
The Joy Of Engineering
Computer Science/ Computer Engineering

Final Report

Michael Yan, Eric Leung, Binna Han
December 2011

Abstract

In this project, we have embedded programming by creating a new firmware for the HP 20b
calculator. Since the HP 20B calculator offers a number of ways to get into the embedded
firmware of the calculator, our project proposes to explore the calculator, hack into the
embedded firmware and potentially use the base calculator as a launching platform for custom
operational versions. In other words, we’d like to take the HP-20b and reprogram it to do
other things, including, potentially, emulating a computer system. During our lab sessions,
we were able to break into its embedded code and made it act like a computer rather than
a traditional calculator. Once we were able to code the software to do something that it
should not do, we were able to reverse our hacking acts by making our calculators behave
like calculators again.

Introduction

This project is an exploration into embedded systems, where we have written code integrated
with an electronic system in order to implement our own functionality. In this case we have
written firmware for an HP 20b calculator using the C programming language. In four labs
we have coded the calculator from the basics of displaying text on the screen to a Reverse
Polish Notation calculator.

Section 2 is a user guide to our calculator. Section 3 describes the social implications of our
project and how it would affect the world. Section 4 describes the hardware platform of our
project and how basic functions interact with the hardware. Section 5 is a summarization
of our software architecture, i.e. the four labs. Section 6 goes into the details of our imple-
mentations of the four labs. Section 7 describes what we have learned from this project and
Section 8 is the criticisms of this course and what improvements could have been made.

2 User Guide

For the first lab, the user does not have to provide any input. We have created a program
that makes the calculator display the word Badboyz, scrolling from right to left. For example,
the first three iterations will display:

B A D B O Y Z

B A D B O Y Z

B A D B O Y Z

For the second lab, the user can press any key on the calculator. The calculator will display
SEE on the first three spaces on the left, and the key that the user entered on the fifth blank.
For example, if the user presses ‘5’, ‘6’, the display will be:

S E E 5

S E E 6

For the third lab, the user can press number keys, operation keys or the negative sign key.
The calculator will display numbers starting on the second black on the left when the user is
inputting numbers, and will clear the screen once an operation key is pressed. The calculator
will display a negative sign on the first blank if the negative sign key is pressed, and will clear
it if the negative sign key is pressed again. However, the calculator will not do calculations.
For example, if the user presses ‘5’, ‘6’, and the negative sign, the display will be:

5

5 6

- 5 6

If the user presses an operation sign, such as a plus sign, the screen will be cleared, until the
user presses numbers again. For the fourth lab, the calculator behaves as an RPN calculator.
The user has to input a number, and then press number to have the number stored in the
calculator. The, the user has to input another number, before doing any operations. The
calculator will take the number on the screen, the last pressed number, and the operation
key to do calculations. The result will be displayed on the screen. The other input methods
for the user and the displays are the same as the third lab, but the calculator is able to
perform calculations now. For example, if the user inputs, ‘5’, ‘enter’, ‘6’, ‘enter’, ‘7’, ‘+’,
‘+’, the display will be:

5

6

7

1 3

1 8

Section 3

The social implications of our calculator are far and widespread. It will allow people to
perform quick and error-free calculations that will help in many situations such as trade.

Portable devices such as this calculator will also allow developing countries to improve their
education system. This calculator can be brought to classrooms all over the world and
learning will not be restricted by geography. Although calculator may seem detrimental to
math studies, it can be beneficial when the intent of usage is proper. It will save valuable
time for productive learning, especially at a higher level where the basics has been mastered,
and more emphasis is placed on concept understanding. Moreover, since this calculator is
just a precursor for more advanced embedded systems, it can be used to create a customized
program that could be used for his own use.

4 The Platform

HP 20B calculator is made of series of Atmels AT91AM series of a single standard processor
chip, which are built around the ARM processor core, surrounded by memory, a system
controller, and LCD controller. There are series of microcontrollers that are designed for
lower power usage. The HP20B calculator has a build in 128KB of flash rom in the 30Mhz
ARM cpu that powers it. Figure 1 shows a block diagram of the AT91SAM71 chip. It
is able to run on low battery because the system controller controls the power supply and
the clock through software, allowing it to save energy by not powering on the unnecessary
peripherals.1

Joint Test Action Group (JTAG) is an interface that is generally used for IC debug ports,

CPU programming, and application development. The JTAG port is connected to the
AT91SAM7L128 processor, which allows the communication with the processor. HP20b
calculators circuit board has a slot to link the connector cable to bring out the JTAG sig-
nals and the JTAG adapters are connected to the USB ports. During our lab workshop
sessions, we used a software called OpenOCD on Linux.2 The OpenOCD software allowed
us to communicate to the AT91SAM7L128 CPU through USB and JTAG.

