system generation time
■ The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at 
system generation time, the divisor value is fixed, and the baud rate 
cannot be altered.

Device and 
Tools Support

The UART core can target all Altera FPGAs.
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Instantiating the 
Core in SOPC 
Builder

Instantiating the UART in hardware creates at least two I/O ports for 
each UART core: An RXD input, and a TXD output. Optionally, the 
hardware may include flow control signals, the CTS input and RTS 
output.

Designers use the MegaWizard® interface for the UART core in SOPC 
Builder to configure the hardware feature set. The following sections 
describe the available options.

Configuration Settings

This section describes the configuration settings.

Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232 
connections. The baud rate can be configured in one of two ways:

■ Fixed rate—The baud rate is fixed at system generation time and 
cannot be changed via the Avalon-MM slave port.

■ Variable rate—The baud rate can vary, based on a clock divisor value 
held in the divisor register. A master peripheral changes the baud 
rate by writing new values to the divisor register. 

1 The baud rate is calculated based on the clock frequency 
provided by the Avalon-MM interface. Changing the system 
clock frequency in hardware without re-generating the UART 
core hardware will result in incorrect signaling.

Baud Rate (bps) Setting
The Baud Rate setting determines the default baud rate after reset. The 
Baud Rate option offers standard preset values (for example, 9600, 57600, 
115200 bps), or you can enter any baud rate manually.

The baud rate value is used to calculate an appropriate clock divisor 
value to implement the desired baud rate. Baud rate and divisor values 
are related as follows:

(1)

(2)

divisor int clock frequency( )
baud rate

------------------------------------------------- 0.5+=

baud rate clock frequency
divisor 1+( )

-------------------------------------=
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Baud Rate Can Be Changed By Software Setting
When this setting is on, the hardware includes a 16-bit divisor register 
at address offset 4. The divisor register is writable, so the baud rate can 
be changed by writing a new value to this register.

When this setting is off, the UART hardware does not include a divisor 
register. The UART hardware implements a constant (unchangeable) 
baud divisor, and the value cannot be changed after system generation. 
In this case, writing to address offset 4 has no effect, and reading from 
address offset 4 produces an undefined result.

Data Bits, Stop Bits, Parity

The UART core’s parity, data bits and stop bits are configurable. These 
settings are fixed at system generation time; they cannot be altered via the 
register file. The following settings are available.

Data Bits Setting
The settings shown in Table 9–1 are available.

Parity Setting
When Parity is set to None, the transmit logic sends data without 
including a parity bit, and the receive logic presumes the incoming data 
does not include a parity bit. When parity is None, the status register’s 
parity error (PE) bit is not implemented; it always reads 0. 

When Parity is set to Odd or Even, the transmit logic computes and 
inserts the required parity bit into the outgoing TXD bitstream, and the 
receive logic checks the parity bit in the incoming RXD bitstream. If the 
receiver finds data with incorrect parity, the status register’s PE is set to 1. 
When parity is Even, the parity bit is 0 if the character has an even 
number of 1 bits; otherwise the parity bit is 1. Similarly, when parity is 
Odd, the parity bit is 0 if the character has an odd number of 1 bits.

Table 9–1. Data Bits Settings

Setting Allowed Values Description

Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and 
endofpacket registers.

Stop Bits 1, 2 This setting determines whether the core transmits 1 or 2 stop bits with every 
character. The core always terminates a receive transaction at the first stop bit, 
and ignores all subsequent stop bits, regardless of the Stop Bits setting.

Parity None, Even, Odd This setting determines whether the UART transmits characters with parity 
checking, and whether it expects received characters to have parity checking. 
Refer to “Parity Setting”.
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Flow Control

The following flow control option is available.

Include CTS/RTS Pins and Control Register Bits
When this setting is on, the UART hardware includes:

■ cts_n (logic negative CTS) input port
■ rts_n (logic negative RTS) output port
■ CTS bit in the status register
■ DCTS bit in the status register
■ RTS bit in the control register
■ IDCTS bit in the control register

Based on these hardware facilities, an Avalon-MM master peripheral can 
detect CTS and transmit RTS flow control signals. The CTS input and RTS 
output ports are tied directly to bits in the status and control 
registers, and have no direct effect on any other part of the core. When 
using flow control, be sure the terminal program on the host side is also 
configured for flow control.

When the Include CTS/RTS pins and control register bits setting is off, 
the core does not include the hardware listed above and continuous 
writes to the UART may loose data. The control/status bits CTS, DCTS, 
IDCTS, and RTS are not implemented; they always read as 0. 

Avalon-MM Transfers with Flow Control (DMA)

The UART core’s Avalon-MM interface optionally implements 
Avalon-MM transfers with flow control. This allows an Avalon-MM 
master peripheral to write data only when the UART core is ready to 
accept another character, and to read data only when the core has data 
available. The UART core can also optionally include the end-of-packet 
register.

Include End-of-Packet Register
When this setting is on, the UART core includes:

■ A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data 
width is determined by the Data Bits setting.

■ eop bit in the status register
■ ieop bit in the control register
■ endofpacket signal in the Avalon-MM interface to support data 

transfers with flow control to/from other master peripherals in the 
system 
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End-of-packet (EOP) detection allows the UART core to terminate a data 
transaction with a Avalon-MM master with flow control. EOP detection 
can be used with a DMA controller, for example, to implement a UART 
that automatically writes received characters to memory until a specified 
character is encountered in the incoming RXD stream. The terminating 
(EOP) character’s value is determined by the endofpacket register.

When the EOP register is disabled, the UART core does not include the 
resources listed above. Writing to the endofpacket register has no 
effect, and reading produces an undefined value.

Simulation Settings

When the UART core’s logic is generated, a simulation model is also 
constructed. The simulation model offers features to simplify and 
accelerate simulation of systems that use the UART core. Changes to the 
simulation settings do not affect the behavior of the UART core in 
hardware; the settings affect only functional simulation.

f For examples of how to use the following settings to simulate Nios II 
systems, refer to AN 351: Simulating Nios II Embedded Processor Designs. 

Simulated RXD-Input Character Stream

You can enter a character stream that is simulated entering the RXD port 
upon simulated system reset. The UART core’s MegaWizard interface 
accepts an arbitrary character string, which is later incorporated into the 
UART simulation model. After reset in reset, the string is input into the 
RXD port character-by-character as the core is able to accept new data.

Prepare Interactive Windows

At system generation time, the UART core generator can create ModelSim 
macros that facilitate interaction with the UART model during 
simulation. The following options are available:

Create ModelSim Alias to Open Streaming Output Window
A ModelSim macro is created to open a window that displays all output 
from the TXD port.

Create ModelSim Alias to Open Interactive Stimulus Window
A ModelSim macro is created to open a window that accepts stimulus for 
the RXD port. The window sends any characters typed in the window to 
the RXD port.
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Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the 
system, and it is seldom useful to simulate the functional model at the 
true baud rate. For example, at 115,200 bps, it typically takes thousands of 
clock cycles to transfer a single character. The UART simulation model 
has the ability to run with a constant clock divisor of 2. This allows the 
simulated UART to transfer bits at half the system clock speed, or roughly 
one character per 20 clock cycles. You can choose one of the following 
options for the simulated transmitter baud rate:

■ accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in 
simulation.

■ actual (use true baud divisor)—TXD transmits at the actual baud 
rate, as determined by the divisor register.

Hardware 
Simulation 
Considerations

The simulation features were created for easy simulation of Nios, Nios II 
or Excalibur™ processor systems when using the ModelSim simulator. 
The documentation for each processor documents the suggested usage of 
these features. Other usages may be possible, but will require additional 
user effort to create a custom simulation process.

The simulation model is implemented in the UART core’s top-level HDL 
file; the synthesizable HDL and the simulation HDL are implemented in 
the same file. The simulation features are implemented using 
translate on and translate off synthesis directives that make 
certain sections of HDL code visible only to the synthesis tool. 

Do not edit the simulation directives if you are using Altera’s 
recommended simulation procedures. If you do change the simulation 
directives for your custom simulation flow, be aware that SOPC Builder 
overwrites existing files during system generation. Take precaution so 
that your changes are not overwritten.

f For details about simulating the UART core in Nios II processor systems, 
refer to AN 351: Simulating Nios II Processor Designs. For details about 
simulating the UART core in Nios embedded processor systems, refer to 
AN 189: Simulating Nios Embedded Processor Designs. 

Software 
Programming 
Model

The following sections describe the software programming model for the 
UART core, including the register map and software declarations to 
access the hardware. For Nios II processor users, Altera provides 
hardware abstraction layer (HAL) system library drivers that enable you 
to access the UART core using the ANSI C standard library functions, 
such as printf() and getchar(). 
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HAL System Library Support

The Altera-provided driver implements a HAL character-mode device 
driver that integrates into the HAL system library for Nios II systems. 
HAL users should access the UART via the familiar HAL API and the 
ANSI C standard library, rather than accessing the UART registers. 
ioctl() requests are defined that allow HAL users to control the 
hardware-dependent aspects of the UART.

c If your program uses the HAL device driver to access the UART 
hardware, accessing the device registers directly will interfere 
with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides 
complete access to the UART core's features. Nios II programs treat the 
UART core as a character mode device, and send and receive data using 
the ANSI C standard library functions. 

The driver supports the CTS/RTS control signals when they are enabled 
in SOPC Builder. Refer to “Driver Options: Fast Versus Small 
Implementations” on page 9–11. 

The following code demonstrates the simplest possible usage, printing a 
message to stdout using printf(). In this example, the SOPC Builder 
system contains a UART core, and the HAL system library has been 
configured to use this device for stdout.

Example 9–1. Example: Printing Characters to a UART Core as stdout
#include <stdio.h>
int main ()
{
  printf("Hello world.\n");
  return 0;
}

The following code demonstrates reading characters from and sending 
messages to a UART device using the C standard library. In this example, 
the SOPC Builder system contains a UART core named uart1 that is not 
necessarily configured as the stdout device. In this case, the program 
treats the device like any other node in the HAL file system.
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Example 9–2. Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
  char* msg = "Detected the character 't'.\n";
  FILE* fp;
  char prompt = 0;

  fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
  if (fp)
  {
    while (prompt != 'v') 
    {  // Loop until we receive a 'v'.
      prompt = getc(fp);  // Get a character from the UART.
      if (prompt == 't')
      {  // Print a message if character is 't'.
        fwrite (msg, strlen (msg), 1, fp);
      }
    }

    fprintf(fp, "Closing the UART file.\n");
    fclose (fp);
  }
  
  return 0;
}

1 For more information about the HAL system library, refer to the 
Nios II Software Developer's Handbook. 

Driver Options: Fast Versus Small Implementations

To accommodate the requirements of different types of systems, the 
UART driver provides two variants: a fast version and a small version. 
The fast version is the default. Both fast and small drivers fully support 
the C standard library functions and the HAL API. 

The fast driver is an interrupt-driven implementation, which allows the 
processor to perform other tasks when the device is not ready to send or 
receive data. Because the UART data rate is slow compared to the 
processor, the fast driver can provide a large performance benefit for 
systems that could be performing other tasks in the interim. 
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The small driver is a polled implementation that waits for the UART 
hardware before sending and receiving each character. There are two 
ways to enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project. 
This option affects device drivers for all devices in the system as well.

■ Specify the preprocessor option 
-DALTERA_AVALON_UART_SMALL. You can use this option if you 
want the small, polled implementation of the UART driver, but do 
not want to affect the drivers for other devices.

f Refer to the help system in the Nios II IDE for details about how to set 
HAL properties and preprocessor options. 

If the CTS/RTS flow control signals are enabled in hardware, the fast 
driver automatically uses them. The small driver always ignores them. 

ioctl() Operations

The UART driver supports the ioctl() function to allow HAL-based 
programs to request device-specific operations. Table 9–2 defines 
operation requests that the UART driver supports.

Table 9–2. UART ioctl() Operations

Request Meaning

TIOCEXCL Locks the device for exclusive access. Further calls to open() for this device will fail until 
either this file descriptor is closed, or the lock is released using the TIOCNXCL ioctl 
request. For this request to succeed there can be no other existing file descriptors for this 
device. The ioctl “arg” parameter is ignored.

TIOCNXCL Releases a previous exclusive access lock. The ioctl “arg” parameter is ignored.
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Additional operation requests are also optionally available for the fast 
driver only, as shown in Table 9–3. To enable these operations in your 
program, you must set the preprocessor option 
-DALTERA_AVALON_UART_USE_IOCTL.

f Refer to the Nios II Software Developer's Handbook for details about the 
ioctl() function. 

Limitations

The HAL driver for the UART core does not support the endofpacket 
register. Refer to “Register Map” for details. 

Software Files

The UART core is accompanied by the following software files. These files 
define the low-level interface to the hardware, and provide the HAL 
drivers. Application developers should not modify these files.

■ altera_avalon_uart_regs.h—This file defines the core’s register map, 
providing symbolic constants to access the low-level hardware. The 
symbols in this file are used only by device driver functions.

■ altera_avalon_uart.h, altera_avalon_uart.c—These files implement 
the UART core device driver for the HAL system library. 

Legacy SDK Routines

The UART core is also supported by the legacy SDK routines for the 
first-generation Nios processor. 

Table 9–3. Optional UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCMGET Returns the current configuration of the device by filling in the contents of the input termios 
(1) structure. A pointer to this structure is supplied as the value of the ioctl “opt” 
parameter.

TIOCMSET Sets the configuration of the device according to the values contained in the input termios 
structure (1). A pointer to this structure is supplied as the value of the ioctl “arg” 
parameter.

Note to Table 9–3:
(1) The termios structure is defined by the Newlib C standard library. You can find the definition in the file <Nios II 

EDS install path>/components/altera_hal/HAL/inc/sys/termios.h.
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1 For details about these routines, refer to the UART 
documentation that accompanied the first-generation Nios 
processor. For details about upgrading programs based on the 
legacy SDK to the HAL system library API, refer to AN 350: 
Upgrading Nios Processor Systems to the Nios II Processor. 

Register Map

Programmers using the HAL API or the legacy SDK for the 
first-generation Nios processor never access the UART core directly via 
its registers. In general, the register map is only useful to programmers 
writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device 
registers directly. If you are writing a device driver and the HAL 
driver is active for the same device, your driver will conflict and 
fail to operate.

Table 9–4 shows the register map for the UART core. Device drivers 
control and communicate with the core through the memory-mapped 
registers. 

Some registers and bits are optional. These registers and bits exists in 
hardware only if it was enabled at system generation time. Optional 
registers and bits are noted in the following sections.

Table 9–4. UART Core Register Map 

Offset Register 
Name R/W

Description/Register Bits

15 . . .13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO (1) (2) (2) Receive Data

1 txdata WO (1) (2) (2) Transmit Data

2 status (3) RW (1) eop cts dcts (1) e rrdy trdy tmt toe roe brk fe pe

3 control RW (1) ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor (4) RW Baud Rate Divisor

5 endof-
packet (4)

RW (1) (2) (2) End-of-Packet Value

Notes to Table 9–4:
(1) These bits are reserved. Reading returns an undefined value. Write zero.
(2) These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read 

zero, and writing has no effect. 
(3) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and PE bits. 
(4) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading 

returns an undefined value and writing has no effect. 
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rxdata Register

The rxdata register holds data received via the RXD input. When a new 
character is fully received via the RXD input, it is transferred into the 
rxdata register, and the status register’s rrdy bit is set to 1. The 
status register’s rrdy bit is set to 0 when the rxdata register is read. If 
a character is transferred into the rxdata register while the rrdy bit is 
already set (in other words, the previous character was not retrieved), a 
receiver-overrun error occurs and the status register’s roe bit is set to 1. 
New characters are always transferred into the rxdata register, 
regardless of whether the previous character was read. Writing data to the 
rxdata register has no effect.

txdata Register

Avalon-MM master peripherals write characters to be transmitted into 
the txdata register. Characters should not be written to txdata until the 
transmitter is ready for a new character, as indicated by the TRDY bit in 
the status register. The TRDY bit is set to 0 when a character is written 
into the txdata register. The TRDY bit is set to 1 when the character is 
transferred from the txdata register into the transmitter shift register. If 
a character is written to the txdata register when TRDY is 0, the result is 
undefined. Reading the txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM 
master peripheral writes a first character into the txdata register. The 
TRDY bit is set to 0, then set to 1 when the character is transferred into the 
transmitter shift register. The master can then write a second character 
into the txdata register, and the TRDY bit is set to 0 again. However, this 
time the shift register is still busy shifting out the first character to the TXD 
output. The TRDY bit is not set to 1 until the first character is fully shifted 
out and the second character is automatically transferred into the 
transmitter shift register. 

status Register

The status register consists of individual bits that indicate particular 
conditions inside the UART core. Each status bit is associated with a 
corresponding interrupt-enable bit in the control register. The status 
register can be read at any time. Reading does not change the value of any 
of the bits. Writing zero to the status register clears the DCTS, E, TOE, 
ROE, BRK, FE, and PE bits. 
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The status register bits are shown in Table 9–5.

Table 9–5. status Register Bits (Part 1 of 3)

Bit Bit 
Name

Read/ Write/ 
Clear Description

0 (1) PE RC Parity error. A parity error occurs when the received parity bit has an 
unexpected (incorrect) logic level. The PE bit is set to 1 when the core 
receives a character with an incorrect parity bit. The PE bit stays set to 1 until 
it is explicitly cleared by a write to the status register. When the PE bit is set, 
reading from the rxdata register produces an undefined value.

If the Parity hardware option is not enabled, no parity checking is performed 
and the PE bit always reads 0. Refer to “Data Bits, Stop Bits, Parity” on 
page 9–6. 

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a 
correct stop bit. The FE bit is set to 1 when the core receives a character with 
an incorrect stop bit. The FE bit stays set to 1 until it is explicitly cleared by 
a write to the status register. When the FE bit is set, reading from the 
rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held 
low (logic 0) continuously for longer than a full-character time (data bits, plus 
start, stop, and parity bits). When a break is detected, the BRK bit is set to 
1. The BRK bit stays set to 1 until it is explicitly cleared by a write to the 
status register.

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly 
received character is transferred into the rxdata holding register before 
the previous character is read (in other words, while the RRDY bit is 1). In 
this case, the ROE bit is set to 1, and the previous contents of rxdata are 
overwritten with the new character. The ROE bit stays set to 1 until it is 
explicitly cleared by a write to the status register.

4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new 
character is written to the txdata holding register before the previous 
character is transferred into the shift register (in other words, while the TRDY 
bit is 0). In this case the TOE bit is set to 1. The TOE bit stays set to 1 until 
it is explicitly cleared by a write to the status register.

5 TMT R Transmit empty. The TMT bit indicates the transmitter shift register’s current 
state. When the shift register is in the process of shifting a character out the 
TXD pin, TMT is set to 0. When the shift register is idle (in other words, a 
character is not being transmitted) the TMT bit is 1. An Avalon-MM master 
peripheral can determine if a transmission is completed (and received at the 
other end of a serial link) by checking the TMT bit. 
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6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s 
current state. When the txdata register is empty, it is ready for a new 
character, and TRDY is 1. When the txdata register is full, TRDY is 0. An 
Avalon-MM master peripheral must wait for TRDY to be 1 before writing new 
data to txdata. 

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding 
register’s current state. When the rxdata register is empty, it is not ready 
to be read and rrdy is 0. When a newly received value is transferred into the 
rxdata register, RRDY is set to 1. Reading the rxdata register clears the 
RRDY bit to 0. An Avalon-MM master peripheral must wait for RRDY to equal 
1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The E 
bit is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The e bit and its 
corresponding interrupt-enable bit (IE) bit in the control register provide 
a convenient method to enable/disable IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10 (1) DCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a 
logic-level transition is detected on the CTS_N input port (sampled 
synchronously to the Avalon-MM clock). This bit is set by both falling and 
rising transitions on CTS_N. The DCTS bit stays set to 1 until it is explicitly 
cleared by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always 
reads 0. Refer to “Flow Control” on page 9–7. 

11 (1) CTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s 
instantaneous state (sampled synchronously to the Avalon-MM clock). 
Because the CTS_N input is logic negative, the CTS bit is 1 when a 0 
logic-level is applied to the CTS_N input.

The CTS_N input has no effect on the transmit or receive processes. The 
only visible effect of the CTS_N input is the state of the CTS and DCTS bits, 
and an IRQ that can be generated when the control register’s idcts bit is 
enabled.

If the Flow Control hardware option is not enabled, the CTS bit always 
reads 0. Refer to “Flow Control” on page 9–7. 

Table 9–5. status Register Bits (Part 2 of 3)

Bit Bit 
Name

Read/ Write/ 
Clear Description
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control Register

The control register consists of individual bits, each controlling an 
aspect of the UART core’s operation. The value in the control register 
can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit 
in the status register. When both a status bit and its corresponding 
interrupt-enable bit are 1, the core generates an IRQ. For example, the PE 
bit is bit 0 of the status register, and the ipe bit is bit 0 of the control 
register. An interrupt request is generated when both PE and ipe equal 1.

The control register bits are shown in Table 9–6. 

12 (1) EOP R End of packet encountered. The EOP bit is set to 1 by one of the following 
events:

● An EOP character is written to txdata
● An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket 
register. The EOP bit stays set to 1 until it is explicitly cleared by a write to 
the status register.