LCD display

A Liquid crystal display (LCD) is a flat panel display that uses the light modulating proper-
ties of liquid crystal. These crystals are actually liquid chemicals that align perfectly when
subjected to electrical fields; when they’re properly aligned, they allow light to pass through
them. LCDs use this property by using electrical currents to align the crystals and allow
varying levels of light to pass through and create the desired images.3 HP 20B calcula-
tors LCD is displayed when complex AC waveforms are generated by the LCD controller.
The liquid crystals are sandwiched between two pieces of polarized glass. The fluorescent
light source, known as the backlight, emanates light that passes through the first substrate.4

The electrical currents then cause the crystals to align, allow varying levels of light to pass
through to the second substrate. The end result is what you see onscreen.

The picture below shows a LCD display of 400 pixels screen containing a 6*43 matrix display,

12+3 digits 7 segment display and 11 indicators; this is what LCD looks like if all the pixels
are turned ON. In appearance to software, LCD looks like a series of memory locations whose
bits control individual LCD segments.5

LCDs are available in wide range of sizes and are very energy efficient. Another benefit of
LCDs is that it requires low electrical power and thus enables it to be used in battery-powered
electric equipment.

As introduced in lab, the lcd init() function turns on the power supply of the LCD so
that the calculator can actually print to it. The lcd put char7() function takes in two
parameters, ch and col. The ch parameter is the ASCII character that is to be printed out
onto the screen while col is the column that the character is to be printed. The lcd print7()
function takes in a char * and simply iterates through all 15 columns calling lcd put char7()
on each character of the array.

The figure below shows the schematics of the LCD.

Keyboard

HP20Bs keyboard functions in a similar way as the computer keyboards that we took apart
in class. In this section we will explore HP20Bs keyboard technology including its micropro-
cessor SAM7L chip, and its circuitry.

HP20Bs keyboard has a standard matrix type with miniature wires that run through its
rows and columns and these wire circuits are able to be shorted together by the keys (Figure
I show the keyboards layout). HP20Bs keyboard has its own SAM7L chip and circuitry that
carries information to and from that processor.6 A large part of this circuitry makes up the
key matrix, which is a grid of circuits underneath the keys; each circuit is broken at a point
below each key. The SAM7L chip and pins allows the calculator to translate which buttons
are being pressed by reading the state of each pin.7 (Figure 3 shows the schematics of the
HP 20Bs keyboard).

For example, when a button is pressed, a circuit is completed, allowing a short current to
flow through. When a button is pressed down long enough, the processor comprehends the
signal as if you were pressing the key repeatedly. Furthermore, since HP20Bs keyboard is
mechanical in nature, mechanical key switch allows metal to metal contact. When a button
is pressed, it pushes down the metal beneath the calculator, and presses against the flat
surface of the key matrix and completes a circuit. When released, it forces the button to
go back to its original resting position. The processor deciphers which key is being pressed
by finding a circuit that is closed, and compares it to a character map, which expresses the
position of each key in the matrix and what each keystroke represents.

Section 5

The software architecture of our calculator is based on four labs. In Lab 1 we wrote a
program to display a scrolling message from right to left that looped when it reached the
end. This lab introduced the basic LCD functions that allowed us to put text onto the
screen. The second lab was reading input from the keyboard and printing it out onto the
screen, but was only able to display one key. The third lab combined the first two labs
into continuously displaying multiple user inputs on the screen as well as storing that input
into an underlying data structure. The fourth lab used the previous three labs to make a

Reverse Polish Notation calculator. It read input from the keyboard, displayed it on the
screen and stored the input in a data structure as well as performed operations on these
data structures. We essentially rebuilt the calculator from the ground up from display to
input to functionality with each lab built off the previous ones.

6 Software Details

We have written four labs which have modified the calculator in multiple ways throughout the
semester: a Scrolling Display, Scanning the Keyboard, Entering and Displaying Numbers,
and an RPN calculator. The sub-sections here will explain in detail our implementations for
each lab.