If the Include End-of-Packet Register hardware option is not enabled, the 
EOP bit always reads 0. Refer to “Avalon-MM Transfers with Flow Control 
(DMA)” on page 9–7.

Note to Table 9–5:
(1) This bit is optional and may not exist in hardware.

Table 9–5. status Register Bits (Part 3 of 3)

Bit Bit 
Name

Read/ Write/ 
Clear Description

Table 9–6. control Register Bits (Part 1 of 2)

Bit Bit Name Read/ 
Write Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.
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divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock. 
The effective baud rate is determined by the formula shown in 
Equation 3:

(3)

The divisor register is an optional hardware feature. If the Baud Rate 
Can Be Changed By Software hardware option is not enabled, then the 
divisor register does not exist. In this case, writing divisor has no 
effect, and reading divisor returns an undefined value. For more 
information, refer to “Baud Rate Options” on page 9–5. 

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW Transmit break. The TRBK bit allows an Avalon-MM master peripheral to 
transmit a break character over the TXD output. The TXD signal is forced to 0 
when the TRBK bit is set to 1. The TRBK bit overrides any logic level that the 
transmitter logic would otherwise drive on the TXD output. The TRBK bit 
interferes with any transmission in process. The Avalon-MM master peripheral 
must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output. 
An Avalon-MM master peripheral can write the RTS bit at any time. The value 
of the RTS bit only affects the RTS_N output; it has no effect on the transmitter 
or receiver logic. Because the RTS_N output is logic negative, when the RTS 
bit is 1, a low logic-level (0) is driven on the RTS_N output. 

If the Flow Control hardware option is not enabled, the RTS bit always reads 
0, and writing has no effect. Refer to “Flow Control” on page 9–7. 

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 9–6:
(1) This bit is optional and may not exist in hardware.

Table 9–6. control Register Bits (Part 2 of 2)

Bit Bit Name Read/ 
Write Description

baud rate clock frequency
divisor 1+( )

-------------------------------------=
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endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet 
character for variable-length DMA transactions. After reset, the default 
value is zero, which is the ASCII null character (\0). For more 
information, refer to Table 9–5 on page 9–16 for the description for the 
eop bit.

The endofpacket register is an optional hardware feature. If the 
Include end-of-packet register hardware option is not enabled, then the 
endofpacket register does not exist. In this case, writing endofpacket 
has no effect, and reading returns an undefined value.

Interrupt Behavior

The UART core outputs a single IRQ signal to the Avalon-MM interface, 
which can connect to any master peripheral in the system, such as a 
Nios II processor. The master peripheral must read the status register 
to determine the cause of the interrupt. 

Every interrupt condition has an associated bit in the status register 
and an interrupt-enable bit in the control register. When any of the 
interrupt conditions occur, the associated status bit is set to 1 and 
remains set until it is explicitly acknowledged. The IRQ output is asserted 
when any of the status bits are set while the corresponding 
interrupt-enable bit is 1. A master peripheral can acknowledge the IRQ by 
clearing the status register. 

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot 
assert an IRQ until a master peripheral sets one or more of the 
interrupt-enable bits to 1.

All possible interrupt conditions are listed with their associated status 
and control (interrupt-enable) bits in Table 6–5 on page 6–16 and 
Table 6–6 on page 6–18. Details of each interrupt condition are provided 
in the status bit descriptions.
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This chapter references the following documents:

■ Nios II Software Developer’s Handbook
■ Timer Core chapter in volume 5 of the Quartus II Handbook
■ Avalon Memory-Mapped Interface Specification
■ AN 351: Simulating Nios II Processor Designs
■ AN 189: Simulating Nios Embedded Processor Designs

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an189.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
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Document 
Revision History

Table 9–7 shows the revision history for this chapter.

Table 9–7. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.

● Chapter 9 was formerly Chapter 8.
● Added two sentences to clarify use of flow control. Host 

PC must also be configured for flow control.
—

May 2007
v7.1.0

● Chapter 8 was formerly chapter 6.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to 
Avalon technologies. Changed old “Avalon interface” 
terms to “Avalon Memory-Mapped interface.”

● Corrected definition of even and odd parity in section 
“Data Bits, Stop Bits, Parity” on page 8–6.

For the 6.1 release, Altera 
released the Avalon Streaming 
interface, which necessitated 
some re-phrasing of existing 
Avalon terminology. Other 
changes to the document 
serve only to clarify existing 
behavior.

May 2006
v6.0.0

No change from previous release. —

December 2005
v5.1.1

Changed Avalon “streaming” terminology to “flow control” 
based on a change to the Avalon Interface Specification. —

October 2005
v5.1.0

No change from previous release. —

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release. —

May 2004
v1.0

Initial release.
—
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10. SPI Core

Core Overview SPI is an industry-standard serial protocol commonly used in embedded 
systems to connect microprocessors to a variety of off-chip sensor, 
conversion, memory, and control devices. The SPI core with Avalon® 
interface implements the SPI protocol and provides an Avalon 
Memory-Mapped (Avalon-MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When 
configured as a master, the SPI core can control up to 16 independent SPI 
slaves. The width of the receive and transmit registers are configurable 
between 1 and 16 bits. Longer transfer lengths (for example, 24-bit 
transfers) can be supported with software routines. The SPI core provides 
an interrupt output that can flag an interrupt whenever a transfer 
completes. 

The SPI core is SOPC Builder ready and integrates easily into any SOPC 
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”
■ “Instantiating the SPI Core in SOPC Builder” on page 10–7
■ “Device and Tools Support” on page 10–10
■ “Software Programming Model” on page 10–10

Functional 
Description

The SPI core communicates using two data lines, a control line, and a 
synchronization clock: 

■ Master Out Slave In (mosi)—Output data from the master to the 
inputs of the slaves

■ Master In Slave Out (miso)—Output data from a slave to the input 
of the master 

■ Serial Clock (sclk)—Clock driven by the master to slaves, used to 
synchronize the data bits 

■ Slave Select (ss_n)— Select signal (active low) driven by the master 
to individual slaves, used to select the target slave

The SPI core has the following user-visible features:

■ A memory-mapped register space comprised of five registers: 
rxdata, txdata, status, control, and slaveselect

■ Four SPI interface ports: sclk, ss_n, mosi, and miso 

NII51011-7.2.0
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The registers provide an interface to the SPI core and are visible via the 
Avalon-MM slave port. The sclk, ss_n, mosi, and miso ports provide 
the hardware interface to other SPI devices. The behavior of sclk, ss_n, 
mosi, and miso depends on whether the SPI core is configured as a 
master or slave.

Figure 10–1 shows a block diagram of the SPI core in master mode.

Figure 10–1. SPI Core Block Diagram

The SPI core logic is synchronous to the clock input provided by the 
Avalon-MM interface. When configured as a master, the core divides the 
Avalon-MM clock to generate the SCLK output. When configured as a 
slave, the core's receive logic is synchronized to SCLK input. The core’s 
Avalon-MM interface is capable of Avalon-MM transfers with flow 
control. The SPI core can be used in conjunction with a DMA controller 
with flow control to automate continuous data transfers between, for 
example, the SPI core and memory. See the Timer Core chapter for details. 

Example Configurations

Two possible configurations are shown below. In Figure 10–2, the SPI core 
provides a slave interface to an off-chip SPI master. 
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Figure 10–2. SPI Core Configured as a Slave

In Figure 10–3 the SPI core provides a master interface driving multiple 
off-chip slave devices. Each slave device in Figure 10–3 must tristate its 
miso output whenever its select signal is not asserted. 

Figure 10–3. SPI Core Configured as a Master

The ss_n signal is active-low. However, any signal can be inverted inside 
the FPGA, allowing the slave-select signals to be either active high or 
active low. 
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Transmitter Logic

The SPI core transmitter logic consists of a transmit holding register 
(txdata) and transmit shift register, each n bits wide. The register width 
n is specified at system generation time, and can be any integer value 
from 1 to 16. After a master peripheral writes a value to the txdata 
register, the value is copied to the shift register and then transmitted 
when the next operation starts. 

The shift register and the txdata register provide double buffering 
during data transmission. A new value can be written into the txdata 
register while the previous data is being shifted out of the shift register. 
The transmitter logic automatically transfers the txdata register to the 
shift register whenever a serial shift operation is not currently in process. 

In master mode, the transmit shift register directly feeds the mosi output. 
In slave mode, the transmit shift register directly feeds the miso output. 
Data shifts out least-significant bit (LSB) first or most-significant bit 
(MSB) first, depending on the configuration of the SPI core. 

Receiver Logic

The SPI core receive logic consists of a receive holding register (rxdata) 
and receive shift register, each n bits wide. The register width n is 
specified at system generation time, and can be any integer value from 1 
to 16. A master peripheral reads received data from the rxdata register 
after the shift register has captured a full n-bit value of data. 

The shift register and the rxdata register provide double buffering 
during data receiving. The rxdata register can hold a previously 
received data value while subsequent new data is shifting into the shift 
register. The receiver logic automatically transfers the shift register 
content to the rxdata register when a serial shift operation completes. 

In master mode, the shift register is fed directly by the miso input. In 
slave mode, the shift register is fed directly by the mosi input. The 
receiver logic expects input data to arrive least-significant bit (LSB) first 
or most-significant bit (MSB) first, depending on the configuration of the 
SPI core.

Master and Slave Modes

At system generation time, the designer configures the SPI core in either 
master mode or slave mode. The mode cannot be switched at runtime. 
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Master Mode Operation

In master mode, the SPI ports behave as shown in Table 10–1.

Only an SPI master can initiate an operation between master and slave. In 
master mode, an intelligent host (for example, a microprocessor) 
configures the SPI core using the control and slaveselect registers, 
and then writes data to the txdata buffer to initiate a transaction. A 
master peripheral can monitor the status of the transaction by reading the 
status register. A master peripheral can enable interrupts to notify the 
host whenever new data is received (that is, a transfer has completed), or 
whenever the transmit buffer is ready for new data. 

The SPI protocol is full duplex, so every transaction both sends and 
receives data at the same time. The master transmits a new data bit on the 
mosi output and the slave drives a new data bit on the miso input for 
each active edge of sclk. The SPI core divides the Avalon-MM system 
clock using a clock divider to generate the sclk signal.

When the SPI core is configured to interface with multiple slaves, the core 
has one ss_n signal for each slave, up to a maximum of sixteen slaves. 
During a transfer, the master asserts ss_n to each slave specified in the 
slaveselect register. Note that there can be no more than one slave 
transmitting data during any particular transfer, or else there will be a 
conflict on the miso input. The number of slave devices is specified at 
system generation time.

Table 10–1. Master Mode Port Configurations 

Name Direction Description

mosi output Data output to slave(s)

miso input Data input from slave(s)

sclk output Synchronization clock to all slaves

ss_nM output Slave select signal to slave M, where M is a number between 0 and 15.
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Slave Mode Operation

In slave mode, the SPI ports behave as shown in Table 10–2.

In slave mode, the SPI core simply waits for the master to initiate 
transactions. Before a transaction begins, the slave logic is continuously 
polling the ss_n input. When the master asserts ss_n (drives it low), the 
slave logic immediately begins sending the transmit shift register 
contents to the miso output. The slave logic also captures data on the 
mosi input, and fills the receive shift register simultaneously. Thus, a 
read and write transaction are carried out simultaneously.

An intelligent host (for example, a microprocessor) writes data to the 
txdata registers, so that it will be transmitted the next time the master 
initiates an operation. A master peripheral reads received data from the 
rxdata register. A master peripheral can enable interrupts to notify the 
host whenever new data is received, or whenever the transmit buffer is 
ready for new data.

Multi-Slave Environments

When ss_n is not asserted, typical SPI cores set their miso output pins to 
high impedance. The Altera®-provided SPI slave core drives an 
undefined high or low value on its miso output when not selected. 
Special consideration is necessary to avoid signal contention on the miso 
output, if the SPI core in slave mode will be connected to an off-chip SPI 
master device with multiple slaves. In this case, the ss_n input should be 
used to control a tristate buffer on the miso signal. Figure 10–4 shows an 
example of the SPI core in slave mode in an environment with two slaves.

Table 10–2. Slave Mode Port Configurations 

Name Direction Description

mosi input Data input from the master

miso output Data output to the master

sclk input Synchronization clock 

ss_n input Select signal 
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Figure 10–4. SPI Core in a Multi-Slave Environment

Avalon-MM Interface

The SPI core’s Avalon-MM interface consists of a single Avalon-MM slave 
port. In addition to fundamental slave read and write transfers, the SPI 
core supports Avalon-MM read and write transfers with flow control. 

Instantiating the 
SPI Core in 
SOPC Builder

Designers use the MegaWizard® interface for the SPI core in SOPC 
Builder to configure the hardware feature set. The following sections 
describe the available options.

Master/Slave Settings

The designer can select either master mode or slave mode to determine 
the role of the SPI core. When master mode is selected, the following 
options are available: 

■ “Generate Select Signals”
■ “SPI Clock (sclk) Rate” on page 10–8
■ “Specify Delay” on page 10–8

Generate Select Signals

This setting specifies how many slaves the SPI master will connect to. The 
acceptable range is 1 to 16. The SPI master core presents a unique ss_n 
signal for each slave.
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SPI Clock (sclk) Rate

This setting determines the rate of the sclk signal that synchronizes data 
between master and slaves. The target clock rate can be specified in units 
of Hz, kHz or MHz. The SPI master core uses the Avalon-MM system 
clock and a clock divisor to generate sclk. 

The actual frequency of sclk may not exactly match the desired target 
clock rate. The achievable clock values are:

 <Avalon-MM system clock frequency> / [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target 
value. For example, if the system clock frequency is 50 MHz and the 
target value is 25 MHz, then the clock divisor is 2 and the actual sclk 
frequency achieves exactly 25 MHz. However, if the target frequency is 
24 MHz, then the clock divisor is 4 and the actual sclk frequency 
becomes 12.5 MHz. 

Specify Delay

Turning on this option causes the SPI master to add a time delay between 
asserting the ss_n signal and shifting the first bit of data. This delay is 
required by certain SPI slave devices. If the delay option is on, the 
designer must also specify the delay time in units of ns, us or ms. An 
example is shown in Figure 10–5.

Figure 10–5. Time Delay Between Asserting ss_n and Toggling sclk 

The delay generation logic uses a granularity of half the period of sclk. 
The actual delay achieved is the desired target delay rounded up to the 
nearest multiple of half the sclk period, as shown in the following 
equations:

(1)

(2)

p 1
2
--- period of sclk( )=

actual delay ceiling <desired delay>
p

-------------------------------------⎝ ⎠
⎛ ⎞ p×=
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Data Register Settings

The data register settings affect the size and behavior of the data registers 
in the SPI core. There are two data register settings:

■ Width—This setting specifies the width of rxdata, txdata, and the 
receive and transmit shift registers. Acceptable values are from 1 to 
16.

■ Shift direction—This setting determines the direction that data shifts 
(MSB first or LSB first) into and out of the shift registers. 

Timing Settings

The timing settings affect the timing relationship between the ss_n, 
sclk, mosi and miso signals. In this discussion the mosi and miso 
signals are referred to generically as “data”. There are two timing settings:

■ Clock polarity—This setting can be 0 or 1. When clock polarity is set to 
0, the idle state for sclk is low. When clock polarity is set to 1, the 
idle state for sclk is high.

■ Clock phase—This setting can be 0 or 1. When clock phase is 0, data is 
latched on the leading edge of sclk, and data changes on trailing 
edge. When clock phase is 1, data is latched on the trailing edge of 
sclk, and data changes on the leading edge.

Figures 10–6 through 10–9 demonstrate the behavior of signals in all 
possible cases of clock polarity and clock phase.

Figure 10–6. Clock Polarity = 0, Clock Phase = 0

Figure 10–7. Clock Polarity = 0, Clock Phase = 1
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Figure 10–8. Clock Polarity = 1, Clock Phase = 0

Figure 10–9. Clock Polarity = 1, Clock Phase = 1

Device and 
Tools Support

The SPI core can target all Altera FPGAs. 

Software 
Programming 
Model

The following sections describe the software programming model for the 
SPI core, including the register map and software constructs used to 
access the hardware. For Nios® II processor users, Altera provides the 
HAL system library header file that defines the SPI core registers. The SPI 
core does not match the generic device model categories supported by the 
HAL, so it cannot be accessed via the HAL API or the ANSI C standard 
library. Altera provides a routine to access the SPI hardware that is 
specific to the SPI core. 

Hardware Access Routines

Altera provides one access routine, alt_avalon_spi_command(), that 
provides general-purpose access to an SPI core configured as a master. 
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alt_avalon_spi_command()

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,
alt_u32 write_length, 
const alt_u8* wdata,
alt_u32 read_length,
alt_u8* read_data,
alt_u32 flags)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_spi.h>

Description: alt_avalon_spi_command() is used to perform a control sequence on 
the SPI bus. This routine is designed for SPI masters of 8-bit data width or less. 
Currently, it does not support SPI hardware with data-width greater than 8 bits. A 
single call to this function writes a data buffer of arbitrary length out the MOSI port, 
and then reads back an arbitrary amount of data from the MISO port. The function 
performs the following actions:

(1) Asserts the slave select output for the specified slave. The first slave select 
output is numbered 0, the next is 1, etc.
(2) Transmits write_length bytes of data from wdata through the SPI 
interface, discarding the incoming data on MISO.
(3) Reads read_length bytes of data, storing the data into the buffer 
pointed to by read_data. MOSI is set to zero during the read transaction.
(4) De-asserts the slave select output, unless the flags field contains the value 
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from 
scattered buffers then you can call the function multiple times, specifying the 
merge flag on all the accesses except the last.

This function is not thread safe. If you want to access the SPI bus from more than 
one thread, then you should use a semaphore or mutex to ensure that only one 
thread is executing within this function at any time.

Returns: The number of bytes stored in the read_data buffer.
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Software Files

The SPI core is accompanied by the following software files. These files 
provide a low-level interface to the hardware. 

■ altera_avalon_spi.h—This file defines the core's register map, 
providing symbolic constants to access the low-level hardware.

■ altera_avalon_spi.c—This file implements low-level routines to 
access the hardware. 

Legacy SDK Routines

The SPI core is also supported by the legacy SDK routines for the first-
generation Nios processor. For details about these routines, refer to the 
SPI documentation that accompanied the first-generation Nios processor. 

1 For details about upgrading programs based on the legacy SDK 
to the HAL system library API, refer to AN 350: Upgrading Nios 
Processor Systems to the Nios II Processor. 

Register Map

An Avalon-MM master peripheral controls and communicates with the 
SPI core via the six 16-bit registers, shown in Table 10–3. The table 
assumes an n-bit data width for rxdata and txdata.

Reading undefined bits returns an undefined value. Writing to undefined 
bits has no effect. 

Table 10–3. Register Map for SPI Master Device

Internal 
Address Register Name 15...11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata (1) RXDATA (n-1..0)

1 txdata (1) TXDATA (n-1..0)

2 status (2) E RRDY TRDY TMT TOE ROE

3 control sso (3) IE IRRDY ITRDY ITOE IROE

4 Reserved

5 slaveselect 
(3)

Slave Select Mask

Notes to Table 10–3:
(1) Bits 15 to n are undefined when n is less than 16.
(2) A write operation to the status register clears the roe, toe and e bits.
(3) Present only in master mode.
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rxdata Register

A master peripheral reads received data from the rxdata register. When 
the receive shift register receives a full n bits of data, the status 
register’s rrdy bit is set to 1 and the data is transferred into the rxdata 
register. Reading the rxdata register clears the rrdy bit. Writing to the 
rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not 
the previous data was retrieved. If rrdy is 1 when data is transferred into 
the rxdata register (that is, the previous data was not retrieved), a 
receive-overrun error occurs and the status register’s roe bit is set to 1. 
In this case, the contents of rxdata are undefined.

txdata Register

A master peripheral writes data to be transmitted into the txdata 
register. When the status register’s trdy bit is 1, it indicates that the 
txdata register is ready for new data. The trdy bit is set to 0 whenever 
the txdata register is written. The trdy bit is set to 1 after data is 
transferred from the txdata register into the transmitter shift register, 
which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the 
transmitter is ready for new data. If trdy is 0 and a master peripheral 
writes new data to the txdata register, a transmit-overrun error occurs 
and the status register’s toe bit is set to 1. In this case, the new data is 
ignored, and the content of txdata remains unchanged.

As an example, assume that the SPI core is idle (that is, the txdata 
register and transmit shift register are empty), when a CPU writes a data 
value into the txdata holding register. The trdy bit is set to 0 
momentarily, but after the data in txdata is transferred into the 
transmitter shift register, trdy returns to 1. The CPU writes a second data 
value into the txdata register, and again the trdy bit is set to 0. This time 
the shift register is still busy transferring the original data value, so the 
trdy bit remains at 0 until the shift operation completes. When the 
operation completes, the second data value is transferred into the 
transmitter shift register and the trdy bit is again set to 1.

status Register

The status register consists of bits that indicate status conditions in the 
SPI core. Each bit is associated with a corresponding interrupt-enable bit 
in the control register, as discussed in “control Register” on page 10–14. 
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A master peripheral can read status at any time without changing the 
value of any bits. Writing status does clear the roe, toe and e bits. 
Table 10–4 describes the individual bits of the status register.

control Register

The control register consists of data bits to control the SPI core’s 
operation. A master peripheral can read control at any time without 
changing the value of any bits. 

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register 
control interrupts for status conditions represented in the status 
register. For example, bit 1 of status is ROE (receiver-overrun error), 
and bit 1 of control is IROE, which enables interrupts for the ROE 
condition. The SPI core asserts an interrupt request when the 
corresponding bits in status and control are both 1.

Table 10–4. status Register Bits 

# Name Description

3 ROE Receive-overrun error
The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while 
the RRDY bit is 1). In this case, the new data overwrites the old. Writing to the status 
register clears the ROE bit to 0.

4 TOE Transmitter-overrun error
The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is, 
while the TRDY bit is 0). In this case, the new data is ignored. Writing to the status register 
clears the TOE bit to 0. 

5 TMT Transmitter shift-register empty
The TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift register 
is empty.

6 TRDY Transmitter ready
The TRDY bit is set to 1 when the txdata register is empty.

7 RRDY Receiver ready
The RRDY bit is set to 1 when the rxdata register is full.

8 E Error
The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer 
to detect error conditions. Writing to the status register clears the E bit to 0. 
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The control register bits are shown in Table 10–5.

After reset, all bits of the control register are set to 0. All interrupts are 
disabled and no ss_n signals are asserted after reset.

slaveselect Register

The slaveselect register is a bit mask for the ss_n signals driven by 
an SPI master. During a serial shift operation, the SPI master selects only 
the slave device(s) specified in the slaveselect register. 

The slaveselect register is only present when the SPI core is 
configured in master mode. There is one bit in slaveselect for each 
ss_n output, as specified by the designer at system generation time. For 
example, to enable communication with slave device 3, set bit 3 of 
slaveselect to 1.

A master peripheral can set multiple bits of slaveselect 
simultaneously, causing the SPI master to simultaneously select multiple 
slave devices as it performs a transaction. For example, to enable 
communication with slave devices 1, 5, and 6, set bits 1, 5, and 6 of 
slaveselect. However, consideration is necessary to avoid signal 
contention between multiple slaves on their miso outputs. 

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after 
a device reset, slave device 0 is automatically selected.

Referenced 
Document

This chapter references AN 350: Upgrading Nios Processor Systems to the 
Nios II Processor.

Table 10–5. control Register Bits

# Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors. 

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors. 

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a 
serial shift operation is in progress or not. The slaveselect register controls which 
ss_n outputs are asserted. sso can be used to transmit or receive data of arbitrary size 
(in other words, greater than 16 bits).

http://www/literature/an/an350.pdf
http://www/literature/an/an350.pdf
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Document 
Revision History

Table 10–6 shows the revision history for this chapter.

Table 10–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 10 was formerly chapter 9.
● Added “Referenced Document” on page 10–15. —

May 2007
v7.1.0

● Chapter 9 was formerly chapter 7.
● Added table of contents to Overview section. —

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to 
Avalon technologies

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric” 

● Changed old “Avalon interface” terms to “Avalon 
Memory-Mapped interface” 

For the 6.1 release, Altera 
released the Avalon Streaming 
interface, which necessitated 
some re-phrasing of existing 
Avalon terminology. 

May 2006
v6.0.0

No change from previous release. —

December 2005
v5.1.1

Changed Avalon “"streaming” terminology to “flow 
control” based on a change to the Avalon Interface 
Specification.

—

October 2005
v5.1.0

No change from previous release. —

May 2005
v5.0.0

No change from previous release. Previously in the 
Nios II Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release. —

May 2004
v1.0

Initial release.
—
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Section III. Display
Peripherals

This section describes display interface peripherals provided by Altera®. 
These components provide interfaces to visual display devices for SOPC 
Builder systems.

See About This Handbook for further details. 

This section includes the following chapters:

■ Chapter 11, Optrex 16207 LCD Controller Core
■ Chapter 12, Video Sync Generator and Pixel Converter Cores

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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11. Optrex 16207 LCD
Controller Core

Core Overview The Optrex 16207 LCD controller core with Avalon® Interface (“the LCD 
controller”) provides the hardware interface and software driver 
required for a Nios® II processor to display characters on an Optrex 16207 
(or equivalent) 16×2-character LCD panel. Device drivers are provided in 
the HAL system library for the Nios II processor. Nios II programs access 
the LCD controller as a character mode device using ANSI C standard 
library routines, such as printf(). The LCD controller is SOPC 
Builder-ready, and integrates easily into any SOPC Builder-generated 
system. 

The Nios II Embedded Design Suite (EDS) includes an Optrex LCD 
module and provide several ready-made example designs that display 
text on the Optrex 16207 via the LCD controller. For details about the 
Optrex 16207 LCD module, see the manufacturer’s Dot Matrix Character 
LCD Module User’s Manual available at www.optrex.com. 

This chapter contains the following sections:

■ “Functional Description”
■ “Device and Tools Support” on page 11–2
■ “Instantiating the Core in SOPC Builder” on page 11–2
■ “Software Programming Model” on page 11–2

Functional 
Description

The LCD controller hardware consists of two user-visible components:

■ Eleven signals that connect to pins on the Optrex 16207 LCD panel — 
These signals are defined in the Optrex 16207 data sheet.
● E – Enable (output) 
● RS – Register Select (output)
● R/W – Read or Write (output)
● DB0 through DB7 – Data Bus (bidirectional)

■ An Avalon Memory-Mapped (Avalon-MM) slave interface that 
provides access to 4 registers — The HAL device drivers make it 
unnecessary for users to access the registers directly. Therefore, 
Altera does not provide details about the register usage. For further 
details, refer to “Software Programming Model” on page 11–2. 

NII51019-7.2.0
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Figure 11–1 shows a block diagram of the LCD controller core. 

Figure 11–1. LCD Controller Block Diagram

Device and 
Tools Support

The LCD controller hardware supports all Altera FPGA families. The 
LCD controller drivers support the Nios II processor. The drivers do not 
support the first-generation Nios processor.

Instantiating the 
Core in SOPC 
Builder

In SOPC Builder, the LCD controller component has the name Character 
LCD (16×2, Optrex 16207). The LCD controller does not have any 
user-configurable settings. The only choice to make in SOPC Builder is 
whether or not to add an LCD controller to the system. For each LCD 
controller included in the system, the top-level system module includes 
the 11 signals that connect to the LCD module.

Software 
Programming 
Model

This section describes the software programming model for the LCD 
controller.

HAL System Library Support

Altera provides HAL system library drivers for the Nios II processor that 
enable you to access the LCD controller using the ANSI C standard 
library functions. The Altera-provided drivers integrate into the HAL 
system library for Nios II systems. The LCD driver is a standard 
character-mode device, as described in the Nios II Software Developer's 
Handbook. Therefore, using printf() is the easiest way to write 
characters to the display. 

address

data

control
DB0 .. DB7

R/W

RS

E

Optrex 16207
LCD Module

LCD
Controller

Avalon-MM slave
interface to

on-chip logic

Altera FPGA
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The LCD driver requires that the HAL system library include the system 
clock driver.

Displaying Characters on the LCD

The driver implements VT100 terminal-like behavior on a miniature scale 
for the 16×2 screen. Characters written to the LCD controller are stored to 
an 80-column × 2-row buffer maintained by the driver. As characters are 
written, the cursor position is updated. Visible characters move the 
cursor position to the right. Any visible characters written to the right of 
the buffer are discarded. The line feed character (\n) moves the cursor 
down one line and to the left-most column.

The buffer is scrolled up as soon as a printable character is written onto 
the line below the bottom of the buffer. Rows do not scroll as soon as the 
cursor moves down to allow the maximum useful information in the 
buffer to be displayed.

If the visible characters in the buffer will fit on the display, then all 
characters are displayed. If the buffer is wider than the display, then the 
display scrolls horizontally to display all the characters. Different lines 
scroll at different speeds, depending on the number of characters in each 
line of the buffer.

The LCD driver understands a small subset of ANSI and VT100 escape 
sequences that can be used to control the cursor position, and clear the 
display as shown in Table 11–1.

The LCD controller is an output-only device. Therefore, attempts to read 
from it will return immediately indicating that no characters have been 
received.

Table 11–1. Escape Sequence Supported by the LCD Controller

Sequence Meaning 

BS (\b) Moves the cursor to the left by one character.

CR (\r) Moves the cursor to the start of the current line.

LF (\n) Moves the cursor to the start of the line and move it down one line.

ESC( (\x1B) Starts a VT100 control sequence.

ESC [  <y>  ;  <x>  H Moves the cursor to the y, x position specified – positions are counted 
from the top left which is 1;1.

ESC [ K Clears from current cursor position to end of line.

ESC [  2 J Clears the whole screen.
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The LCD controller drivers are not included in the system library when 
the Reduced device drivers option is enabled for the system library. If 
you want to use the LCD controller while using small drivers for other 
devices, then add the preprocessor option -DALT_USE_LCD_16207 to 
the preprocessor options.

Software Files

The LCD controller is accompanied by the following software files. These 
files define the low-level interface to the hardware and provide the HAL 
drivers. Application developers should not modify these files.

■ altera_avalon_lcd_16207_regs.h — This file defines the core’s 
register map, providing symbolic constants to access the low-level 
hardware.

■ altera_avalon_lcd_16207.h, altera_avalon_lcd_16207.c — These files 
implement the LCD controller device drivers for the HAL system 
library. 

Register Map

The HAL device drivers make it unnecessary for you to access the 
registers directly. Therefore, Altera does not publish details about the 
register map. For more information, the altera_avalon_lcd_16207_regs.h 
file describes the register map, and the Dot Matrix Character LCD Module 
User’s Manual from Optrex describes the register usage.

Interrupt Behavior

The LCD controller does not generate interrupts. However, the LCD 
driver's text scrolling feature relies on the HAL system clock driver, 
which uses interrupts for timing purposes.

Referenced 
Document 

This chapter references the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
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Avalon technologies 

● Changed old “Avalon switch fabric” term to “system 
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● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface” 
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released the Avalon 
Streaming interface, which 
necessitated some re-
phrasing of existing Avalon 
terminology. 

May 2006
v6.0.0

Chapter title changed, but no change in content from 
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—
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12. Video Sync Generator
and Pixel Converter Cores

Core Overview The video sync generator core accepts a continuous stream of pixel data 
in RGB format, and outputs the data to an off-chip display controller with 
proper timing. You can configure the video sync generator core to 
support different display resolutions and synchronization timings.

The pixel converter core transforms the pixel data to the format required 
by the video sync generator. Figure 12–1 shows a typical placement of the 
video sync generator and pixel converter cores in a system. 

In this example, the video buffer stores the pixel data in 32-bit unpacked 
format. The extra byte in the pixel data is discarded by the pixel converter 
core before the data is serialized and sent to the video sync generator core.

Figure 12–1. Typical Placement in a System

The video sync generator and pixel converter cores are SOPC 
Builder-ready and integrate easily into any SOPC Builder-generated 
system. 

These cores are deployed in the Nios II Embedded Software Evaluation 
Kit (EEK), which includes an LCD display daughtercard assembly 
attached via an HSMC connector.

This chapter contains the following sections:

■ “Video Sync Generator” on page 12–2
■ “Pixel Converter” on page 12–5
■ “Device and Tools Support” on page 12–6
■ “Hardware Simulation Considerations” on page 12–7

Video
Buffer

SGDMA FIFO
    Pixel 
Converter

  Data 
 Format
Adapter

  Video 
  Sync
Generator32 bits 32 bits 32 bits 24 bits 8 bits 8 bits

0RGB BGR0 BGR0 BGR B,G,R B,G,R
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Video Sync 
Generator

This section describes the hardware structure and functionality of the 
video sync generator core.

Functional Description

The video sync generator core adds horizontal and vertical 
synchronization signals to the pixel data that comes through its 
Avalon-ST input interface and outputs the data to an off-chip display 
controller. No processing or validation is performed on the pixel data. 
Figure 12–2 shows a block diagram of the video sync generator.

Figure 12–2. Video Sync Generator Block Diagram

You can configure various aspects of the core and its Avalon-ST interface 
to suit your requirements. You can specify the data width, number of 
beats required to transfer each pixel and synchronization signals. See 
“Instantiating the Core in SOPC Builder” on page 12–3 for more 
information on the available options.

To ensure incoming pixel data is sent to the display controller with 
correct timing, the video sync generator core must synchronize itself to 
the first pixel in a frame. The first active pixel is indicated by an sop 
pulse. 

The video sync generator core expects continuous streams of pixel data at 
its input interface and assumes that each incoming packet contains the 
correct number of pixels (Number of rows * Number of columns). Data 
starvation disrupts synchronization and results in unexpected output on 
the display. 

clk

reset

data

ready

valid

sop

eop

rgb_out

hd

vd

den

VIDEO SYNC GENERATOR
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Instantiating the Core in SOPC Builder

Use the MegaWizard® interface for the video sync generator core in SOPC 
Builder to configure the core. Table 12–1 lists the available parameters in 
the MegaWizard interface.

Signals

Table 12–2 lists the input and output signals for the video sync generator 
core.

Table 12–1. Video Sync Generator Parameters 

Parameter Name Description

Data Stream Bit Width The width of the inbound and outbound data. 

Beats Per Pixel The number of beats required to transfer one pixel. Valid values are 1 and 3. 
This parameter, when multiplied by Data Stream Bit Width must be equal to 
the total number of bits in one pixel.

Number of Columns The number of active pixels in each line.

Number of Rows The number of active scan lines in each video frame.

Horizontal Blank Pixels The number of blanking pixels that preceed the active pixels. During this 
period, there is no data flow from the Avalon-ST sink port to the LCD output 
data port.

Horizontal Front Porch Pixels The number of blanking pixels that follow the active pixels. During this period, 
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Vertical Blank Lines The number of blanking lines that preceed the active lines. During this period, 
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Vertical Front Porch Pixels The number of blanking lines that follow the active lines. During this period, 
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Total Horizontal Scan Pixels The total number of pixels in one line. The value is the sum of the following 
parameters: Number of Columns, Horizontal Blank Pixel, and Horizontal 
Front Porch Pixels.

Total Vertical Scan Lines The total number of lines in one video frame. The value is the sum of the 
following parameters: Number of Rows, Vertical Blank Lines, and Vertical 
Front Porch Lines.

Table 12–2. Video Sync Generator Core Signals (Part 1 of 2)

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input System clock.

reset 1 Input System reset. 

Avalon-ST Signals
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Timing Diagrams

The horizontal and vertical synchronization timings are determined by 
the parameters setting. Figure 12–3 shows the horizontal synchronization 
timing when the parameters Data Stream Bit Width and Beats Per Pixel 
are set to 8 and 3, respectively.

Figure 12–3. Horizontal Synchronization Timing—8 bits DataWidth and 3 Beats Per Pixel

data Variable-width Input Incoming pixel data. The datawidth is determined by the 
parameter Data Stream Bit Width.

ready 1 Output This signal is asserted when the video sync generator is 
ready to receive the pixel data.

valid 1 Input This signal is not used by the video sync generator core 
because the core always expects valid pixel data on the 
next clock cycle after the ready signal is asserted.

sop 1 Input Start-of-packet. This signal is asserted when the first pixel 
is received.

eop 1 Input End-of-packet. This signal is asserted when the last pixel is 
received.

LCD Output Signals

rgb_out Variable-width Output Display data. The datawidth is determined by the parameter 
Data Stream Bit Width.

hd 1 Output Horizontal synchronization pulse for display.

vd 1 Output Vertical synchronization pulse for display.

den 1 Output This signal is asserted when the video sync generator core 
outputs valid data for display.

Table 12–2. Video Sync Generator Core Signals (Part 2 of 2)

Signal Name Width (Bits) Direction Description

clk

hd

den

rgb_out R G B R G B

Horizontal sync pulse

Horizontal front porch

1 pixel

Horizontal blank pixels

Horizontal synchronization width
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Figure 12–4 shows the horizontal synchronization timing when the 
parameters Data Stream Bit Width and Beats Per Pixel are set to 24 and 
1, respectively.

Figure 12–4. Horizontal Synchronization Timing—24 bits Datawidth and 1 Beat Per Pixel

Figure 12–5 shows the vertical synchronization timing.

Figure 12–5. Vertical Synchronization Timing

Pixel Converter This section describes the hardware structure and functionality of the 
pixel converter core.

Functional Description

The pixel converter core receives pixel data on its Avalon-ST input 
interface and transforms the pixel data to the format required by the 
video sync generator. The least significant byte of the 32-bit wide pixel 
data is removed and the remaining 24 bits are wired directly to the core’s 
Avalon-ST output interface.

clk

hd

den

rgb_out RGB

Horizontal synchronization pulse

Horizontal blank pixels Horizontal front porch

1 pixel

RGBRGB RGBRGBRGB

Horizontal synchronization width

hd

den

Vertical blank lines

Horizontal synchronization width

vd

Vertical synchronization width

Vertical front porch

Vertical synchronization pulse
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Instantiating the Core in SOPC Builder

Use the MegaWizard interface for the pixel converter core in SOPC 
Builder to add the core to a system. There are no user-configurable 
settings for this core.

Signals

Table 12–3 lists the input and output signals for the pixel converter core.

Device and 
Tools Support

The video sync generator and pixel converter cores support all Altera 
device families.

Table 12–3. Pixel Converter Input Interface Signals 

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input Not in use.

reset_n 1 Input

Avalon-ST Signals

data_in 32 Input Incoming pixel data. Contains four 8-bit symbols that are 
tranferred in 1 beat.

data_out 24 Output Output data. Contains three 8-bit symbols that are 
transferred in 1 beat.

sop_in 1 Input

Wired directly to the corresponding output signals.

eop_in 1 Input

ready_in 1 Input

valid_in 1 Input

empty_in 1 Input

sop_out 1 Output

Wired directly from the input signals.

eop_out 1 Output

ready_out 1 Output

valid_out 1 Output

empty_out 1 Output
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Hardware 
Simulation 
Considerations

For a typical 60 Hz refresh rate, set the simulation length for the video 
sync generator core to at least 16.7 ms to get a full video frame. 
Depending on the size of the video frame, simulation may take a very 
long time to complete.

Referenced 
Document 

This chapter references the Avalon Streaming Interface Specification.

Document 
Revision History

Table 12–4 shows the revision history for this chapter.

Table 12–4. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Initial release.
—
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Section IV. Multiprocessor
Coordination Peripherals

This section describes multiprocessor coordination peripherals provided 
by Altera® for SOPC Builder systems. These components provide reliable 
mechanisms for multiple Nios® II processors to communicate with each 
other, and coordinate operations.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 13, Mutex Core
■ Chapter 14, Mailbox Core

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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13. Mutex Core

Core Overview Multiprocessor environments can use the mutex core with Avalon® 
interface to coordinate accesses to a shared resource. The mutex core 
provides a protocol to ensure mutually exclusive ownership of a shared 
resource.

The mutex core provides a hardware-based atomic test-and-set 
operation, allowing software in a multiprocessor environment to 
determine which processor owns the mutex. The mutex core can be used 
in conjunction with shared memory to implement additional 
interprocessor coordination features, such as mailboxes and software 
mutexes.

The mutex core is designed for use in Avalon-based processor systems, 
such as a Nios® II processor system. Altera provides device drivers for the 
Nios II processor to enable use of the hardware mutex.

The mutex core is SOPC Builder-ready and integrates easily into any 
SOPC Builder-generated system. This chapter contains the following 
sections:

■ Functional Description
■ “Device and Tools Support” on page 13–2
■ “Instantiating the Core in SOPC Builder” on page 13–2
■ “Software Programming Model” on page 13–2
■ “Mutex API” on page 13–4

Functional 
Description

The mutex core has a simple Avalon Memory-Mapped (Avalon-MM) 
slave interface that provides access to two memory-mapped, 32-bit 
registers. Table 13–1 shows the registers.

Table 13–1. Mutex Core Register Map

Offset Register 
Name R/W

Bit Description

31 … 16 15 … 1 0

0 mutex RW OWNER VALUE

1 reset RW – – RESET

NII51020-7.2.0
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The mutex core has the following basic behavior. This description 
assumes there are multiple processors accessing a single mutex core, and 
each processor has a unique identifier (ID). 

■ When the VALUE field is 0x0000, the mutex is available (i.e, 
unlocked). Otherwise, the mutex is unavailable (i.e., locked).

■ The mutex register is always readable. A processor (or any 
Avalon-MM master peripheral) can read the mutex register to 
determine its current state.

■ The mutex register is writable only under specific conditions. A 
write operation changes the mutex register only if one or both of the 
following conditions is true:
● The VALUE field of the mutex register is zero.
● The OWNER field of the mutex register matches the OWNER 

field in the data to be written.
■ A processor attempts to acquire the mutex by writing its ID to the 

OWNER field, and writing a non-zero value to VALUE. The 
processor then checks if the acquisition succeeded by verifying the 
OWNER field.

■ After system reset, the RESET bit in the reset register is high. 
Writing a one to this bit clears it.

Device and 
Tools Support

The mutex core supports all Altera device families supported by SOPC 
Builder, and provides device drivers for the Nios II hardware abstraction 
layer (HAL) system library. 