6.1 Lab 1: A Scrolling Display

In this lab, the calculator displays a string of words on the screen, scrolling from right to
left. Figure 6.1 below contains the code for this lab.

First, we have an array of characters called name[], which contains the word we want to
scroll, Badboyz. We also create a pointer for this string, which points at the first character
in the string in the beginning.

Then we create another array of characters called printScreen[], which is the material we
want to print on the screen, and only contains blanks in the beginning.

Next we declare a few variables: integer n is a tool we use for the for-loop, integer lengthOf-
Screen is twelve, which stands for the number of spaces on the calculator’s monitor, integer
counter keeps track of where the string Badboyz is at on the monitor.

The while(1) is the main loop in this lab that makes the scrolling continues forever.

We make the calculator print printScreen[], which is all blanks in the beginning. The follow-
ing for-loop moves one character in printScreen[] to the left.

The next while-loop slows the program down, so that the display does not scroll too fast.

The next if-statement determines what printScreen[] should be for the next display. If the
pointer is pointing at ‘\0’, which is the end of the array Badboyz, the last element on
printScreen should then be a blank, rather than ‘\0’. If the pointer is pointing at any other
characters, the last element on printScreen[] should be the next character on Badboyz, and
the pointer moves to the next character in Badboyz.

If counter reaches the end of the screen, we reset the pointer of Badboyz to the first character,
and we reset the counter to zero as well, so that the process can work all over again.

At the very end, we increment counter by one, so it keeps track of the number of iterations.

1 //main.c for Lab 1

2

3 #include "AT91SAM7L128.h"

4 #include "lcd.h"

5

6 int main()

7 {

8 //initializes the screen

9 lcd_init();

10

11 //string to be printed

12 char name[] = "Badboyz";

13

14 //string for a blank screen

15 char printScreen[] = " ";

16

17 //pointer for "Badboyz"

18 char *pname = &name[0];

19

20 int n;

21 int lengthOfScreen = 12;

22 int counter = 1;

23 while (1)

24 {

25 //print blank in the beginning

26 lcd_print7(printScreen);

27

28 //scrolls one character to the left

29 for (n = 0; n < lengthOfScreen; n++)

30 {

31 printScreen[n] = printScreen[n+1];

32 }

33 //slows down the iterations

34 int x = 1;

35 while (x < 50000)

36 {

37 x = x + 1;

38 }

39 //if it reaches the end of "Badboyz"

40 if (*pname == ’\0’)

41 {

42 printScreen[11] = " ";

43 }

44 else //put char at "Badboyz" pointer to printScreen[] to be printed

45 {

46 printScreen[11] = *pname;

47 pname = pname + 1;

48 }

49 //reaches the end of the screen, restart process again

50 if (counter == lengthOfScreen)

51 {

52 pname = &name[0];

53 counter = 0;

54 }

55 counter=counter+1;

56 }

57 return 0;

58 }

Figure 6.1: Our Solution to Lab 1: A Scrolling Message

6.2 Lab 2: Scanning the Keyboard

In this lab, we are asked to modify the keyboard key method so that the calculator will
display the key that is pressed by the user. Figure 6.2a contains the code in keyboard.c, and
6.2b contains the code for main.c. We are provided with a few methods: keyboard init(),
which resets every column to high voltage, keyboard column low(int column), which resets
the particular column in the parameter to a low voltage, and keyboard row read(int row),
which returns which row is being pressed as an integer.

We create a two-dimensional array const char keysPressed[columns][rows] which contains the
corresponding characters on the keyboard of the calculator.

The modified keyboard key() method will record which key is pressed by the user by de-
termining where the intersection of the low voltage is, and returns an integer from the two-
dimensional array. One important note is that our two-dimensional array is of type char,
whereas we are returning an integer representation of the characters is the keyboard key()
method. The value returned by keyboard key() is in fact the ASCII (American Standard
Code for Information Interchange) value of the character. We will solve this problem in the
main.c class.

In our keyboard key() method, we first initializes the keyboard, which sets every column
to high voltage. We then initializes two variables c for column, and row for rows. We
then enter a double for-loop. The first for-loop iterates through the columns, and set each
column to low. The for-loop within it iterates through the rows. If a button is pressed, that
particular row and column will be shorted. With this information, we pass the shorted row
and column into our two-dimensional array, which will return a character. We return an
integer representation of this character if a key is pressed, and returns negative one if no
keys are being pressed.