Instantiating the 
Core in SOPC 
Builder

Hardware designers use the MegaWizard® interface for the mutex core in 
SOPC Builder to specify the core's hardware features. The MegaWizard 
interface provides the following options:

■ Initial Value—the initial contents of the VALUE field after reset. If 
the Initial Value setting is non-zero, you must also specify Initial 
Owner.

■ Initial Owner—the initial contents of the OWNER field after reset. 
When Initial Owner is specified, this owner must release the mutex 
before it can be acquired by another owner. 

Software 
Programming 
Model

The following sections describe the software programming model for the 
mutex core, such as the software constructs used to access the hardware. 
For Nios II processor users, Altera provides routines to access the mutex 
core hardware. These functions are specific to the mutex core and directly 
manipulate low-level hardware. The mutex core cannot be accessed via 
the HAL API or the ANSI C standard library. In Nios II processor 
systems, a processor locks the mutex by writing the value of its cpuid 
control register to the OWNER field of the mutex register. 
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Software Files

Altera provides the following software files accompanying the mutex 
core: 

■ altera_avalon_mutex_regs.h—this file defines the core’s register 
map, providing symbolic constants to access the low-level hardware. 

■ altera_avalon_mutex.h—this file defines data structures and 
functions to access the mutex core hardware.

■ altera_avalon_mutex.c—this file contains the implementations of 
the functions to access the mutex core

Hardware Mutex

This section describes the low-level software constructs for manipulating 
the mutex core hardware. 

The file altera_avalon_mutex.h declares a structure alt_mutex_dev 
that represents an instance of a mutex device. It also declares functions for 
accessing the mutex hardware structure, listed in Table 13–2. 

These routines coordinate access to the software mutex structure using a 
hardware mutex core. For a complete description of each function, see 
section “Mutex API” on page 13–4. 

Table 13–2. Hardware Mutex Functions

Function Name Description

altera_avalon_mutex_open() Claims a handle to a mutex, enabling all the other functions to 
access the mutex core.

altera_avalon_mutex_trylock() Tries to lock the mutex. Returns immediately if it fails to lock 
the mutex. 

altera_avalon_mutex_lock() Locks the mutex. Will not return until it has successfully 
claimed the mutex.

altera_avalon_mutex_unlock() Unlocks the mutex. 

altera_avalon_mutex_is_mine() Determines if this CPU owns the mutex.

altera_avalon_mutex_first_lock() Tests whether the mutex has been released since reset.
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Example 13–1 demonstrates opening a mutex device handle and locking 
a mutex:

Example 13–1. Opening and locking a mutex
#include <altera_avalon_mutex.h>

/* get the mutex device handle */
alt_mutex_dev* mutex = altera_avalon_mutex_open( “/dev/mutex” );

/* acquire the mutex, setting the value to one */
altera_avalon_mutex_lock( mutex, 1 );

/* 
 * Access a shared resource here.
 */

/* release the lock */
altera_avalon_mutex_unlock( mutex );

Mutex API This section describes the application programming interface (API) for 
the mutex core.
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altera_avalon_mutex_is_mine()

Prototype: int altera_avalon_mutex_is_mine(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon_mutex_is_mine() determines if this CPU owns the mutex.
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altera_avalon_mutex_first_lock()

Prototype: int altera_avalon_mutex_first_lock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.

Description: altera_avalon_mutex_first_lock() determines whether this mutex has been 
released since reset.
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altera_avalon_mutex_lock()

Prototype: void altera_avalon_mutex_lock(alt_mutex_dev* dev, alt_u32 
value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to acquire.
value—the new value to write to the mutex.

Returns: –

Description: altera_avalon_mutex_lock() is a blocking routine that acquires a hardware 
mutex, and at the same time, loads the mutex with the value parameter.
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altera_avalon_mutex_open()

Prototype: alt_mutex_dev* alt_hardware_mutex_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: name—the name of the mutex device to open.

Returns: A pointer to the mutex device structure associated with the supplied name, or NULL if 
no corresponding mutex device structure was found. 

Description: altera_avalon_mutex_open() retrieves a pointer to a hardware mutex device 
structure.
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altera_avalon_mutex_trylock()

Prototype: int altera_avalon_mutex_trylock(alt_mutex_dev* dev, alt_u32 
value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to lock.
value—the new value to write to the mutex.

Returns: Zero if the mutex was successfully locked, or non zero if the mutex was not locked.

Description: altera_avalon_mutex_trylock() tries once to lock the hardware mutex, and 
returns immediately.
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altera_avalon_mutex_unlock()

Prototype: void altera_avalon_mutex_unlock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to unlock.

Returns: -

Description: altera_avalon_mutex_unlock() releases a hardware mutex device. Upon 
release, the value stored in the mutex is set to zero. If the caller does not hold the mutex, 
the behavior of this function is undefined.



Altera Corporation  13–11
October 2007

altera_avalon_mutex_trylock()

Document 
Revision History

Table 13–3 shows the revision history for this chapter.
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14. Mailbox Core

Core Overview Multiprocessor environments can use the mailbox core with Avalon® 
interface to send messages between processors.

The mailbox core contains mutexes to ensure that only one processor 
modifies the mailbox contents at a time. The mailbox core must be used 
in conjunction with a separate shared memory that is used for storing the 
actual messages.

The mailbox core is designed for use in Avalon-based processor systems, 
such as a Nios® II processor system. Altera® provides device drivers for 
the Nios II processor. The mailbox core is SOPC Builder-ready and 
integrates easily into any SOPC Builder-generated system. This chapter 
contains the following sections:

■ “Functional Description”
■ “Device and Tools Support” on page 14–2
■ “Instantiating the Core in SOPC Builder” on page 14–2
■ “Software Programming Model” on page 14–3
■ “Mailbox API” on page 14–6

Functional 
Description

The mailbox core has a simple Avalon Memory-Mapped (Avalon-MM) 
slave interface that provides access to four memory-mapped, 32-bit 
registers. Table 14–1 shows the registers.

Table 14–1. Mutex Core Register Map

Offset Register 
Name R/W

Bit Description

31 … 16 15 … 1 0

0 mutex0 RW OWNER VALUE

1 reset0 RW – – RESET

2 mutex1 RW OWNER VALUE

3 reset1 RW – – RESET

NII53001-7.2.0
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The mailbox component contains two mutexes: One to ensure unique 
write access to shared memory and one to ensure unique read access from 
shared memory. The mailbox core is used in conjunction with a separate 
memory in the system that is shared among multiple processors. 

Mailbox functionality using the mutexes and memory is implemented 
entirely in the software. Refer to “Software Programming Model” on 
page 14–3 for details about how to use the mailbox core in software. 

f For a detailed description of the mutex hardware operation, refer to the 
Mutex Core chapter in volume 5 of the Quartus II Handbook. 

Device and 
Tools Support

The mailbox core supports all Altera device families supported by SOPC 
Builder, and provides device drivers for the Nios II hardware abstraction 
layer (HAL) system library. 

Instantiating the 
Core in SOPC 
Builder

Hardware designers instantiate and configure the mailbox core in an 
SOPC Builder system using the following process: 

1. Decide which processors will share the mailbox. 

2. On the SOPC Builder System Contents tab, instantiate a memory 
component to serve as the mailbox buffer. Any RAM can be used as 
the mailbox buffer. The mailbox buffer can share space in an existing 
memory, such as program memory; it does not require a dedicated 
memory.

3. On the SOPC Builder System Contents tab, instantiate the mailbox 
component. The mailbox MegaWizard® interface presents the 
following options:

● Memory module—Specifies which memory to use for the 
mailbox buffer. If the Memory module list does not contain the 
desired shared memory, the memory is not connected in the 
system correctly. Refer to Step 4 on page 14–3.

● CPUs available with this memory—Shows all the processors 
that can share the mailbox. This field is always read-only. Use it 
to verify that the processor connections are correct. If a processor 
that needs to share the mailbox is missing from the list, refer to 
Step 4 on page 14–3.

● Shared mailbox memory offset—Specifies an offset into the 
memory. The mailbox message buffer starts at this offset.

● Mailbox size (bytes)—Specifies the number of bytes to use for 
the mailbox message buffer. The Nios II driver software 
provided by Altera uses eight bytes of overhead to implement 
the mailbox functionality. For a mailbox capable of passing only 
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one message at a time, Mailbox size (bytes) must be at least 12 
bytes.

● Maximum available bytes—Specifies the number of bytes in 
the selected memory available for use as the mailbox message 
buffer. This field is always read-only.

4. If not already connected, make component connections on the SOPC 
Builder System Contents tab. 

a. Connect each processor’s data bus master port to the mailbox 
slave port.

b. Connect each processor’s data bus master port to the shared 
mailbox memory.

Software 
Programming 
Model

The following sections describe the software programming model for the 
mailbox core, such as the software constructs used to access the hardware. 
For Nios II processor users, Altera provides routines to access the mailbox 
core hardware. These functions are specific to the mailbox core and 
directly manipulate low-level hardware. 

The mailbox software programming model has the following 
characteristics and assumes there are multiple processors accessing a 
single mailbox core and a shared memory:

■ Each mailbox message is one 32-bit word. 
■ There is a predefined address range in shared memory dedicated to 

storing messages. The size of this address range imposes a maximum 
limit on the number of messages pending.

■ The mailbox software implements a message FIFO between 
processors. Only one processor can write to the mailbox at a time, 
and only one processor can read from the mailbox at a time, ensuring 
message integrity.

■ The software on both the sending and receiving processors must 
agree on a protocol for interpreting mailbox messages. Typically, 
processors treat the message as a pointer to a structure in shared 
memory.

■ The sending processor can post messages in succession, up to the 
limit imposed by the size of the message address range. 

■ When messages exist in the mailbox, the receiving processor can read 
messages. The receiving processor can block until a message 
appears, or it can poll the mailbox for new messages.

■ Reading the message removes the message from the mailbox. 
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Software Files

Altera provides the following software files accompanying the mailbox 
core hardware: 

■ altera_avalon_mailbox_regs.h—Defines the core’s register map, 
providing symbolic constants to access the low-level hardware. 

■ altera_avalon_mailbox.h—Defines data structures and functions to 
access the mailbox core hardware.

■ altera_avalon_mailbox.c—Contains the implementations of the 
functions to access the mailbox core.

Programming with the Mailbox Core

This section describes the software constructs for manipulating the 
mailbox core hardware. 

The file altera_avalon_mailbox.h declares a structure 
alt_mailbox_dev that represents an instance of a mailbox device. It 
also declares functions for accessing the mailbox hardware structure, 
listed in Table 14–2. For a complete description of each function, refer to 
“Mailbox API” on page 14–6.  

Table 14–2. Mailbox API Functions

Function Name Description

altera_avalon_mailbox_close() Closes the handle to a mailbox.

altera_avalon_mailbox_get() Returns a message if one is present, but does not block 
waiting for a message.

altera_avalon_mailbox_open() Claims a handle to a mailbox, enabling all the other functions 
to access the mailbox core.

altera_avalon_mailbox_pend() Blocks waiting for a message to be in the mailbox.

altera_avalon_mailbox_post() Posts a message to the mailbox.
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Example 14–1 demonstrates writing to and reading from a mailbox. For 
this example, assume that the hardware system has two processors 
communicating via mailboxes. The system includes two mailbox cores, 
which provide two-way communication between the processors.

Example 14–1. Example: Writing to and Reading from a Mailbox 
#include <stdio.h>
#include "altera_avalon_mailbox.h"

int main()
{
  alt_u32 message = 0;
  alt_mailbox_dev* send_dev, recv_dev;

/* Open the two mailboxes between this processor and another */
  send_dev = altera_avalon_mailbox_open("/dev/mailbox_0");
  recv_dev = altera_avalon_mailbox_open("/dev/mailbox_1");

  while(1)
  {

/* Send a message to the other processor */
    altera_avalon_mailbox_post(send_dev, message);

/* Wait for the other processor to send a message back */
    message = altera_avalon_mailbox_pend(recv_dev);

  }

  return 0;
}
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Mailbox API This section describes the application programming interface (API) for 
the mailbox core.
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altera_avalon_mailbox_close()

Prototype: void altera_avalon_mailbox_close (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox to close.

Returns: –

Description: altera_avalon_mailbox_close() closes the mailbox.



14–8  Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–8  Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_mailbox_get()

Prototype: alt_u32 altera_avalon_mailbox_get (alt_mailbox_dev* dev, int* 
err);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox handle, 
err—pointer to an error code that is returned.

Returns: Returns a message if one is available in the mailbox, otherwise returns 0. The value 
pointed to by err is 0 if the message was read correctly, or EWOULDBLOCK if there is 
no message to read.

Description: altera_avalon_mailbox_get() returns a message if one is present, but does 
not block waiting for a message.
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altera_avalon_mailbox_open()

Prototype: alt_mailbox_dev* altera_avalon_mailbox_open (const char* 
name);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: name—the name of the mailbox device to open.

Returns: Returns a handle to the mailbox, or NULL if this mailbox does not exist.

Description: altera_avalon_mailbox_open() opens a mailbox.
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altera_avalon_mailbox_pend()

Prototype: alt_u32 altera_avalon_mailbox_pend (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to read a message from.

Returns: Returns the message.

Description: altera_avalon_mailbox_pend() is a blocking routine that waits for a message 
to appear in the mailbox and then reads it.
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altera_avalon_mailbox_post()

Prototype: int altera_avalon_mailbox_post (alt_mailbox_dev* dev, alt_u32 
msg);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to post a message to
msg—the value to post.

Returns: Returns 0 on success, or EWOULDBLOCK if the mailbox is full.

Description: altera_avalon_mailbox_post() posts a message to the mailbox.
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This chapter references the Mutex Core chapter in volume 5 of the 
Quartus II Handbook

Document 
Revision History

Table 14–3 shows the revision history for this chapter.

Table 14–3. Document Revision History

Date and 
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 14 was formerly chapter 12. —

May 2007
v7.1.0

● Chapter 12 was formerly chapter 10.
● Revised “Instantiating the Core in SOPC Builder” on 

page 14–2 to reflect the GUI changing from the More 
Settings tab to the MegaWizard interface.

● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies. 

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric.” 

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.” 

For the 6.1 release, Altera 
released the Avalon 
Streaming interface, which 
necessitated some re-
phrasing of existing Avalon 
terminology. 

May 2006
v6.0.0

No change from previous release. —

October 2005
v5.1.0

No change from previous release. —

May 2005
v5.0.0

Initial release.
—

http://www/literature/hb/nios2/n2cpu_nii51020.pdf
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Section V. Other Memory-
Mapped Peripherals

This section describes other peripherals provided by Altera® for SOPC 
Builder systems.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 15, PIO Core
■ Chapter 16, Timer Core
■ Chapter 17, System ID Core
■ Chapter 18, PLL Core
■ Chapter 19, Performance Counter Core

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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15. PIO Core

Core Overview The parallel input/output (PIO) core with Avalon® interface provides a 
memory-mapped interface between an Avalon Memory-Mapped 
(Avalon-MM) slave port and general-purpose I/O ports. The I/O ports 
connect either to on-chip user logic, or to I/O pins that connect to devices 
external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in 
situations where a “bit banging” approach is sufficient. Some example 
uses are:

■ Controlling LEDs
■ Acquiring data from switches
■ Controlling display devices
■ Configuring and communicating with off-chip devices, such as 

application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based 
on input signals. The PIO core is SOPC Builder ready and integrates 
easily into any SOPC Builder-generated system. This chapter contains the 
following sections:

■ Functional Description
■ “Example Configurations” on page 15–4
■ “Instantiating the PIO Core in SOPC Builder” on page 15–5
■ “Device and Tools Support” on page 15–6
■ “Software Programming Model” on page 15–6

Functional 
Description

Each PIO core can provide up to 32 I/O ports. An intelligent host such as 
a microprocessor controls the PIO ports by reading and writing the 
register-mapped Avalon-MM interface. Under control of the host, the 
PIO core captures data on its inputs and drives data to its outputs. When 
the PIO ports are connected directly to I/O pins, the host can tristate the 
pins by writing control registers in the PIO core. Figure 15–1 shows an 
example of a processor-based system that uses multiple PIO cores to blink 
LEDs, capture edges from on-chip reset-request control logic, and control 
an off-chip LCD display. 

NII51007-7.2.0
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Figure 15–1. An Example System Using Multiple PIO Cores

When integrated into an SOPC Builder-generated system, the PIO core 
has two user-visible features:

■ A memory-mapped register space with four registers: data, 
direction, interruptmask, and edgecapture. 

■ 1 to 32 I/O ports.

The I/O ports can be connected to logic inside the FPGA, or to device pins 
that connect to off-chip devices. The registers provide an interface to the 
I/O ports via the Avalon-MM interface. See Table 15–2 on page 15–7 for a 
description of the registers. Some registers are not necessary in certain 
hardware configurations, in which case the unnecessary registers do not 
exist. Reading a non-existent register returns an undefined value, and 
writing a non-existent register has no effect.

Data Input and Output

The PIO core I/O ports can connect to either on-chip or off-chip logic. The 
core can be configured with inputs only, outputs only, or both inputs and 
outputs. If the core will be used to control bidirectional I/O pins on the 
device, the core provides a bidirectional mode with tristate control. 
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The hardware logic is separate for reading and writing the data register. 
Reading the data register returns the value present on the input ports (if 
present). Writing data affects the value driven to the output ports (if 
present). These ports are independent; reading the data register does not 
return previously-written data.

Edge Capture

The PIO core can be configured to capture edges on its input ports. It can 
capture low-to-high transitions, high-to-low transitions, or both. 
Whenever an input detects an edge, the condition is indicated in the 
edgecapture register. The type of edges to detect is specified at system 
generation time, and cannot be changed via the registers.

IRQ Generation

The PIO core can be configured to generate an IRQ on certain input 
conditions. The IRQ conditions can be either:

■ Level-sensitive—The PIO core hardware can detect a high level. A NOT 
gate can be inserted external to the core to provide negative 
sensitivity.

■ Edge-sensitive—The core’s edge capture configuration determines 
which type of edge causes an IRQ 

Interrupts are individually maskable for each input port. The interrupt 
mask determines which input port can generate interrupts.
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Example 
Configurations

Figure 15–2 shows a block diagram of the PIO core configured with input 
and output ports, as well as support for IRQs.

Figure 15–2. PIO Core with Input Ports, Output Ports and IRQ Support 

Figure 15–3 shows a block diagram of the PIO core configured in 
bidirectional mode, without support for IRQs. 

Figure 15–3. PIO Core with Bidirectional Ports

Avalon-MM Interface

The PIO core’s Avalon-MM interface consists of a single Avalon-MM 
slave port. The slave port is capable of fundamental Avalon-MM read 
and write transfers. The Avalon-MM slave port provides an IRQ output 
so that the core can assert interrupts.
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Instantiating the 
PIO Core in 
SOPC Builder

Designers use the MegaWizard® interface for the PIO core in SOPC 
Builder to configure the hardware feature set. The following sections 
describe the available options.

The MegaWizard interface has two tabs, Basic Settings and Input 
Options. 

Basic Settings

The Basic Settings page allows the designer to specify the width and 
direction of the I/O ports. 

■ The Width setting can be any integer value between 1 and 32. For a 
value of n, the I/O ports become n-bits wide.

■ The Direction setting has four options, as shown in Table 15–1.

Input Options

The Input Options page allows the designer to specify edge-capture and 
IRQ generation settings. The Input Options page is not available when 
Output ports only is selected on the Basic Settings page.

Edge Capture Register

Synchronously Capture
When Synchronously capture is on, the PIO core contains the edge 
capture register, edgecapture. The user must further specify what type 
of edge(s) to detect:

■ Rising Edge
■ Falling Edge
■ Either Edge

Table 15–1. Direction Settings

Setting Description

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving and capturing data. 
The direction of each pin is individually selectable. To tristate an FPGA I/O pin, 
set the direction to input. 

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are separate, unidirectional buses 
of n bits wide. 
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The edge capture register allows the core to detect and (optionally) 
generate an interrupt when an edge of the specified type occurs on an 
input port.

When Synchronously capture is off, the edgecapture register does not 
exist. 

Enable Bit Clearing for Edge Capture Register
Turning on Enable bit-clearing for edge capture register allows you to 
clear individual bit(s) in the edge capture register. To clear a given bit, 
write 1 to the bit in the edge capture register. Example—To clear bit 6 in 
the edge capture register, write 01000000 to the register.

Interrupt

When Generate IRQ is on, the PIO core is able to assert an IRQ output 
when a specified event occurs on input ports. The user must further 
specify the cause of an IRQ event:

■ Level—The core generates an IRQ whenever a specific input is high 
and interrupts are enabled for that input in the interruptmask 
register. 

■ Edge—The core generates an IRQ whenever a specific bit in the edge 
capture register is high and interrupts are enabled for that bit in the 
interruptmask register. 

When Generate IRQ is off, the interruptmask register does not exist.

Device and 
Tools Support

The PIO core supports all Altera® FPGA families. 

Software 
Programming 
Model

This section describes the software programming model for the PIO core, 
including the register map and software constructs used to access the 
hardware. For Nios® II processor users, Altera provides the HAL system 
library header file that defines the PIO core registers. The PIO core does 
not match the generic device model categories supported by the HAL, so 
it cannot be accessed via the HAL API or the ANSI C standard library. 