In our main.c, figure 6.2b, we have a for-loop that runs forever. We first initializes the

keyboard, so each column has a high voltage. We then declare two variables, char ‘display’
and int ‘display2’. Char display will change the integer value of keyboard key() into a
character representation, which is the element in the two-dimensional array. Int ‘display2’
contains the integer value returned from keyboard key(). We then have an if-statement,
which will decide what to print out on the screen. If ‘display2’ does not equal to negative
one (recall that in keyboard.c, it returns negative one if no keys are being pressed), it indicates
that a key is being pressed, and the screen will display SEE on the first three spaces on the
left, and ‘display’ at the fifth space, where ‘display’ is the character representation of the
key pressed by the user. If ‘display2’ equals negative one, it indicates that nothing is being
pressed, and the screen will display NO KEY on the monitor.

1 // keyboard.c for Lab 2

2

3 #include "AT91SAM7L128.h"

4 #include "lcd.h"

5 #include<stdlib.h>

6 #define KEYBOARD_COLUMNS 0x7f

7 #define KEYBOARD_ROWS 0x400fc00

8 #define columns 7

9 #define rows 6

10

11 const unsigned char keyboard_row_index[] = {11,12,13,14,15,26};

12

13 void keyboard_init()

14 {

15 // Initialize the keyboard: Columns are outputs, rows are inputs

16 AT91C_BASE_PMC->PMC_PCER = (uint32) 1 << AT91C_ID_PIOC; // Turn on PIOC clock

17 AT91C_BASE_PIOC->PIO_PER = KEYBOARD_ROWS | KEYBOARD_COLUMNS; // Enable control

18 AT91C_BASE_PIOC->PIO_PPUDR = KEYBOARD_COLUMNS; // Disable pullups on columns

19 AT91C_BASE_PIOC->PIO_OER = KEYBOARD_COLUMNS; // Make columns outputs

20 AT91C_BASE_PIOC->PIO_PPUER = KEYBOARD_ROWS; // Enable pullups on rows

21 AT91C_BASE_PIOC->PIO_ODR = KEYBOARD_ROWS; // Make rows inputs

22

23 AT91C_BASE_PIOC->PIO_SODR = KEYBOARD_COLUMNS; // Drive all columns high

24

25 }

26

27 void keyboard_column_high(int column)

28 {

29 AT91C_BASE_PIOC->PIO_SODR = 1 << column;

30 }

31

32 void keyboard_column_low(int column)

33 {

34 AT91C_BASE_PIOC->PIO_CODR = 1 << column;

35 }

36

37 int keyboard_row_read(int row)

38 {

39 return (AT91C_BASE_PIOC->PIO_PDSR) & (1 << keyboard_row_index[row]);

40 }

41

42 // array of all keys

43 const char keysPressed[columns][rows] =

44 {

45 {’N’, ’I’, ’P’, ’M’, ’F’, ’A’},

46 {’C’, ’R’, ’V’, ’B’, ’%’, ’L’},

47 {’\r’, ’(’, ’)’, ’~’, ’\b’, 0},

48 {’\v’, ’7’, ’8’, ’9’, ’/’, 0},

49 {’\n’, ’4’, ’5’, ’6’, ’*’, 0},

50 {’S’, ’1’, ’2’, ’3’, ’-’, 0},

51 { 0, ’0’, ’.’, ’=’, ’+’, 0}

52 };

53

54 int keyboard_key()

55 {

56 // initlaize keyboard, reset every column to high

57 keyboard_init();

58 int x; // goes through rows

59 int i; // goes through columns

60 for (x = 0 ; x < columns; x++)

61 {

62 keyboard_column_low(x);

63

64 for (i = 0 ; i < rows ; i++)

65 {

66 if (!keyboard_row_read(i))

67 {

68 return keysPressed[x][i];

69 }

70 }

71 }

72 return -1; // no keys are pressed

73 }

Figure 6.2a: Our Solution in keyboard.c to Lab 2: Scanning the Keyboard

1 // main.c for Lab 2

2

3 #include "AT91SAM7L128.h"

4 #include "lcd.h"