The Nios II Embedded Design Suite (EDS) provides several example 
designs that demonstrate usage of the PIO core. In particular, the 
count_binary.c example uses the PIO core to drive LEDs, and detect 
button presses using PIO edge-detect interrupts.
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Software Files

The PIO core is accompanied by one software file, 
altera_avalon_pio_regs.h. This file defines the core’s register map, 
providing symbolic constants to access the low-level hardware. 

Legacy SDK Routines

The PIO core is supported by the legacy SDK routines for the 
first-generation Nios processor. For details about these routines, refer to 
the PIO documentation that accompanied the first-generation Nios 
processor. 

f For details about upgrading programs based on the legacy SDK to the 
HAL system library API, refer to AN 350: Upgrading Nios Processor 
Systems to the Nios II Processor. 

Register Map

An Avalon-MM master peripheral, such as a CPU, controls and 
communicates with the PIO core via the four 32-bit registers, shown in 
Table 15–2. The table assumes that the PIO core’s I/O ports are 
configured to a width of n bits. 

data Register

Reading from data returns the value present at the input ports. If the PIO 
core hardware is configured in output-only mode, reading from data 
returns an undefined value. 

Table 15–2. Register Map for the PIO Core 

Offset Register Name R/W (n-1) ... 2 1 0

0 data read access R Data value currently on PIO inputs

write access W New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O port. A value of 0 
sets the direction to input; 1 sets the direction to output. 

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1 
enables interrupts for the corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port. 

Notes to Table 15–2:
(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the 

register returns an undefined value, and writing the register has no effect.
(2) Writing any value to edgecapture clears all bits to 0.
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Writing to data stores the value to a register that drives the output ports. 
If the PIO core hardware is configured in input-only mode, writing to 
data has no effect. If the PIO core hardware is in bidirectional mode, the 
registered value appears on an output port only when the corresponding 
bit in the direction register is set to 1 (output).

direction Register

The direction register controls the data direction for each PIO port, 
assuming the port is bidirectional. When bit n in direction is set to 1, 
port n drives out the value in the corresponding bit of the data register. 

The direction register only exists when the PIO core hardware is 
configured in bidirectional mode. The mode (input, output, or 
bidirectional) is specified at system generation time, and cannot be 
changed at runtime. In input-only or output-only mode, the direction 
register does not exist. In this case, reading direction returns an 
undefined value, writing direction has no effect. 

After reset, all bits of direction are 0, so that all bidirectional I/O ports 
are configured as inputs. If those PIO ports are connected to device pins, 
the pins are held in a high-impedance state. In bi-directional mode, to 
change the direction of the PIO port re-program the direction register. 

interruptmask Register

Setting a bit in the interruptmask register to 1 enables interrupts for 
the corresponding PIO input port. Interrupt behavior depends on the 
hardware configuration of the PIO core. See “Interrupt Behavior” on 
page 15–9.

The interruptmask register only exists when the hardware is 
configured to generate IRQs. If the core cannot generate IRQs, reading 
interruptmask returns an undefined value, and writing to 
interruptmask has no effect. 

After reset, all bits of interruptmask are zero, so that interrupts are 
disabled for all PIO ports. 

edgecapture Register

Bit n in the edgecapture register is set to 1 whenever an edge is detected 
on input port n. An Avalon-MM master peripheral can read the 
edgecapture register to determine if an edge has occurred on any of the 
PIO input ports. Writing any value to edgecapture clears all bits in the 
register.
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The type of edge(s) to detect is fixed in hardware at system generation 
time. The edgecapture register only exists when the hardware is 
configured to capture edges. If the core is not configured to capture 
edges, reading from edgecapture returns an undefined value, and 
writing to edgecapture has no effect.

Interrupt Behavior

The PIO core outputs a single IRQ signal that can connect to any master 
peripheral in the system. The master can read either the data register or 
the edgecapture register to determine which input port caused the 
interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is 
asserted whenever corresponding bits in the data and interruptmask 
registers are 1. When the hardware is configured for edge-sensitive 
interrupts, the IRQ is asserted whenever corresponding bits in the 
edgecapture and interruptmask registers are 1. The IRQ remains 
asserted until explicitly acknowledged by disabling the appropriate bit(s) 
in interruptmask, or by writing to edgecapture.

Software Files

The PIO core is accompanied by the following software file. This file 
provide low-level access to the hardware. Application developers should 
not modify the file.

■ altera_avalon_pio_regs.h—This file defines the core’s register map, 
providing symbolic constants to access the low-level hardware. The 
symbols in this file are used by device driver functions.

Referenced 
Document

This chapter references AN 350: Upgrading Nios Processor Systems to the 
Nios II Processor.

http://www.altera.com/literature/an/an350.pdf
http://www.altera.com/literature/an/an350.pdf
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For the 6.1 release, Altera 
released the Avalon Streaming 
interface, which necessitated 
some re-phrasing of existing 
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May 2006
v6.0.0

No change from previous release. —
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v5.0.0
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Initial release. —
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16. Timer Core

Core Overview The timer core with Avalon® interface is a 32-bit interval timer for Avalon-
based processor systems, such as a Nios® II processor system. The timer 
provides the following features:

■ Controls to start, stop, and reset the timer
■ Two count modes: count down once and continuous count-down
■ Count-down period register
■ Maskable interrupt request (IRQ) upon reaching zero
■ Optional watchdog timer feature that resets the system if timer ever 

reaches zero
■ Optional periodic pulse generator feature that outputs a pulse when 

timer reaches zero
■ Compatible with 32-bit and 16-bit processors

Device drivers are provided in the HAL system library for the Nios II 
processor. The timer core is SOPC Builder-ready and integrates easily into 
any SOPC Builder-generated system. This chapter contains the following 
sections:

■ “Functional Description” on page 16–2
■ “Device and Tools Support” on page 16–3
■ “Instantiating the Core in SOPC Builder” on page 16–3
■ “Software Programming Model” on page 16–6

NII51008-7.2.0
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Functional 
Description

Figure 16–1 shows a block diagram of the timer core. 

Figure 16–1. Timer Core Block Diagram

The timer core has two user-visible features: 

■ The Avalon Memory-Mapped (Avalon-MM) interface that provides 
access to six 16-bit registers 

■ An optional pulse output that can be used as a periodic pulse 
generator 

All registers are 16-bits wide, making the timer compatible with both 
16-bit and 32-bit processors. Certain registers only exist in hardware for a 
given configuration. For example, if the timer is configured with a fixed 
period, the period registers do not exist in hardware.

The basic behavior of the timer is described below: 

■ An Avalon-MM master peripheral, such as a Nios II processor, writes 
the timer core’s control register to:
● Start and stop the timer
● Enable/disable the IRQ
● Specify count-down once or continuous count-down mode

■ A processor reads the status register for information about current 
timer activity.

■ A processor can specify the timer period by writing a value to the 
period registers, periodl and periodh. 

■ An internal counter counts down to zero, and whenever it reaches 
zero, it is immediately reloaded from the period registers. 

Register File
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■ A processor can read the current counter value by first writing to 
either snapl or snaph to request a coherent snapshot of the counter, 
and then reading snapl and snaph for the full 32-bit value. 

■ When the count reaches zero:
● If IRQs are enabled, an IRQ is generated
● The (optional) pulse-generator output is asserted for one clock 

period
● The (optional) watchdog output resets the system

Avalon-MM Slave Interface

The timer core implements a simple Avalon-MM slave interface to 
provide access to the register file. The Avalon-MM slave port uses the 
resetrequest signal to implement watchdog timer behavior. This 
signal is a non-maskable reset signal, and it drives the reset input of all 
Avalon-MM peripherals in the SOPC Builder system. When the 
resetrequest signal is asserted, it forces any processor connected to 
the system to reboot. For more information, refer to “Configuring the 
Timer as a Watchdog Timer” on page 16–5. 

Device and 
Tools Support

The timer core supports all Altera® FPGA families. 

Instantiating the 
Core in SOPC 
Builder

Designers use the MegaWizard® interface for the timer core in SOPC 
Builder to specify the hardware features. This section describes the 
options available in the MegaWizard interface.

Timeout Period

The Timeout Period setting determines the initial value of the periodl 
and periodh registers. When the Writeable period setting is enabled, a 
processor can change the value of the period by writing periodl and 
periodh. When Writeable period (see below) is off, the period is fixed 
and cannot be updated at runtime. 

The Timeout Period is an integer multiple of the Timer Frequency. The 
Timer Frequency is fixed at the frequency setting of the system clock 
associated with the timer. The Timeout Period setting can be specified in 
units of µs (microseconds), ms (milliseconds), seconds, or clocks 
(number of cycles of the system clock associated with the timer). The 
actual period depends on the frequency of the system clock associated 
with the timer. If the period is specified in µs, ms, or seconds, the true 
period will be the smallest number of clock cycles that is greater or equal 
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to the specified Timeout Period value. For example, if the associated 
system clock has a frequency of 30 ns, and the specified Timeout Period 
value is 1 µs, then the true timeout period will be 1.020 microseconds.

Hardware Options

The following options affect the hardware structure of the timer core. As 
a convenience, the Preset Configurations list offers several pre-defined 
hardware configurations, such as:

■ Simple periodic interrupt—This configuration is useful for systems 
that require only a periodic IRQ generator. The period is fixed and 
the timer cannot be stopped, but the IRQ can be disabled.

■ Full-featured—This configuration is useful for embedded processor 
systems that require a timer with variable period that can be started 
and stopped under processor control.

■ Watchdog—This configuration is useful for systems that require 
watchdog timer to reset the system in the event that the system has 
stopped responding. Refer to “Configuring the Timer as a Watchdog 
Timer” on page 16–5. 

Register Options

Table 16–1 shows the settings that affect the timer core’s registers.

Table 16–1. Register Options

Option Description

Writeable 
period

When this option is enabled, a master peripheral can change the count-down period by writing 
periodl and periodh. When disabled, the count-down period is fixed at the specified 
Timeout Period, and the periodl and periodh registers do not exist in hardware.

Readable 
snapshot

When this option is enabled, a master peripheral can read a snapshot of the current count-
down. When disabled, the status of the counter is detectable only via other indicators, such as 
the status register or the IRQ signal. In this case, the snapl and snaph registers do not 
exist in hardware, and reading these registers produces an undefined value.

Start/Stop 
control bits

When this option is enabled, a master peripheral can start and stop the timer by writing the 
START and STOP bits in the control register. When disabled, the timer runs continuously. 
When the System reset on timeout (watchdog) option is enabled, the START bit is also 
present, regardless of the Start/Stop control bits option.
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Output Signal Options

Table 16–2 shows the settings that affect the timer core’s output signals.

Configuring the Timer as a Watchdog Timer

To configure the timer for use as a watchdog, in the MegaWizard interface 
select Watchdog in the Preset Configurations list, or choose the following 
settings:

■ Set the Timeout Period to the desired “watchdog” period. 
■ Turn off Writeable period.
■ Turn off Readable snapshot.
■ Turn off Start/Stop control bits.
■ Turn off Timeout pulse.
■ Turn on System reset on timeout (watchdog).

A watchdog timer wakes up (i.e., comes out of reset) stopped. A 
processor later starts the timer by writing a 1 to the control register’s 
START bit. Once started, the timer can never be stopped. If the internal 
counter ever reaches zero, the watchdog timer resets the system by 
generating a pulse on its resetrequest output. To prevent the system 
from resetting, the processor must periodically reset the timer’s 
count-down value by writing either the periodl or periodh registers 
(the written value is ignored). If the processor fails to access the timer 
because, for example, software stopped executing normally, then the 
watchdog timer resets the system and returns the system to a defined 
state.

Table 16–2. Output Signal Options

Option Description

Timeout pulse 
(1 clock wide)

When this option is enabled, the timer core outputs a signal timeout_pulse. This signal 
pulses high for one clock cycle whenever the timer reaches zero. When disabled, the 
timeout_pulse signal does not exist.

System reset on 
timeout (watchdog)

When this option is enabled, the timer core’s Avalon-MM slave port includes the 
resetrequest signal. This signal pulses high for one clock cycle (causing a system-
wide reset) whenever the timer reaches zero. When this option is enabled, the internal 
timer is stopped at reset. Explicitly writing the START bit of the control register starts the 
timer. When this option is disabled, the resetrequest signal does not exist.
Refer to “Configuring the Timer as a Watchdog Timer”. 
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Software 
Programming 
Model

The following sections describe the software programming model for the 
timer core, including the register map and software declarations to access 
the hardware. For Nios II processor users, Altera provides hardware 
abstraction layer (HAL) system library drivers that enable you to access 
the timer core using the HAL application programming interface (API) 
functions. 

HAL System Library Support

The Altera-provided drivers integrate into the HAL system library for 
Nios II systems. When possible, HAL users should access the timer via 
the HAL API, rather than accessing the timer registers. 

Altera provides a driver for both the HAL timer device models: system 
clock timer, and timestamp timer. 

System Clock Driver

When configured as the system clock, the timer runs continuously in 
periodic mode, using the default period set in SOPC builder. The system 
clock services are then run as a part of the interrupt service routine for this 
timer. The driver is interrupt-driven, and therefore must have its 
interrupt signal connected in the system hardware.

The Nios II integrated development environment (IDE) allows you to 
specify system library properties that determine which timer device will 
be used as the system clock timer. 

Timestamp Driver

The timer core may be used as a timestamp device if it meets the 
following conditions:

■ The timer has a writeable period register, as configured in SOPC 
Builder.

■ The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that 
determine which timer device will be used as the timestamp timer. 

If the timer hardware is not configured with writeable period registers, 
then calls to the alt_timestamp_start() API function will not reset 
the timestamp counter. All other HAL API calls will perform as expected.
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f For more information about using the system clock and timestamp 
features that use these drivers, refer to the Nios II Software Developer’s 
Handbook. The Nios II Embedded Design Suite (EDS) also provides 
several example designs that use the timer core.

Limitations

The HAL driver for the timer core does not support the watchdog reset 
feature of the timer core. 

Software Files

The timer core is accompanied by the following software files. These files 
define the low-level interface to the hardware, and provide the HAL 
drivers. Application developers should not modify these files.

■ altera_avalon_timer_regs.h—This file defines the core’s register 
map, providing symbolic constants to access the low-level hardware.

■ altera_avalon_timer.h, altera_avalon_timer_sc.c, 
altera_avalon_timer_ts.c, altera_avalon_timer_vars.c—These files 
implement the timer device drivers for the HAL system library. 

Register Map

A programmer should never have to directly access the timer via its 
registers if using the standard features provided in the HAL system 
library for the Nios II processor. In general, the register map is only useful 
to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device 
registers directly. If you are writing a device driver, and the 
HAL driver is active for the same device, your driver will 
conflict and fail to operate correctly.

Table 16–3 shows the register map for the timer.

Table 16–3. Register Map (Part 1 of 2)

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 periodl RW Timeout Period – 1 (bits 15..0)

3 periodh RW Timeout Period – 1 (bits 31..16)
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status Register

The status register has two defined bits, as shown in Table 16–4. 

control Register

The control register has four defined bits, as shown in Table 16–5. 

4 snapl RW Counter Snapshot (bits 15..0)

5 snaph RW Counter Snapshot (31..16)

Note to Table 16–3:
(1) Reserved. Read values are undefined. Write zero.

Table 16–3. Register Map (Part 2 of 2)

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

Table 16–4. status Register Bits

Bit Name
Read/
Write/
Clear

Description

0 TO RC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once 
set by a timeout event, the TO bit stays set until explicitly cleared by a master 
peripheral. Write zero to the status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit 
reads as 0. The RUN bit is not changed by a write operation to the status 
register.

Table 16–5. control Register Bits (Part 1 of 2)

Bit Name
Read/
Write/
Clear

Description

0 ITO RW If the ITO bit is 1, the timer core generates an IRQ when the status 
register’s TO bit is 1. When the ITO bit is 0, the timer does not generate 
IRQs.

1 CONT RW The CONT (continuous) bit determines how the internal counter behaves 
when it reaches zero. If the CONT bit is 1, the counter runs continuously until 
it is stopped by the STOP bit. If CONT is 0, the counter stops after it reaches 
zero. When the counter reaches zero, it reloads with the 32-bit value stored 
in the periodl and periodh registers, regardless of the CONT bit. 
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periodl and periodh Registers

The periodl and periodh registers together store the timeout period 
value. periodl holds the least-significant 16 bits, and periodh holds 
the most-significant 16 bits. The internal counter is loaded with the 32-bit 
value stored in periodh and periodl whenever one of the following 
occurs:

■ A write operation to either the periodh or periodl register 
■ The internal counter reaches 0

The timer’s actual period is one cycle greater than the value stored in 
periodh and periodl, because the counter assumes the value zero 
(0×00000000) for one clock cycle.

Writing to either periodh or periodl stops the internal counter, except 
when the hardware is configured with Start/Stop control bits off. If 
Start/Stop control bits is off, writing either register does not stop the 
counter. When the hardware is configured with Writeable period 
disabled, writing to either periodh or periodl causes the counter to 
reset to the fixed Timeout Period specified at system generation time. 

2 START (1) W Writing a 1 to the START bit starts the internal counter running (counting 
down). The START bit is an event bit that enables the counter when a write 
operation is performed. If the timer is stopped, writing a 1 to the START bit 
causes the timer to restart counting from the number currently held in its 
counter. If the timer is already running, writing a 1 to START has no effect. 
Writing 0 to the START bit has no effect.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an 
event bit that causes the counter to stop when a write operation is 
performed. If the timer is already stopped, writing a 1 to STOP has no effect. 
Writing a 0 to the stop bit has no effect. Writing 0 to the STOP bit has no 
effect.
If the timer hardware is configured with Start/Stop control bits off, writing 
the STOP bit has no effect. 

Note to Table 16–5:
(1) Writing 1 to both START and STOP bits simultaneously produces an undefined result.

Table 16–5. control Register Bits (Part 2 of 2)

Bit Name
Read/
Write/
Clear

Description
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snapl and snaph Registers

A master peripheral may request a coherent snapshot of the current 32-bit 
internal counter by performing a write operation (write-data ignored) to 
either the snapl or snaph registers. When a write occurs, the value of the 
counter is copied to snapl and snaph. snapl holds the least-significant 
16 bits of the snapshot and snaph holds the most-significant 16 bits. The 
snapshot occurs whether or not the counter is running. Requesting a 
snapshot does not change the internal counter’s operation.

Interrupt Behavior

The timer core generates an IRQ whenever the internal counter reaches 
zero and the ITO bit of the control register is set to 1. Acknowledge the 
IRQ in one of two ways:

■ Clear the TO bit of the status register
■ Disable interrupts by clearing the ITO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

Referenced 
Document 

This chapter references the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
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Table 16–6 shows the revision history for this chapter.

Table 16–6. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 16 was formerly chapter 14.
● Updated and expanded definition of Timeout Period —

May 2007
v7.1.0

● Corrected an error: The timer can be used as a timestamp 
device if it has a writeable period register. 

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies. Changed old “Avalon switch fabric” term to 
“system interconnect fabric.” Changed old “Avalon interface” 
terms to “Avalon Memory-Mapped interface.” 

● Added statement that failure to acknowledge an IRQ results 
in an undefined result in section “Interrupt Behavior” on 
page 12–9.

For the 6.1 release, 
Altera released the 
Avalon Streaming 
interface, which 
necessitated some re-
phrasing of existing 
Avalon terminology. 

May 2006
v6.0.0

No change from previous release. —

October 2005
v5.1.0

No change from previous release. —

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook. —

September 2004
v1.1

Updates for Nios II 1.01 release. —

May 2004
v1.0

Initial release. —
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17. System ID Core

Core Overview The system ID core with Avalon® interface is a simple read-only device 
that provides SOPC Builder systems with a unique identifier. Nios® II 
processor systems use the system ID core to verify that an executable 
program was compiled targeting the actual hardware image configured 
in the target FPGA. If the expected ID in the executable does not match 
the system ID core in the FPGA, it is possible that the software will not 
execute correctly.

 This chapter contains the following sections:

■ “Functional Description” on page 17–1
■ “Device and Tools Support” on page 17–2
■ “Instantiating the Core in SOPC Builder” on page 17–2
■ “Software Programming Model” on page 17–3

Functional 
Description

The system ID core provides a read-only Avalon Memory-Mapped 
(Avalon-MM) slave interface. This interface has two registers, as shown 
in Table 17–1. 

The value of each register is determined at system generation time, and 
always returns a constant value. The meaning of the values is:

■ id— A unique 32-bit value that is based on the contents of the SOPC 
Builder system. The id is similar to a check-sum value; SOPC Builder 
systems with different components, different configuration options, 
or both, produce different id values. 

Table 17–1. System ID Core Register Map

Offset Register Name R/W
Bit Description

31...0

0 id R SOPC Builder System ID (1)

1 timestamp R SOPC Builder Generation Time (1)

Note to Table 17–1:
(1) Return value is constant.

NII51014-7.2.0
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■ timestamp—A unique 32-bit value that is based on the system 
generation time. The value is equivalent to the number of seconds 
after Jan. 1, 1970.

There are two basic ways to use the system ID core:

■ Verify the system ID before downloading new software to a system. 
This method is used by software development tools, such as the 
Nios II integrated development environment (IDE). There is little 
point in downloading a program to a target hardware system, if the 
program is compiled for different hardware. Therefore, the Nios II 
IDE checks that the system ID core in hardware matches the expected 
system ID of the software before downloading a program to run or 
debug. 

■ Check system ID after reset. If a program is running on hardware 
other than the expected SOPC Builder system, then the program may 
fail to function altogether. If the program does not crash, it can 
behave erroneously in subtle ways that are difficult to debug. To 
protect against this case, a program can compare the expected system 
ID against the system ID core, and report an error if they do not 
match.

Device and 
Tools Support

The system ID core supports all device families supported by 
SOPC Builder. The system ID core provides a device driver for the Nios II 
hardware abstraction layer (HAL) system library. No software support is 
provided for any other processor, including the first-generation Nios 
processor. 

Instantiating the 
Core in SOPC 
Builder

The System ID core has no user-configurable features. The id and 
timestamp register values are determined at system generation time 
based on the configuration of the SOPC Builder system and the current 
time. You can add only one system ID core to an SOPC Builder system, 
and its name is always sysid. 

After system generation, you can examine the values stored in the id and 
timestamp registers by opening the MegaWizard® Plug-In Manager 
interface for the System ID core. Hovering the mouse over the component 
in SOPC Builder also displays a tool-tip showing the values.
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Software 
Programming 
Model

This section describes the software programming model for the system ID 
core. For Nios II processor users, Altera provides the HAL system library 
header file that defines the system ID core registers.

The System ID core comes with the following software files. These files 
provide low-level access to the hardware. Application developers should 
not modify these files.

■ alt_avalon_sysid_regs.h—Defines the interface to the hardware 
registers.

■ alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files 
defining the hardware access functions.

Altera provides one access routine, alt_avalon_sysid_test(), that 
returns a value indicating whether the system ID expected by software 
matches the system ID core. 
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alt_avalon_sysid_test()

Prototype: alt_32 alt_avalon_sysid_test(void)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sysid.h>

Description: Returns 0 if the values stored in the hardware registers match the values 
expected by software. Returns 1 if the hardware timestamp is greater than the 
software timestamp. Returns -1 if the software timestamp is greater than the 
hardware timestamp.
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Table 17–2 shows the revision history for this chapter.

Table 17–2. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

Chapter 17 was formerly chapter 15. —

May 2007
v7.1.0

● Chapter 15 was formerly chapter 13.
● Added table of contents to Overview section. —

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon 
technologies

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric” 

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface” 

For the 6.1 release, Altera 
released the Avalon 
Streaming interface, which 
necessitated some re-
phrasing of existing Avalon 
terminology. 

May 2006
v6.0.0 No change from previous release. —

October 2005
v5.1.0 No change from previous release. —

May 2005
v5.0.0

No change from previous release. Previously in the Nios II 
Processor Reference Handbook. —

September 2004
v1.1 Updates for Nios II 1.01 release. —

May 2004
v1.0

Initial release. —
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Core Overview The Avalon® memory-mapped (Avalon-MM) phase locked loop (PLL) 
core with Avalon interface provides a means of accessing the dedicated 
on-chip PLL circuitry in Altera’s Stratix® and Cyclone® series FPGAs. The 
PLL core is a component wrapper around the Altera® altpll 
Megafunction.

The core takes an SOPC Builder system clock as its input and generates 
PLL output clocks locked to that reference clock. 

The PLL core supports the following features:

■ All PLL features provided by Altera’s altpll megafunction. The exact 
feature set depends on the device family. 

■ Access to status and control signals via Avalon-MM registers or 
top-level signals on the SOPC Builder system module.

The PLL output clocks are made available in two ways:

■ As sources to system-wide clocks in your SOPC Builder system
■ As output signals on your SOPC Builder system module

f For details about the altpll megafunction, refer to the altpll Megafunction 
User Guide.

 The PLL core is SOPC Builder-ready and integrates easily into any SOPC 
Builder-generated system. This chapter contains the following sections:

■ “Functional Description” on page 18–2
■ “Device and Tools Support” on page 18–3
■ “Instantiating the Core in SOPC Builder” on page 18–4
■ “Hardware Simulation Considerations” on page 18–6
■ “Register Definitions and Bit List” on page 18–6

NII53002-7.2.0
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Functional 
Description

Figure 18–1 shows a block diagram of the PLL core and its connection to 
the PLL circuitry inside an Altera FPGA. The following sections describe 
the components of the core.

Figure 18–1. PLL Core Block Diagram

altpll Megafunction

The PLL core consists of an altpll megafunction instantiation and an 
Avalon-MM slave interface. This interface can optionally provide access 
to status and control registers within the core. The altpll Megafunction 
takes an SOPC Builder system clock as its reference, and generates one or 
more phase-locked output clocks. 
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Clock Outputs

Depending on the target device family, the altpll Megafunction can 
produce two types of output clock:

■ internal (c)—clock outputs that can drive logic either inside or 
outside the SOPC Builder system module. Internal clock outputs can 
also be mapped to top-level FPGA pins. Internal clock outputs are 
available on all device families.

■ external (e)—clock outputs that can only drive dedicated FPGA pins. 
They can not be used as on-chip clock sources. External clock outputs 
are not available on all device families.

f To determine the exact number and type of output clocks available on 
your target device, refer to the altpll Megafunction User Guide.

PLL Status and Control Signals

Depending on how the altpll megafunction is parameterized, there can be 
a variable number of status and control signals. You can choose to export 
certain status and control signals to the top-level SOPC Builder system 
module. Alternatively, Avalon-MM registers can provide access to the 
signals. Any status or control signals which are not mapped to registers 
are exported to the top-level module. For details, refer to the 
“Instantiating the Core in SOPC Builder” on page 18–4.

System Reset Considerations

At FPGA configuration, the PLL core resets automatically. PLL-specific 
reset circuitry guarantees that the PLL locks before releasing reset for the 
overall SOPC Builder system module.

c Resetting the PLL resets the entire SOPC Builder system 
module.

Device and 
Tools Support

The PLL core is supported by the Quartus II software version 5.1 and 
later. The core supports any Altera FPGA family supported by the altpll 
megafunction. 

f For more information about the altpll megafunction, refer to the altpll 
Megafunction User Guide.
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Instantiating the 
Core in SOPC 
Builder

The PLL core contains an instantiation of the altpll Megafunction. The 
MegaWizard® interface for the PLL core allows you to configure the 
altpll, and specify connections to selected altpll status and control signals. 
The PLL core appears in the Other category in the SOPC Builder list of 
available components. 

The following sections describe the options available in the MegaWizard 
interface for the Avalon-MM PLL core in SOPC Builder. 

PLL Settings Page

The PLL Settings page contains a button that launches Altera’s altpll 
MegaWizard Plug-In Manager. Use the MegaWizard interface to 
parameterize the altpll megafunction. The set of available parameters 
depends on the target device family.

f For details about using the altpll MegaWizard interface, refer to the altpll 
Megafunction User Guide.

You cannot click Finish in the Avalon-MM PLL wizard nor configure the 
PLL interface until you parameterize the altpll megafunction.

Interface Page

The Interface page configures the access modes for the optional 
advanced PLL status and control signals.

For each advanced signal present on the altpll, you can select one of the 
following access modes:

■ Export—Exports the signal to the top level of the SOPC builder 
system module.

■ Register—Maps the signal to a bit in a status or control register. 

1 The advanced signals are optional. If you choose not to create 
any of them in the altpll MegaWizard, the PLL’s default 
behavior will be as shown in Table 18–1.
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You can specify the access mode for the advanced signals shown in 
Table 18–1. The altpll core signals, not displayed in this table, are 
automatically exported to the top level of the SOPC Builder system 
module.

c Asserting areset resets the entire SOPC Builder system 
module, not just the PLL.

Finish

Click Finish to insert the PLL into the SOPC Builder system. The PLL 
clock output(s) appear in the clock settings table on the SOPC Builder 
System Contents tab.

1 If the PLL has external output clocks, they appear in the clock 
settings table like other clocks; however, you cannot use them to 
drive components within the SOPC Builder system. 

f For details about using external output clocks, refer to the altpll 
Megafunction User Guide.

The SOPC Builder automatically connects the PLL’s reference clock input 
to the first available clock in the clock settings table. 

1 If there is more than one SOPC Builder system clock available, 
verify that the PLL is connected to the appropriate reference 
clock. 

Table 18–1. altpll Advanced Signals

altpll 
Name

Input / 
Output

Avalon-MM PLL 
Wizard Name Default Behavior Description

areset input PLL Reset Input The PLL is reset only at 
device configuration.

This signal resets the entire SOPC Builder 
system module, and restores the PLL to its 
initial settings. 

pllena input PLL Enable Input The PLL is enabled. This signal enables the PLL. 
pllena is always exported.

pfdena input PFD Enable Input The phase-frequency 
detector is enabled.

This signal enables the phase-frequency 
detector in the PLL, allowing it to lock on to 
changes in the clock reference. 

locked output PLL Locked Output — This signal is asserted when the PLL is 
locked to the input clock.
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Hardware 
Simulation 
Considerations 

The HDL files generated by SOPC Builder for the PLL core are suitable 
for both synthesis and simulation. The PLL core supports the standard 
SOPC Builder simulation flow, so there are no special considerations for 
hardware simulation. 

Register 
Definitions and 
Bit List

Table 18–2 shows the register map for the PLL core. Device drivers can 
control and communicate with the core through two 16-bit 
memory-mapped registers, status and control.

Note that the status and control bits shown below are present only if they 
have been created in the altpll MegaWizard, and set to Register on the 
Interface page in the PLL wizard.

Status Register

Embedded software can access the PLL status via the status register. 
Writing to status has no effect. Table 18–3 describes the function of each 
bit.

Table 18–2. PLL Core Register Map

Offset Register Name R/W
Bit Description

15 ... 2 1 0

0 status R/O (1) LOCKED

1 control R/W (1) PFDENA ARESET

Note to Table 18–2:
(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.

Table 18–3. Status Register Bits

Bit Number Bit Name Value after reset Description

0 LOCKED 1 Connects to the locked signal on 
the altpll. The LOCKED bit is high 
when valid clocks are present on 
the output of the PLL.

1 .. 15 — — Reserved. Read values are 
undefined.
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Control Register

Embedded software can control the PLL via the control register. 
Software can also read back the status of control bits. Table 18–4 describes 
the function of each bit.

Referenced 
Document

This chapter references the altpll Megafunction User Guide.

Table 18–4. Control Register Bits

Bit Number Bit Name Value after reset Description

0 ARESET 0 Connects to the areset signal on 
the altpll. Writing a 1 to this bit 
asserts the areset signal for one 
clock cycle. 

1 PFDENA 1 Connects to the pfdena signal on 
the altpll. 

2 .. 15 — — Reserved. Read values are 
undefined. When writing, set 
reserved bits to zero.

http://www.altera.com/literature/ug/ug_altpll.pdf
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Document 
Revision History

Table 18–5 shows the revision history for this chapter.

Table 18–5. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

Chapter 18 was formerly chapter 16. —

May 2007
v7.1.0

● Chapter 16 was formerly chapter 14.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to 
Avalon technologies 

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric” 

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface” 

For the 6.1 release, Altera 
released the Avalon 
Streaming interface, which 
necessitated some re-
phrasing of existing Avalon 
terminology. 

May 2006
v6.0.0

No change from previous release. —

October 2005
v5.1.0

Initial release. —
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19. Performance Counter
Core

Core Overview The performance counter core with Avalon® interface enables relatively 
unobtrusive, real-time profiling of software programs. With the 
performance counter, you can accurately measure execution time taken 
by multiple sections of code. You need only add a single instruction at the 
beginning and end of each section to be measured.

The main benefit of using the performance counter core is the accuracy of 
the profiling results. Alternatives include the following approaches:

■ GNU profiler, gprof—gprof provides broad low-precision timing 
information about the entire software system. It uses a substantial 
amount of RAM, and degrades the real-time performance. For many 
embedded applications, gprof distorts real-time behavior too much 
to be useful.

■ Interval timer peripheral—The interval timer is less intrusive than 
gprof. It can provide good results for narrowly targeted sections of 
code. 

The performance counter core is unobtrusive, requiring only a single 
instruction to start and stop profiling, and no RAM. It is appropriate for 
high-precision measurements of narrowly targeted sections of code.

f For further discussion of all three profiling methods, refer to AN 391: 
Profiling Nios II Systems.

The performance counter core is SOPC Builder-ready and integrates 
easily into any SOPC Builder-generated system. The core is designed for 
use in Avalon-based processor systems, such as a Nios® II processor 
system. Altera® provides device drivers to enable the Nios II processor to 
use the performance counters.

This chapter contains the following sections:

■ “Functional Description” on page 19–2
■ “Device and Tools Support” on page 19–4
■ “Instantiating the Core in SOPC Builder” on page 19–4
■ “Hardware Simulation Considerations” on page 19–4
■ “Software Programming Model” on page 19–5
■ “Performance Counter API” on page 19–8

QIfI55001-7.2.0
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Functional 
Description

The performance counter core is a set of counters which track clock cycles, 
timing multiple sections of your software. You can start and stop these 
counters in your software, individually or as a group. You can read cycle 
counts from hardware registers.

The core contains two counters for every section:

■ Time: A 64-bit clock cycle counter
■ Events: A 32-bit event counter

Section Counters

Each 64-bit time counter records the aggregate number of clock cycles 
spent in a section of code. The 32-bit event counter records the number of 
times the section executes.

The performance counter core can have up to seven section counters. 

Global Counter

The global counter controls all section counters. The section counters are 
enabled only when the global counter is running.

The 64-bit global clock cycle counter tracks the aggregate time for which 
the counters were enabled. The 32-bit global event counter tracks the 
number of global events, that is, the number of times the performance 
counter core has been enabled.
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Register Map

The performance counter core has a simple Avalon Memory-Mapped 
(Avalon-MM) slave interface that provides access to memory-mapped 
registers. Reading from the registers retrieves the current times and event 
counts. Writing to the registers starts, stops and resets the counters. 
Table 19–1 shows the registers in detail. 

Table 19–1. Performance Counter Core Register Map

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0

0 T[0]lo global clock cycle counter [31: 0] (1) 0 = STOP
1 = RESET

1 T[0]hi global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[1]lo section 1 clock cycle counter [31: 0] (1) 0 = STOP

5 T[1]hi section 1 clock cycle counter [63:32] (1) 0 = START

6 Ev[1] section 1 event counter (1) (1)

7 — (1) (1) (1)

8 T[2]lo section 2 clock cycle counter [31: 0] (1) 0 = STOP

9 T[2]hi section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

11 — (1) (1) (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4n + 0 T[n]lo section n clock cycle counter [31: 0] (1) 0 = STOP

4n + 1 T[n]hi section n clock cycle counter [63:32] (1) 0 = START

4n + 2 Ev[n] section n event counter (1) (1)

4n + 3 — (1) (1) (1)

Note to Table 19–1:
(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.
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System Reset Considerations

After system reset, the performance counter core is stopped and disabled, 
and all counters contain zero.

Device and 
Tools Support

The performance counter core supports all Altera device families 
supported by SOPC Builder, and provides device drivers for the Nios II 
hardware abstraction layer (HAL) system library.

Instantiating the 
Core in SOPC 
Builder

Designers use the MegaWizard® interface for the performance counter 
core in SOPC Builder to specify the core's hardware features.

Define Counters

Choose the number of section counters you want to generate by selecting 
from the "Number of simultaneously-measured sections" list. The 
performance counter core may have up to seven sections. If you require 
more that seven sections, you can instantiate multiple performance 
counter cores.

Multiple Clock Domain Considerations

If your SOPC Builder system uses multiple clocks, place the performance 
counter core in the same clock domain as the CPU. Otherwise, it is not 
possible to convert cycle counts to seconds correctly.

Hardware 
Simulation 
Considerations

You can use this core in simulation with no special considerations.
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Software 
Programming 
Model

The following sections describe the software programming model for the 
performance counter core.

Software Files

Altera provides the following software files for Nios II systems. These 
files define the low-level access to the hardware and provide control and 
reporting functions. Do not modify these files.

■ altera_avalon_performance_counter.h, 
altera_avalon_performance_counter.c —The header and source 
code for the functions and macros needed to control the performance 
counter core and retrieve raw results.

■ perf_print_formatted_report.c—The source code for simple profile 
reporting.

Using the Performance Counter

In a Nios II system, you can control the performance counter core with a 
set of highly efficient C macros, and extract the results with C functions.

API Summary

The Nios II application program interface (API) for the performance 
counter core consists of functions, macros and constants.

Functions and macros
Table 19–2 lists macros and functions for accessing the performance 
counter hardware structure. 

Table 19–2. Performance Counter Macros and Functions

Name Summary

PERF_RESET() Stops and disables all counters, resetting them to 0.

PERF_START_MEASURING() Starts the global counter and enables section counters.

PERF_STOP_MEASURING() Stops the global counter and disables section counters.

PERF_BEGIN() Starts timing a code section.

PERF_END() Stops timing a code section.

perf_print_formatted_report() Sends a formatted summary of the profiling results to stdout.

perf_get_total_time() Returns the aggregate global profiling time in clock cycles.

perf_get_section_time() Returns the aggregate time for one section in clock cycles.
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For a complete description of each macro and function, see “Performance 
Counter API” on page 19–8.

Hardware constants
You can get the performance counter hardware parameters from 
constants defined in system.h. The constant names are based on the 
performance counter instance name, specified on the System Contents 
tab in SOPC Builder. Table 19–3 lists the hardware constants.

Startup

Before using the performance counter core, invoke PERF_RESET to stop, 
disable and zero all counters.

Global Counter Usage

Use the global counter to enable and disable the entire performance 
counter core. For example, you might choose to leave profiling disabled 
until your software has completed its initialization.

Section Counter Usage

To measure a section in your code, surround it with the macros 
PERF_BEGIN() and PERF_END(). These macros consist of a single write 
to the performance counter core.

perf_get_num_starts() Returns the number of counter events.

alt_get_cpu_freq() Returns the CPU frequency in Hz.

Table 19–2. Performance Counter Macros and Functions

Name Summary

Table 19–3. Performance Counter Constants

Name (1) Meaning

PERFORMANCE_COUNTER_BASE Base address of core

PERFORMANCE_COUNTER_SPAN Number of hardware registers

PERFORMANCE_COUNTER_HOW_MANY_SECTIONS Number of section counters

Note to Table 19–3:
(1) Example based on instance name performance_counter
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You can simultaneously measure as many code sections as you like, up to 
the number specified in SOPC Builder. See “Define Counters” on 
page 19–4 for details. You can start and stop counters individually, or as 
a group. 

Typically, you assign one counter to each section of code you intend to 
profile. However, in some situation you may wish to group several 
sections of code in a single section counter. As an example, to measure 
general interrupt overhead, you can measure all interrupt service 
routines (ISRs) with one counter.

To avoid confusion, assign a mnemonic symbol for each section number.

f For an example, refer to the performance checksum design files 
accompanying AN 391: Profiling Nios II Systems. These files may be found 
on the Altera Nios II literature page at www.altera.com/literature/lit-
nio2.jsp.

Viewing Counter Values

Library routines allow you to retrieve and analyze the results. Use 
perf_print_formatted_report() to list the results to stdout as 
shown in Example 19–1.

Example 19–1.
perf_print_formatted_report(

(void *)PERFORMANCE_COUNTER_BASE, // Peripheral's HW base address
alt_get_cpu_freq(), // defined in "system.h"
3, // How many sections to print
"1st checksum_test", // Display-names of sections
"pc_overhead",
"ts_overhead");

Example 19–2 creates a table similar to this result.

www.altera.com/literature/lit-nio2.jsp
www.altera.com/literature/lit-nio2.jsp
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Example 19–2.
--Performance Counter Report--
Total Time: 2.07711 seconds (103855534 clock-cycles)
+-----------------+--------+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks) |Occurrences|
+-----------------+--------+-----------+---------------+-----------+
|1st checksum_test| 50 | 1.03800 | 51899750 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| pc_overhead |1.73e-05| 0.00000 | 18 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| ts_overhead |4.24e-05| 0.00000 | 44 | 1 |
+-----------------+--------+-----------+---------------+-----------+

For full documentation of perf_print_formatted_report(), see 
“Performance Counter API” on page 19–8.

Interrupt Behavior

The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance 
results, in an interrupt service routine (ISR). Do not call function 
perf_print_formatted_report() from an ISR.

1 If a interrupt occurs during the measurement of a section of 
code, the time taken by the CPU to process the interrupt and 
return to the section is added to the measurement time. The 
same applies to context switches in a multithreaded 
environment. Your software must take appropriate measures to 
avoid or handle these situations.

Performance 
Counter API

This section describes the application programming interface (API) for 
the performance counter core.