5 #include "keyboard.h"

6

7 int main()

8 {

9

10 lcd_init();

11 keyboard_init();

12

13 for (;;)

14 {

15 keyboard_init();

16 char display = keyboard_key(); // returned char from keyboard_key

17 int display2 = keyboard_key(); // returned int from keyboard_key

18

19 if (display2 != -1) //if some key is pressed

20 {

21 // display

22 lcd_print7("SEE");

23 lcd_put_char7(’ ’, 3);

24 lcd_put_char7(display, 4); //display key-pressed at 5th blank

25 lcd_put_char7(’ ’, 5);

26 }

27 else

28 {

29 lcd_print7("NO KEY"); //display when nothing is pressed

30 }

31

32

33 }

34

35 return 0;

36 }

Figure 6.2b: Our Solution in main.c to Lab 2: Scanning the Keyboard

6.3 Lab 3: Entering and Displaying Numbers

In this lab, we are asked to enhance the method modified in lab 2, and make the calculator
display integers continuously when the user presses number keys, and clear the screen when
an operation is being pressed. Figure 6.3a contains the code in our keyboard.c class, and
Figure 6.3b contains the code in our main.c class.

In our keyboard.c class, we now have the functioning keyboard key() method from the last
lab. We used professor Edward’s code for the keyboard key() method because we feel that
his program is better written and will less likely contain error.

We have a new method in this lab, keyboard get entry(struct entry *result), which does
actions according to the value read in from the keyboard key method(). In this method,
we first declare a variable of type integer, ent, which is the value of keyboard key(). We
have an if-statement afterwards. If ent does not equal to negative one (recall negative one
is returned by keyboard key() if no keys are being pressed), then we move into a list of
actions.

If ent equals one hundred and twenty-six, which is the ASCII representation of a negative
sign, then we set the number in the struct as NEGATIVE SIGN, which is one hundred, and
the operation in the blank as a blank.

If ent is between the ASCII value of forty-eight and fifty-seven, which represents one and
nine respectively as characters, the number is struct is set to be ent minus forty-eight, which
will yield the correct number. And again the operation in the struct is set as a blank.

To make our code a little shorter, rather than making more if-statements for the operation
keys, we create a switch statement, which will do actions according to the value of ent.

Case forty-three is the case for the plus sign, since plus has the ASCII value of forty-three.
We set the operation of the struct as +, and the number in the struct as negative one,
indicating that the key pressed is not a number. The break statement makes the program
skip the other cases and goes to the end of the switch statement. The other cases work
exactly the same, returning the correct operation sign according to their ASCII value. We
have a line lcd init() in the case of an equal sign because we want to be sure that the screen
is clear and fresh after the user has entered an equal sign.

If the ent, the number returned by keyboard key(), is negative one, it indicates that no keys
are pressed, and we set the number in the struct as NO KEY BEING PRESSED, which
is negative two.

Now that we have these helper methods in the keyboard.c class, we can make adjustments
in our main.c class. In our main method, we have declared a few variables. We first create a
string of characters printScreen[], which contains all blanks in the beginning (this technique
is the same as in lab1). Int pos is the position of where the next character should be printed
on the screen. Int pressed is a variable that determines whether a key is being pressed, and

will be used to stop the calculator from printing the same character over and over again.
This point will be further illustrated below. Int lengthOfScreen contains the number of blank
spaces on the screen, which is eleven, excluding the first blank which is saved for the negative
sign.

Then we move into a forever for-loop, which will determine which actions to take and what
values to print on the screen. First thing we do in the for-loop is to get the number and
the operation in the struct from the keyboard get entry(struct entry *result) from the
keyboard.c class.

The following if-statement prevents the calculator from printing the pressed key over and
over again. If entry.number equals NO KEY BEING PRESSED, which is negative two,
then the value of pressed becomes one.

The program will enter the following if-statement if a key is pressed, which means that
pressed equals one, and entry.number does not equal NO KEY BEING PRESSED. Now
we know that something is being pressed by the user, we take that value and determine what
key is pressed, and does appropriate action.

The following if-statement checks if the negative sign is being pressed. If the negative sign
indeed is being pressed, and the first element in printScreen[] (printScreen[0]) is not a blank,
then the first element in printScreen[] becomes a negative sign. If the first element already
has a negative sign, then remove that negative sign. We print the value in printScreen[] onto
the monitor afterwards, which concludes our check for negative sign.

The next if-statement checks if an operation key is being pressed. If entry.number equals
negative one, which means that an operation key is being pressed, the screen is initialized,
the the whole printScreen[] array becomes all blanks. The position is reset to one, so that
when the user enters the next number, it will be placed at the second space on the left.

Finally, if the user entered a number between zero and nine, we place that number at the
position of printScreen[], which will be one in the beginning. We print printScreen[] on the
screen afterwards, and increment pos by one, so that if the user enters another number,
the number will be added to the array printScreen[], rather than overwriting the previous
numbers entered.

After all the checks, we set the value of pressed to zero, so that when it returns to the top of
the forever for-loop again, the program will not automatically print the same number over
and over again.

Even though this integer pressed seemed trivial, we had taken a very long time to figure this
out. We have tried to make changes to the program, but it was still printing one number on
the whole screen. So we stopped and started to discuss on why the calculator was behaving
in such a way. We found out that even though the user pressed and released the key in
one second, the one second would still mean a long time to the calculator, thus it would
assume the user was holding on the button, and thus printed out the same number all over

the screen. This idea came from the while-loop we made in the first lab to slow the scrolling
down. We needed some variables in the program to prevent the calculator from printing one
value for many times. Finally, we came up with an algorithm to stop the program, which was
to add in this variable pressed with changing values to prevent the program from repeatedly
entering the if-statement.

1 //keyboard.c for Lab 3

2

3 #include "AT91SAM7L128.h"

4 #include "keyboard.h"

5

6 #define NUM_COLUMNS 7

7 #define NUM_ROWS 6

8 #define KEYBOARD_COLUMNS 0x7f

9 #define KEYBOARD_ROWS 0x400fc00

10 #define NO_KEY_BEING_PRESSED -2

11 #define NEGATIVE_SIGN 100

12

13 const unsigned char keyboard_row_index[] = {11,12,13,14,15,26};

14

15 /* Character codes returned by keyboard_key */

16

17 const char keyboard_keys[NUM_COLUMNS][NUM_ROWS] = {

18 {’N’, ’I’, ’P’, ’M’, ’F’, ’A’},

19 {’C’, ’R’, ’V’, ’B’, ’%’, ’L’},

20 {’\r’, ’(’, ’)’, ’~’, ’\b’, 0},

21 {’\v’, ’7’, ’8’, ’9’, ’/’, 0},

22 {’\n’, ’4’, ’5’, ’6’, ’*’, 0},

23 {’S’, ’1’, ’2’, ’3’, ’-’, 0},

24 { 0, ’0’, ’.’, ’=’, ’+’, 0}};

25

26 void keyboard_init()

27 {

28 // Initialize the keyboard: Columns are outputs, rows are inputs

29 AT91C_BASE_PMC->PMC_PCER = (uint32) 1 << AT91C_ID_PIOC; // Turn on PIOC clock

30 AT91C_BASE_PIOC->PIO_PER = KEYBOARD_ROWS | KEYBOARD_COLUMNS; // Enable control

31 AT91C_BASE_PIOC->PIO_PPUDR = KEYBOARD_COLUMNS; // Disable pullups on columns

32 AT91C_BASE_PIOC->PIO_OER = KEYBOARD_COLUMNS; // Make columns outputs

33 AT91C_BASE_PIOC->PIO_PPUER = KEYBOARD_ROWS; // Enable pullups on rows

34 AT91C_BASE_PIOC->PIO_ODR = KEYBOARD_ROWS; // Make rows inputs

35 AT91C_BASE_PIOC->PIO_SODR = KEYBOARD_COLUMNS; // Drive all columns high

36

37 }

38

39 void keyboard_column_high(int column)

40 {

41 AT91C_BASE_PIOC->PIO_SODR = 1 << column;

42 }

43

44 void keyboard_column_low(int column)

45 {

46 AT91C_BASE_PIOC->PIO_CODR = 1 << column;

47 }

48

49 int keyboard_row_read(int row)

50 {

51 return (AT91C_BASE_PIOC->PIO_PDSR) & (1 << keyboard_row_index[row]);

52 }

53

54 //keyboard_key function for reading what the user has pressed

55 // from Professor Edward’s program

56 int keyboard_key()

57 {

58 int row, col;