For Nios II processor users, Altera provides routines to access the 
performance counter core hardware. These functions are specific to the 
performance counter core and directly manipulate low level hardware. 
The performance counter core cannot be accessed via the HAL API or the 
ANSI C standard library.
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PERF_RESET()

Prototype: PERF_RESET(p)

Thread-safe: Yes 

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: p—performance counter core base address

Returns: —

Description: Macro PERF_RESET() stops and disables all counters, resetting them to 0.
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PERF_START_MEASURING() 

Prototype: PERF_START_MEASURING(p)

Thread-safe: Yes 

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: p—performance counter core base address

Returns: —

Description: Macro PERF_START_MEASURING() starts the global counter, enabling the 
performance counter core. The behavior of individual section counters is controlled 
by PERF_BEGIN() and PERF_END(). PERF_START_MEASURING() 
defines the start of a global event, and increments the global event counter. This 
macro is a single write to the performance counter core.
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PERF_STOP_MEASURING()

Prototype: PERF_STOP_MEASURING(p)

Thread-safe: Yes 

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: p—performance counter core base address

Returns: —

Description: Macro PERF_STOP_MEASURING() stops the global counter, disabling the 
performance counter core. This macro is a single write to the performance counter 
core.
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PERF_BEGIN() 

Prototype: PERF_BEGIN(p,n)

Thread-safe: Yes 

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: p—performance counter core base address
n—counter section number. Section counter numbers start at 1. Do not refer to 
counter 0 in this macro.

Returns: —

Description: Macro PERF_BEGIN() starts the timer for a code section, defining the beginning 
of a section event, and incrementing the section event counter. If you subsequently 
use PERF_STOP_MEASURING() and PERF_START_MEASURING() to disable 
and re-enable the core, the section counter will resume. This macro is a single 
write to the performance counter core. 
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PERF_END()

Prototype: PERF_END(p,n)

Thread-safe: Yes 

Available from ISR: Yes 

Include: <altera_avalon_performance_counter.h> 

Parameters: p—performance counter core base address
n—counter section number. Section counter numbers start at 1. Do not refer to 
counter 0 in this macro.

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not 
run, regardless whether the core is enabled or not. This macro is a single write to 
the performance counter core. 
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perf_print_formatted_report() 

Prototype: int perf_print_formatted_report (

void* perf_base,

alt_u32 clock_freq_hertz,

int num_sections, ...)

Thread-safe: No

Available from ISR: No

Include: <altera_avalon_performance_counter.h> 

Parameters: perf_base—performance counter core base address
clock_freq_hertz—clock frequency
num_sections—The number of section counters to display. This must not 
exceed <instance_name>_HOW_MANY_SECTIONS.

Returns: 0

Description: Function perf_print_formatted_report() reads the profiling results from 
the performance counter core, and prints a formatted summary table
This function disables all counters. However, for predictable results in a 
multi-threaded or interrupt environment, invoke PERF_STOP_MEASURING() 
when you reach the end of the code to be measured, rather than relying on 
perf_print_formatted_report().

1 This function requires the C standard library. Do not use the small C 
library with this function.
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perf_get_total_time()

Prototype: alt_u64 perf_get_total_time(void* hw_base_address)

Thread-safe: No

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: hw_base_address—base address of performance counter core

Returns: Aggregate global time in clock cycles

Description: Function perf_get_total_time() reads the raw global time. This is the 
aggregate time, in clock cycles, that the performance counter core has been 
enabled. This function has the side effect of stopping the counters.
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perf_get_section_time() 

Prototype: alt_u64 perf_get_section_time

(void* hw_base_address, int which_section)

Thread-safe: No

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: hw_base_address—performance counter core base address
which_section—counter section number

Returns: Aggregate section time in clock cycles

Description: Function perf_get_section_time() reads the raw time for a given section. 
This is the time, in clock cycles, that the section has been running. This function has 
the side effect of stopping the counters.
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perf_get_num_starts()

Prototype: alt_u32 perf_get_num_starts

(void* hw_base_address, int which_section)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h> 

Parameters: hw_base_address—performance counter core base address
which_section—counter section number

Returns: Number of counter events

Description: Function perf_get_num_starts() retrieves the number of counter events 
(or times a counter has been started). If which_section = 0, it retrieves the number 
of global events (times the performance counter core has been enabled). This 
function does not stop the counters.
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alt_get_cpu_freq()

Prototype: alt_u32 alt_get_cpu_freq()

Thread-safe: Yes.
Available from ISR: Yes.
Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz
Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.
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Referenced 
Document

This chapter references AN 391: Profiling Nios II Systems.

Document 
Revision History

Table 19–4 shows the revision history for this chapter.

Table 19–4. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 19 was formerly chapter 17
● Removed incorrect statement about granularity of the 

timer. 
—

May 2007
v7.1.0

● Chapter 17 was formerly chapter 15.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release. —

November 2006
v6.1.0

● Updated Avalon terminology because of changes to 
Avalon technologies 

● Changed old “Avalon switch fabric” term to “system 
interconnect fabric” 

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface” 

For the 6.1 release, Altera 
released the Avalon 
Streaming interface, which 
necessitated some re-
phrasing of existing Avalon 
terminology. 

May 2006
v6.0.0

No change from previous release. —

December 2005
v5.1.0

Initial release. —

http://www.altera.com/literature/an/an391.pdf
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Section VI. Streaming
Peripherals

This section describes streaming peripherals provided by Altera® for 
SOPC Builder systems. These components allow you to optimize 
streaming applications.

Refer to About This Handbook for further details.

This section includes the following chapter:

■ Chapter 20, Avalon Streaming Channel Multiplexer and 
Demultiplexer Cores

■ Chapter 21, Avalon Streaming Test Pattern Generator and Checker 
Cores

1 For information about the revision history for chapters in this 
section, refer to each individual chapter for that chapter’s 
revision history. 
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20. Avalon Streaming
Channel Multiplexer and

Demultiplexer Cores

Core Overview The Avalon® streaming (Avalon-ST) channel multiplexer receives data 
from a number of input interfaces and multiplexes the data into a single 
output interface, using the optional channel signal to indicate which 
input the output data is from. The Avalon-ST channel demultiplexer 
receives data from a channelized input interface and drives that data to 
multiple output interfaces, where the output interface is selected by the 
input channel signal.

The multiplexer and demultiplexer can transfer data between interfaces 
on cores that support the unidirectional flow of data. The multiplexer and 
demultiplexer allow you to create multiplexed or demultiplexed 
datapaths without having to write custom HDL code to perform these 
functions. The multiplexer includes a round-robin scheduler. Both cores 
are SOPC Builder-ready and integrate easily into any SOPC 
Builder-generated system. This chapter contains the following sections:

■ “Multiplexer” on page 20–3
■ “Demultiplexer” on page 20–6
■ “Device and Tools Support” on page 20–8
■ “Installation and Licensing” on page 20–9
■ “Hardware Simulation Considerations” on page 20–9
■ “Software Programming Model” on page 20–9

QII55004-7.2.0
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Resource Usage and Performance

Resource utilization for the cores depends upon the number of input and 
output interfaces, the width of the datapath and whether the streaming 
data uses the optional packet protocol. For the multiplexer, the 
parameterization of the scheduler also effects resource utilization. 
Table 20–1 provides estimated resource utilization for eleven different 
configurations of the multiplexer. 

Table 20–2 provides estimated resource utilization for six different 
configurations of the demultiplexer. The core operating frequency varies 
with the device, the number of interfaces and the size of the datapath. 

Table 20–1. Multiplexer Estimated Resource Usage and Performance

No. of 
Inputs

Data 
Width

Scheduling 
Size 

(Cycles)

Stratix® II and Stratix II 
GX

(Approximate LEs)
Cyclone® II Stratix

fMAX

(MHz)
ALM
Count

fMAX

(MHz)
Logic 
Cells

fMAX

(MHz)
Logic 
Cells

2 Y 1 500 31 420 63 422 80

2 Y 2 500 36 417 60 422 58

2 Y 32 451 43 364 68 360 49

8 Y 2 401 150 257 233 228 298

8 Y 32 356 151 219 207 211 123

16 Y 2 262 333 174 533 170 284

16 Y 32 310 337 161 471 157 277

2 N 1 500 23 400 48 422 52

2 N 9 500 30 420 52 422 56

11 N 9 292 275 197 397 182 287

16 N 9 262 295 182 441 179 224
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Multiplexer This section describes the hardware structure and functionality of the 
multiplexer component.

Functional Description

The Avalon-ST multiplexer takes data from a number of input data 
interfaces, and multiplexes the data onto a single output interface. The 
mux includes a simple, round-robin scheduler that selects from the next 
input interface that has data. Each input interface has the same width as 
the output interface, so that all other input interfaces are backpressured 
when the mux is carrying data from a different input interface. 

The mux includes an optional channel signal that enables each input 
interface to carry channelized data. When the channel signal is present 
on input interfaces, the mux adds log2 (num_input_interfaces) bits 
to make the output channel signal, such that the output channel signal 
has all of the bits of the input channel plus the bits required to indicate 
which input interface each cycle of data is from. These bits are appended 
to either the most or least significant bits of the output channel signal as 
specified in the SOPC Builder MegaWizard® interface (Figure 20–1). 

Table 20–2. Demultiplexer Estimated Resource Usage

No. of 
Inputs

Data 
Width 

(Symbols 
per Beat)

Stratix II 
(Approximate 

LEs)
Cyclone II

Stratix II GX 
(Approximate 

LEs)

fMAX

(MHz)
ALM 

Count
fMAX

(MHz)
Logic 
Cells

 fMAX

(MHz)
Logic 
Cells

2 1 500 53 400 61 399 44

15 1 349 171 235 296 227 273

16 1 363 171 233 294 231 290

2 2 500 85 392 97 381 71

15 2 352 247 213 450 210 417

16 2 328 280 218 451 222 443
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Figure 20–1. Multiplexer

The internal scheduler considers one input interface at a time, selecting it 
for transfer. Once an input interface has been selected, data from that 
input interface is sent until one of the following scenarios occurs:

■ The specified number of cycles have elapsed
■ The input interface has no more data to send and de-asserts valid 

on a ready cycle 
■ The packets are supported, endofpacket is asserted

Input Interfaces

Each input interface is an Avalon-ST data interface that optionally 
supports packets. The input interfaces are identical; they have the same 
symbol and data widths, error widths, and channel widths. 

Output Interface

The output interface carries the multiplexed data stream with data from 
all of the inputs. The symbol, data, and error widths are the same as the 
input interfaces. The width of the channel signal is the same as the input 
interfaces, with the addition of the bits needed to indicate the input each 
datum was from.

src
sink
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sink
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 . 
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Instantiating the Multiplexer in SOPC Builder

Use the MegaWizard interface for the multiplexer core in SOPC Builder 
to specify the core configuration. The following sections list the available 
options in the MegaWizard interface.

Functional Parameters—The following sections outline the options for 
the multiplexer as a whole:

■ Number of Input Ports—The number of input interfaces that the 
multiplexer supports. Valid values are 2 .. 16.

■ Scheduling Size (Cycles)—The number of cycles that are sent from 
a single channel before changing to the next channel.

■ Use high bits to indicate source port—When selected, the high bits 
of the output channel signal are used to indicate the input interface 
that the data came from. For example, if the input interfaces have 
4-bit channel signals, and the mux has 4 input interfaces, then the 
output interface has a 6-bit channel signal. If this parameter is true, 
bits [5:4] of the output channel signal indicate the input interface the 
data is from, and bits [3:0] are the channel bits that were presented at 
the input interface.

Output Interface—The following sections outline the options for the 
output interface:

■ Data Bits Per Symbol—The number of bits per symbol for the input 
and output interfaces. Valid values are 1 – 32 bits.

■ Data Symbols Per Beat—The number of symbols (words) that are 
transferred per beat (transfer). Valid values are 1 – 32.

■ Include Packet Support—Indicates whether or not packet transfers 
are supported. Packet support includes the startofpacket, 
endofpacket, and empty signals.

■ Channel Signal Width (bits)—The number of bits used for the 
channel signal for input interfaces. A value of 0 indicates that input 
interfaces do not have channels. A value of 4 indicates that up to 16 
channels share the same input interface. The input channel can have 
a width between 0-31 bits. A value of 0 means that the optional 
channel signal is not used.

■ Error Signal Width (bits)—The width of the error signal for input 
and output interfaces. A value of 0 means the error signal is not 
used. 
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Demultiplexer This section describes the hardware structure and functionality of the 
demultiplexer component.

Functional Description

That Avalon-ST demultiplexer takes data from a channelized input data 
interface and provides that data to multiple output interfaces, where the 
output interface selected for a particular transfer is specified by the input 
channel signal. The data is delivered to the output interfaces in the same 
order it was received at the input interface, regardless of the value of 
channel, packet, frame, or any other signal. Each of the output 
interfaces has the same width as the input interface, so that each output 
interface will be idle when the demux is driving data to a different output 
interface. The demux uses log2 (num_output_interfaces) bits of the 
channel signal to select the output to which to forward the data; the 
remainder of the channel bits are forwarded to the appropriate output 
interface unchanged (Figure 20–2).

Figure 20–2. The Demultiplexer

Input Interface

Each input interface is an Avalon-ST data interface that optionally 
supports packets. 

Output Interfaces

Each output interface carries data from a subset of channels from the 
input interface. Each output interface is identical; all have the same 
symbol and data widths, error widths, and channel widths. The symbol, 
data, and error widths are the same as the input interface. The width of 
the channel signal is the same as the input interface, without the bits 
that were used to select the output interface.
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Instantiating the Demultiplexer in SOPC Builder

Use the MegaWizard interface for the demultiplexer core in SOPC Builder 
to specify the core configuration. The following sections list the available 
options in the MegaWizard interface.

Functional Parameters—The following sections outline the options for 
the demultiplexer as a whole:

■ Number of Output Ports—The number of output interfaces that the 
multiplexer supports Valid values are 2 .. 16.

■ High channel bits select output—When selected, the high bits of the 
input channel signal are used by the de-multiplexing function and 
the low order bits are passed to the output. When not selected, the 
low order bits are used and the high order bits are passed through.

The following example illustrates the significance of the location of 
these signals. In Figure 20–3 there is one input interface and two 
output interfaces. If the low-order bits of the channel signal select the 
output interfaces, the even channels will go to channel 0 and the odd 
channels will go to channel 1. If the high-order bits of the channel 
signal select the output interface, channels 0–7 will go to channel 0 
and channels 8–15 will go to channel 1.

Figure 20–3. Select Bits for Demultiplexer

Input Interface—The following sections outline the options for the input 
interface.

■ Data Bits Per Symbol - The number of bits per symbol for the input 
and output interfaces. Valid values are 1 – 32 bits.

■ Data Symbols Per Beat - The number of symbols (words) that are 
transferred per beat (transfer). Valid values are 1 – 32.
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sink
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■ Include Packet Support - Indicates whether or not packet transfers 
are supported. Packet support includes the startofpacket, 
endofpacket, and empty signals.

■ Channel Signal Width (bits)- The number of bits used for the 
channel signal for output interfaces. A value of 0 means that output 
interfaces do not use the optional channel signal.

■ Error Signal Width (bits) - The width of the error signal for input 
and output interfaces. A value of 0 means the error signal is not 
unused. 

Device and 
Tools Support

Altera device support for the multiplexer and demultiplexer components 
is listed in Table 20–3. For each device family, a component provides 
either full or preliminary support:

■ Full support means the component meets all functional and timing 
requirements for the device family and may be used in production 
designs.

■ Preliminary support means the component meets all functional 
requirements, but might still be undergoing timing analysis for the 
device family; it may be used in production designs with caution.

Table 20–3. Device Family Support

Device Family Avalon-ST Multiplexer Avalon-ST 
Demultiplexer

Arria™ GX Preliminary Preliminary

Cyclone III Preliminary Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

Stratix III Preliminary Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix GX Full Full

Stratix Full Full
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Installation and 
Licensing

The multiplexer and demultiplexer components are included in the 
Altera MegaCore® IP Library, which is an optional part of the Quartus® II 
software installation. After you install the MegaCore IP Library, SOPC 
Builder recognizes these components and can instantiate them into a 
system. 

You can use the multiplexer and demultiplexer components for free 
without a license in any design targeting an Altera device.

Hardware 
Simulation 
Considerations

The multiplexer and demultiplexer components do not provide a 
simulation testbench for simulating a stand-alone instance of the 
component. However, you can use the standard SOPC Builder simulation 
flow to simulate the component design files inside an SOPC Builder 
system. 

Software 
Programming 
Model

The multiplexer and demultiplexer components do not have any 
user-visible control or status registers. Therefore software cannot control 
or configure any aspect of the multiplexer or demultiplexer at run-time. 
The components cannot generate interrupts. 

Document 
Revision History

Table 20–4 shows the revision history for this chapter.

Table 20–4. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007 
v7.2.0

Chapter 20 was formerly chapter 18. —

May 2007
v7.1.0

Initial release. —



20–10  Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

20–10  Altera Corporation
October 2007

Quartus II Handbook, Volume 5



Altera Corporation  21–1
October 2007  
Altera Corporation  21–1
October 2007

21. Avalon Streaming Test
Pattern Generator and

Checker Cores

Core Overview The data generation and monitoring solution for Avalon® Streaming 
(Avalon-ST) consists of two components: a test pattern generator core that 
generates packetized or non-packetized data and sends it out on an 
Avalon-ST data interface, and a test pattern checker core that receives the 
same data and checks it for correctness.

The test pattern generator core can insert different error conditions, and 
the test pattern checker reports these error conditions to the control 
interface, each via an Avalon Memory-Mapped (Avalon-MM) slave.

Both cores are SOPC Builder-ready and integrate easily into any SOPC 
Builder-generated system. 

This chapter contains the following sections:

■ “Resource Utilization and Performance” on page 21–2
■ “Test Pattern Generator” on page 21–4
■ “Test Pattern Checker” on page 21–6
■ “Device and Tools Support” on page 21–8
■ “Installation and Licensing” on page 21–9
■ “Hardware Simulation Considerations” on page 21–9
■ “Software Programming Model” on page 21–10
■ “Test Pattern Generator API” on page 21–15
■ “Test Pattern Checker API” on page 21–21

QII55007-7.2.0
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Resource 
Utilization and 
Performance

Resource utilization and performance for the test pattern generator and checker cores depend on the 
datawidth, number of channels, and whether the streaming data uses the optional packet protocol.

Table 21–1 provides estimated resource utilization and performance for the test pattern generator core. 

Table 21–1. Test Pattern Generator Estimated Resource Utilization and Performance 

No. of 
Channels

Datawidth 
(No. of 8-

bit 
Symbols 
Per Beat)

Packet 
Support

Stratix® II and Stratix II GX Cyclone® II Stratix

fMAX

(MHz)
ALM

Count
Memory 

(bits)
fMAX

(MHz)
Logic 
Cells

Memory 
(bits)

fMAX

(MHz)
Logic 
Cells

Memory 
(bits)

1 4 Yes 284 233 560 206 642 560 202 642 560

1 4 No 293 222 496 207 572 496 245 561 496

32 4 Yes 276 270 912 210 683 912 197 707 912

32 4 No 323 227 848 234 585 848 220 630 848

1 16 Yes 298 361 560 228 867 560 245 896 560

1 16 No 340 330 496 230 810 496 228 845 496

32 16 Yes 295 410 912 209 954 912 224 956 912

32 16 No 269 409 848 219 842 848 204 912 848
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Table 21–2 provides estimated resource utilization and performance for the test pattern checker core. 

Table 21–2. Test Pattern Checker Estimated Resource Utilization and Performance 

No. of 
Channels

Datawidth 
(No. of 8-

bit 
Symbols 
Per Beat)

Packet 
Support

Stratix®II and Stratix II GX Cyclone® II Stratix

fMAX

(MHz)
ALM
Count

Memory 
(bits)

fMAX

(MHz)
Logic 
Cells

Memory 
(bits)

fMAX

(MHz)
Logic 
Cells

Memory 
(bits)

1 4 Yes 270 271 96 179 940 0 174 744 96

1 4 No 371 187 32 227 628 0 229 663 32

32 4 Yes 185 396 3616 111 875 3854 105 795 3616

32 4 No 221 363 3520 133 686 3520 133 660 3520

1 16 Yes 253 462 96 185 1433 0 166 1323 96

1 16 No 277 306 32 218 1044 0 192 1004 32

32 16 Yes 182 582 3616 111 1367 3584 110 1298 3616

32 16 No 218 473 3520 129 1143 3520 126 1074 3520
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Test Pattern 
Generator

This section describes the hardware structure and functionality of the test 
pattern generator core.

Functional Description

The test pattern generator core accepts commands to generate data via an 
Avalon-MM command interface, and drives the generated data to an 
Avalon-ST data interface. You can parameterize most aspects of the 
Avalon-ST data interface such as the number of error bits and data signal 
width, thus allowing you to test components with different interfaces. 
Figure 21–1 shows a block diagram of the test pattern generator core.

Figure 21–1. Test Pattern Generator Core Block Diagram

The data pattern is determined by the following equation: 
Symbol Value = Symbol Position in Packet XOR Data Error Mask. 
Non-packetized data is one long stream with no beginning or end.

The test pattern generator core has a throttle register that is set via the 
Avalon-MM control interface. The value of the throttle register is used in 
conjunction with a pseudo-random number generator to throttle the data 
generation rate.

Command Interface

The command interface is a 32-bit Avalon-MM write slave that accepts 
data generation commands. It is connected to a 16-element deep FIFO, 
thus allowing a master peripheral to drive a number of commands into 
the test pattern generator core. 

The command interface maps to the following registers: cmd_lo and 
cmd_hi. The command is pushed into the FIFO when the register 
cmd_lo (address 0) is written to. When the FIFO is full, the command 
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interface asserts the wait request signal. You can create errors by writing 
to the register cmd_hi (address 1). The errors are only cleared when 0 is 
written to this register or its respective fields. See page “Test Pattern 
Generator Command Registers” on page 21–12 for more information on 
the register fields.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows 
you to enable or disable the data generation as well as set the throttle.

This interface also provides useful generation-time information such as 
the number of channels and whether or not packets are supported.

Output Interface

The output interface is an Avalon-ST interface that optionally supports 
packets. You can configure the output interface to suit your requirements.

Depending on the incoming stream of commands, the output data may 
contain interleaved packet fragments for different channels. To keep track 
of the current symbol’s position within each packet, the test pattern 
generator core maintains an internal state for each channel.

Instantiating the Test Pattern Generator in SOPC Builder

Use the MegaWizard® interface for the test pattern generator core in 
SOPC Builder to configure the core. The following sections list the 
available options in the MegaWizard interface.

Functional Parameter

The functional parameter allows you to configure the test pattern 
generator as a whole: Throttle Seed—The starting value for the throttle 
control random number generator. Altera recommends a value which is 
unique to each instance of the test pattern generator and checker cores in 
a system.
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Output Interface

You can configure the output interface of the test pattern generator core 
using the following parameters:

■ Number of Channels—The number of channels that the test pattern 
generator core supports. Valid values are 1–256.

■ Data Bits Per Symbol—The number of bits per symbol for the input 
and output interfaces. Valid values are 1–256. Example—For typical 
systems that carry 8-bit bytes, set this parameter to 8.

■ Data Symbols Per Beat—The number of symbols (words) that are 
transferred per beat. Valid values are 1–256.

■ Include Packet Support—Indicates whether or not packet transfers 
are supported. Packet support includes the startofpacket, 
endofpacket, and empty signals.

■ Error Signal Width (bits)—The width of the error signal on the 
output interface. Valid values are 0–31. A value of 0 indicates that the 
error signal is not in use. 

Test Pattern 
Checker

This section describes the hardware structure and functionality of the test 
pattern checker core.

Functional Description

The test pattern checker core accepts data via an Avalon-ST interface, 
checks it for correctness against the same predetermined pattern used by 
the test pattern generator core to produce the data, and reports any 
exceptions to the control interface. You can parameterize most aspects of 
the test pattern checker’s Avalon-ST interface such as the number of error 
bits and the data signal width, thus allowing you to test components with 
different interfaces. 

The test pattern checker has a throttle register that is set via the Avalon-
MM control interface.The value of the throttle register controls the rate at 
which data is accepted.



Altera Corporation  21–7
October 2007  

Test Pattern Checker

Altera Corporation  21–7
October 2007

Test Pattern Checker

Figure 21–2 shows a block diagram of the test pattern checker core.

Figure 21–2. Test Pattern Checker

The test pattern checker core detects exceptions and reports them to the 
control interface via a 32-element deep internal FIFO. Possible exceptions 
are data error, missing start-of-packet (SOP), missing end-of-packet 
(EOP) and signalled error.

As each exception occurs, an exception descriptor is pushed into the 
FIFO. If the same exception occurs more than once consecutively, only 
one exception descriptor is pushed into the FIFO. All exceptions are 
ignored when the FIFO is full. Exception descriptors are deleted from the 
FIFO after they are read by the control and status interface.

Input Interface

The input interface is an Avalon-ST interface that optionally supports 
packets. You can configure the input interface to suit your requirements. 

Incoming data may contain interleaved packet fragments. To keep track 
of the current symbol’s position, the test pattern checker core maintains 
an internal state for each channel.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows 
you to enable or disable data acceptance as well as set the throttle. This 
interface provides useful generation-time information such as the 
number of channels and whether the test pattern checker supports 
packets. 
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The control and status interface also provides information on the 
exceptions detected by the test pattern checker core. The interface obtains 
this information by reading from the exception FIFO. 

Instantiating the Test Pattern Checker in SOPC Builder

Use the MegaWizard interface for the test pattern checker core in SOPC 
Builder to configure the core. The following sections list the available 
options in the MegaWizard interface.

Functional Parameter

The functional parameter allows you to configure the test pattern checker 
as a whole: Throttle Seed—The starting value for the throttle control 
random number generator. Altera recommends a unique value to each 
instance of the test pattern generator and checker cores in a system.

Input Parameters

You can configure the input interface of the test pattern checker core using 
the following parameters:

■ Number of Channels—The number of channels that the test pattern 
checker core supports. Valid values are 1–256. 

■ Data Bits Per Symbol—The number of bits per symbol for the input 
interface. Valid values are 1–256.

■ Data Symbols Per Beat—The number of symbols (words) that are 
transferred per beat. Valid values are 1–32.

■ Include Packet Support—Indicates whether or not packet transfers 
are supported. Packet support includes the startofpacket, 
endofpacket, and empty signals.

■ Error Signal Width (bits)—The width of the error signal on the 
input interface. Valid values are 0–31. A value of 0 indicates that the 
error signal is not in use. 

Device and 
Tools Support

For each device family, the test pattern generator and checker cores 
provide either full or preliminary support:

■ Full support means the component meets all functional and timing 
requirements for the device family and may be used in production 
designs.

■ Preliminary support means the component meets all functional 
requirements, but might still be undergoing timing analysis for the 
device family; it may be used in production designs with caution.
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Figure 21–3 shows the level of support offered by the test pattern 
generator and checker cores to each Altera device family.

Installation and 
Licensing

The test pattern generator and checker cores are included in the Altera 
MegaCore® IP Library, which is an optional part of the Quartus® II 
software installation. After you install the MegaCore IP Library, SOPC 
Builder recognizes these components and can instantiate them into a 
system. 

You can use the test pattern generator and checker for free without a 
license in any design targeting an Altera device.

Hardware 
Simulation 
Considerations

The test pattern generator and checker cores do not provide a simulation 
testbench for simulating a stand-alone instance of the component. 
However, you can use the standard SOPC Builder simulation flow to 
simulate the component design files inside an SOPC Builder system. 

Table 21–3. Device Family Support

Device Family
Support

Test Pattern Generator Test Pattern Checker

Arria™ GX Preliminary Preliminary

Cyclone III Preliminary Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

Stratix III Preliminary Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix GX Full Full

Stratix Full Full



21–10  Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–10  Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Software 
Programming 
Model

This section describes the software programming model for the test 
pattern generator and checker cores. 

HAL System Library Support

For Nios II processor users, Altera provides HAL system library drivers 
that enable you to initialize and access the test pattern generator and 
checker cores. Altera recommends you to use the provided drivers to 
access the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following 
installation folders to your software application directory:

■ <IP installation directory> /ip /sopc_builder_ip 
/altera_avalon_data_source/HAL

■ <IP installation directory>/ip/sopc_builder_ip/ 
altera_avalon_data_sink/HAL

Software Files

The following software files define the low-level access to the hardware, 
and provide the routines for the HAL device drivers. Application 
developers should not modify these files.

■ Software files provided with the test pattern generator core:
● data_source_regs.h—The header file that defines the test 

pattern generator’s register maps.
● data_source_util.h, data_source_util.c—The header and source 

code for the functions and variables required to integrate the 
driver into the HAL system library.

■ Software files provided with the test pattern checker core:
● data_sink_regs.h—The header file that defines the core’s 

register maps.
● data_sink_util.h, data_sink_util.c—The header and source 

code for the functions and variables required to integrate the 
driver into the HAL system library.

Register Maps

This section describes the register maps for the test pattern generator and 
checker cores.
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Test Pattern Generator Control and Status Registers

Table 21–4 shows the offset for the test pattern generator control and 
status registers. Each register is 32 bits wide.

Table 21–5 describes the status register bits.

Table 21–6 describes the control register bits.

Table 21–4. Test Pattern Generator Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 21–5. Status Field Descriptions  

Bit(s) Name Access Description

15:0 ID RO A constant value of 0x64.

23:16 NUMCHANNELS RO The configured number of channels.

30:24 NUMSYMBOLS RO The configured number of symbols per beat.

31 SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 21–6. Control Field Descriptions  

Bit(s) Name Access Description

0 ENABLE RW Setting this bit to 1 enables the test pattern generator core.

7:1 Reserved

16:8 THROTTLE RW Specifies the throttle value which can be between 0 and 256, 
inclusively. This value is used in conjunction with a pseudorandom 
number generator to throttle the data generation rate. 

Setting THROTTLE to 0 stops the test pattern generator core. 
Setting it to 256 causes the test pattern generator core to run at full 
throttle. Values between 0 and 256 result in a data rate proportional 
to the throttle value.

17 SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset. 
Write 0 to this bit to exit reset.

31:18 Reserved
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Table 21–7 describes the fill register bits.

Test Pattern Generator Command Registers

Table 21–8 shows the offset for the command registers. Each register is 32 
bits wide. 

Table 21–9 describes the cmd_lo register bits. The command is pushed 
into the FIFO only when the cmd_lo register is written to.

Table 21–7. Fill Field Descriptions  

Bit(s) Name Access Description

0 BUSY RO A value of 1 indicates that data transmission is in progress, or that 
there is at least one command in the command queue.

6:1 Reserved

15:7 FILL RO The number of commands currently in the command FIFO.

31:16 Reserved

Table 21–8. Test Pattern Generator Command Register Map

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

Table 21–9. Cmd_lo Field Descriptions  

Bit(s) Name Access Description

15:0 SIZE RW The segment size in symbols. Except for the last segment in a 
packet, the size of all segments must be a multiple of the configured 
number of symbols per beat. If this condition is not met, the test 
pattern generator core inserts additional symbols to the segment to 
ensure the condition is fulfilled.

29:16 CHANNEL RW The channel to send the segment on. If the channel signal is less 
than 14 bits wide, the low order bits of this register are used to drive 
the signal. 

30 SOP RW Set this bit to 1 when sending the first segment in a packet. This bit 
is ignored when packets are not supported.

31 EOP RW Set this bit to 1 when sending the last segment in a packet. This bit 
is ignored when packets are not supported.
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Table 21–10 describes the cmd_hi register bits.

Test Pattern Checker Control and Status Registers

Table 21–11 shows the offset for the control and status registers. Each 
register is 32 bits wide.

Table 21–12 describes the status register bits.

Table 21–10. Cmd_hi Field Descriptions  

Bit(s) Name Access Description

15:0 SIGNALLED 
ERROR

RW Specifies the value to drive the error signal. A non-zero value 
creates a signalled error.

23:16 DATA ERROR RW The output data is XORed with the contents of this register to create 
data errors. To stop creating data errors, set this register to 0.

24 SUPRESS SOP RW Set this bit to 1 to suppress the assertion of the startofpacket 
signal when the first segment in a packet is sent.

25 SUPRESS EOP RW Set this bit to 1 to suppress the assertion of the endofpacket 
signal when the last segment in a packet is sent.

Table 21–11. Test Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2
Reservedbase + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 21–12. Status Field Descriptions (Part 1 of 2) 

Bit(s) Name Access Description

15:0 ID RO Contains a constant value of 0x65.

23:16 NUMCHANNELS RO The configured number of channels.
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Table 21–13 describes the control register bits.

Table 21–14 describes the exception_descriptor register bits. If there 
is no exception, reading this register returns 0.

30:24 NUMSYMBOLS RO The configured number of symbols per beat.

31 SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 21–12. Status Field Descriptions (Part 2 of 2) 

Bit(s) Name Access Description

Table 21–13. Control Field Descriptions  

Bit(s) Name Access Description

0 ENABLE RW Setting this bit to 1 enables the test pattern checker.

7:1 Reserved

16:8 THROTTLE RW Specifies the throttle value which can be between 0 and 256, 
inclusively. This value is used in conjunction with a pseudorandom 
number generator to throttle the data generation rate. 

Setting THROTTLE to 0 stops the test pattern generator core. 
Setting it to 256 causes the test pattern generator core to run at full 
throttle. Values between 0 and 256 result in a data rate proportional 
to the throttle value.

17 SOFT RESET RW When this bit is set to 1, all internal counters and statistics are 
reset. Write 0 to this bit to exit reset.

31:18 Reserved

Table 21–14. Exception_descriptor Field Descriptions  

Bit(s) Name Access Description

0 DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

1 MISSINGSOP RO A value of 1 indicates missing start-of-packet.

2 MISSINGEOP RO A value of 1 indicates missing end-of-packet.

7:3 Reserved

15:8 SIGNALLED 
ERROR

RO The value of the error signal.

23:16 Reserved

31:24 CHANNEL RO The channel on which the exception was detected.
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Table 21–15 describes the indirect_select register bits.

Table 21–16 describes the indirect_count register bits.

Test Pattern 
Generator API

This section describes the application programming interface (API) for 
the test pattern generator core. All APIs are currently not available from 
the interrupt service routine (ISR).

data_source_reset()

Table 21–15. Indirect_select Field Descriptions  

Bit Bits Name Access Description

7:0 INDIRECT 
CHANNEL

RW Specifies the channel number that applies to the INDIRECT 
PACKET COUNT, INDIRECT SYMBOL COUNT, and INDIRECT 
ERROR COUNT registers.

15:8 Reserved

31:16 INDIRECT 
ERROR

RO The number of data errors that occurred on the channel specified 
by INDIRECT CHANNEL.

Table 21–16. Indirect_count Field Descriptions  

Bit Bits Name Access Description

15:0 INDIRECT 
PACKET 
COUNT

RO The number of packets received on the channel specified by 
INDIRECT CHANNEL.

31:16 INDIRECT 
SYMBOL 
COUNT

RO The number of symbols received on the channel specified by 
INDIRECT CHANNEL.

Prototype: void data_source_reset(alt_u32 base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void

Description: This function resets the test pattern generator core 
including all internal counters and FIFOs. The control and 
status registers are not reset by this function.
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data_source_init()

data_source_get_id()

data_source_get_supports_packets()

Prototype: int data_source_init(alt_u32 base, 
alt_u32 command_base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
command_base—The base address of the command 
slave.

Returns: 1—Initialization is successful.
0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize 
the test pattern generator core: 
● Resets and disables the test pattern generator core. 
● Sets the maximum throttle. 
● Clears all inserted errors.

Prototype: int data_source_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern generator core’s identifier.

Description: This function retrieves the test pattern generator core’s 
identifier.

Prototype: int data_source_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.
0—Packets are not supported.

Description: This function checks if the test pattern generator core 
supports packets.
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data_source_get_num_channels()

data_source_get_symbols_per_cycle()

data_source_set_enable()

Prototype: int 
data_source_get_num_channels(alt_u32 
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported 
by the test pattern generator core.

Prototype: int data_source_get_symbols(alt_u32 
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols transferred in a beat.

Description: This function retrieves the number of symbols transferred 
by the test pattern generator core in each beat.

Prototype: void data_source_set_enable(alt_u32 
base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
value—The ENABLE bit is set to the value of this 
parameter. 

Returns: void

Description: This function enables or disables the test pattern 
generator core. When disabled, the test pattern generator 
core stops data transmission but continues to accept 
commands and stores them in the FIFO.
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data_source_get_enable()

data_source_set_throttle()

data_source_get_throttle()

Prototype: int data_source_get_enable(alt_u32 
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_source_set_throttle(alt_u32 
base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
value—The throttle value.

Returns: void

Description: This function sets the throttle value, which can be 
between 0 and 256 inclusively. The throttle value, when 
divided by 256 yields the rate at which the test pattern 
generator sends data.

Prototype: int data_source_get_throttle(alt_u32 
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the current throttle value.



Altera Corporation  21–19
October 2007  

Test Pattern Generator API

Altera Corporation  21–19
October 2007

Test Pattern Generator API

data_source_is_busy()

data_source_fill_level()

Prototype: int data_source_is_busy(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—The test pattern generator core is busy.
0—The core is not busy.

Description: This function checks if the test pattern generator is busy. 
The test pattern generator core is busy when it is sending 
data or has data in the command FIFO to be sent.

Prototype: int data_source_fill_level(alt_u32 
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of commands in the command FIFO.

Description: This function retrieves the number of commands currently 
in the command FIFO.
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data_source_send_data()

Prototype: int data_source_send_data(alt_u32 
cmd_base, alt_u32 channel, alt_u32 size, 
alt_u32 flags, alt_u32 error, alt_u32 
data_error_mask);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: cmd_base—The base address of the command slave.
channel—The channel to send the data on.
size—The data size.
flags—Specifies whether to send or suppress SOP and 
EOP signals. Valid values are 
DATA_SOURCE_SEND_SOP, 
DATA_SOURCE_SEND_EOP, 
DATA_SOURCE_SEND_SUPRESS_SOP and 
DATA_SOURCE_SEND_SUPRESS_EOP. 
error—The value asserted on the error signal on the 
output interface.
data_error_mask—This parameter and the data are 
XORed together to produce erroneous data.

Returns: Always returns 1.

Description: This function sends a data fragment to the specified 
channel. 

If packets are supported, user applications must ensure 
the following conditions are met:
● SOP and EOP are used consistently in each channel.
● Except for the last segment in a packet, the length of 

each segment is a multiple of the data width.

If packets are not supported, user applications must 
ensure the following conditions are met:
● No SOP and EOP indicators in the data.
● The length of each segment in a packet is a multiple of 

the data width.
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Test Pattern 
Checker API

This section describes the API for the test pattern checker core. The APIs 
are currently not available from the ISR.

data_sink_reset()

data_sink_init()

data_sink_get_id()

Prototype: void data_sink_reset(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void

Description: This function resets the test pattern checker core 
including all internal counters.

Prototype: int data_source_init(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Initialization is successful.
0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize 
the test pattern checker core: 
● Resets and disables the test pattern checker core.
● Sets the throttle to the maximum value.

Prototype: int data_sink_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern checker core’s identifier.

Description: This function retrieves the test pattern checker core’s 
identifier.
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data_sink_get_supports_packets()

data_sink_get_num_channels()

data_sink_get_symbols_per_cycle()

Prototype: int data_sink_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.
0—Packets are not supported.

Description: This function checks if the test pattern checker core 
supports packets.

Prototype: int data_sink_get_num_channels(alt_u32 
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported 
by the test pattern checker core.

Prototype: int data_sink_get_symbols(alt_u32 
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols received in a beat.

Description: This function retrieves the number of symbols received by 
the test pattern checker core in each beat.
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data_sink_set enable()

data_sink_get_enable()

data_sink_set_throttle()

Prototype: void data_sink_set_enable(alt_u32 base, 
alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
value—The ENABLE bit is set to the value of this 
parameter. 

Returns: void

Description: This function enables the test pattern checker core.

Prototype: int data_sink_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_sink_set_throttle(alt_u32 
base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
value—The throttle value.

Returns: void

Description: This function sets the throttle value, which can be 
between 0 and 256 inclusively. The throttle value, when 
divided by 256 yields the rate at which the test pattern 
checker receives data.
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data_sink_get_throttle()

data_sink_get_packet_count()

data_sink_get_symbol_count()

Prototype: int data_sink_get_throttle(alt_u32 
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the throttle value.

Prototype: int data_sink_get_packet_count(alt_u32 
base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of packets received on the given channel.

Description: This function retrieves the number of packets received on 
a given channel.

Prototype: int data_sink_get_symbol_count(alt_u32 
base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of symbols received on the given channel.

Description: This function retrieves the number of symbols received on 
a given channel.



Altera Corporation  21–25
October 2007  

Test Pattern Checker API

Altera Corporation  21–25
October 2007

Test Pattern Checker API

data_sink_get_error_count()

data_sink_get_exception()

data_sink_exception_is_exception()

Prototype: int data_sink_get_error_count(alt_u32 
base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of errors received on the given channel.

Description: This function retrieves the number of errors received on a 
given channel.

Prototype: int data_sink_get_exception(alt_u32 
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The first exception descriptor in the exception FIFO. 
0—No exception descriptor found in the exception FIFO.

Description: This function retrieves the first exception descriptor in the 
exception FIFO and pops it off the FIFO.

Prototype: int 
data_sink_exception_is_exception(int 
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns: 1—Indicates an exception.
0—No exception.

Description: This function checks if a given exception descriptor 
describes a valid exception.
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data_sink_exception_has_data_error()

data_sink_exception_has_missing_sop()

data_sink_exception_has_missing_eop()

Prototype: int 
data_sink_exception_has_data_error(int 
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns: 1—Data has errors.
0—No errors.

Description: This function checks if a given exception indicates 
erroneous data.

Prototype: int 
data_sink_exception_has_missing_sop(int 
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing SOP.
0—Other exception types.

Description: This function checks if a given exception descriptor 
indicates missing SOP.

Prototype: int 
data_sink_exception_has_missing_eop(int 
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing EOP.
0—Other exception types.

Description: This function checks if a given exception descriptor 
indicates missing EOP.
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data_sink_exception_signalled_error()

data_sink_exception_channel()

Referenced 
Document

This chapter references the Avalon Streaming Interface Specification.

Document 
Revision History

Table 21–17 shows the revision history for this chapter.

Prototype: int 
data_sink_exception_signalled_error(int 
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The signalled error value.

Description: This function retrieves the value of the signalled error 
from the exception.

Prototype: int data_sink_exception_channel(int 
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The channel number on which the given exception 
occurred.

Description: This function retrieves the channel number on which a 
given exception occurred.

Table 21–17. Document Revision History

Date and 
Document 

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Initial release. —
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