59 for (col = 0 ; col < NUM_COLUMNS ; col++)

60 {

61 keyboard_column_low(col);

62 for (row = 0 ; row < NUM_ROWS ; row++)

63 {

64 if (!keyboard_row_read(row))

65 {

66 keyboard_column_high(col);

67 return keyboard_keys[col][row];

68 }

69 }

70 keyboard_column_high(col);

71 }

72 return -1;

73 }

74

75 void keyboard_get_entry(struct entry *result)

76 {

77 int ent = keyboard_key();

78 // if something is pressed

79 if (ent != -1)

80 {

81 //All the numbers are in ASCII

82 ent = keyboard_key();

83

84 if (ent == 126) //if the user inputs a negative sign

85 {

86 result->number = NEGATIVE_SIGN;

87 result->operation = ’ ’;

88 }

89 if (ent >= 48 && ent <= 57) // if the user presses 1-9 on the calculator

90 {

91 result->number = ent - 48; //convert form ASCII

92 result->operation = ’ ’;

93 }

94 switch(ent) //If the user inputs an operation.

95 {

96 case 43: // "+" sign

97 result -> operation = ’+’;

98 result -> number = -1;

99 break;

100 case 45: // "-" sign

101 result -> operation = ’-’;

102 result -> number = -1;

103 break;

104 case 42: // "*" sign

105 result -> operation = ’*’;

106 result -> number = -1;

107 break;

108 case 47: // "/" sign

109 result -> operation = ’/’;

110 result -> number = -1;

111 break;

112 case 61: // "=" sign

113 result -> operation = ’=’;

114 result -> number = -1;

115 lcd_init();

116 break;

117 }

118 }

119 else //If no key is being pressed.

120 {

121 result -> number = NO_KEY_BEING_PRESSED;

122 }

123 }

Figure 6.3a Our Solution in keyboard.c to Lab 3: Entering and Displaying Numbers

1 // main.c for Lab 3

2

3 #include "AT91SAM7L128.h"

4 #include "lcd.h"

5 #include "keyboard.h"

6

7 int main()

8 {

9

10 lcd_init();

11 keyboard_init();

12

13 for (;;)

14 {

15 keyboard_init();

16 char display = keyboard_key(); // returned char from keyboard_key

17 int display2 = keyboard_key(); // returned int from keyboard_key

18

19 if (display2 != -1) //if some key is pressed

20 {

21 // display

22 lcd_print7("SEE");

23 lcd_put_char7(’ ’, 3);

24 lcd_put_char7(display, 4); //display key-pressed at 5th blank

25 lcd_put_char7(’ ’, 5);

26 }

27 else

28 {

29 lcd_print7("NO KEY"); //display when nothing is pressed

30 }

31 }

32 return 0;

33 }

Figure 6.3b: Our Solution in main.c to Lab 3: Entering and Displaying Numbers

Section 6.4

In this lab we created a Reverse Polish Notation calculator that extends off the previous three
labs. We used a stack to store the numbers that the user entered because RPN notation only
operates on the numbers most recently entered, which a stack is perfect for. The members
of this programs was the stack, which was simply an array that held ten integers and a
stack pointer, which was an integer that held the position the next element would be added.
The push and pop functions are written into the main method and they respectively add
and remove elements from the stack while also changing the stack pointer accordingly. The

program read the input from the user using the keyboard get entry function from lab 3
and performed operations depending on the input. There are three cases:

If the input was a number followed by INPUT, the program pushed the entry into the stack.

If the input was a number followed by an operation, the program pushed that number onto
the stack and popped the top two numbers off the stack. Then the program performed
the arithmetic operations on those two numbers, pushed the result back onto the stack and
displayed the result on the screen. A switch case statement was used to select the correct
operation.

If the number was just an operation, it was necessary to decrement the stack pointer before
popping off the top two numbers so that the arithmetic operation wasn’t performed on
garbage values.

At the end of the loop the stack pointer is incremented because it always points to the space
right after the loop and we decremented it to access members when doing the operations.

1 // main.c for Lab 4

2

3 #include "AT91SAM7L128.h"

4 #include "lcd.h"

5 #include "keyboard.h"

6

7 int stack[10]; //Our stack is an array of 10 integers

8 int stackPointer;

9

10 int main()

11 {

12 stackPointer = 0;

13 struct entry entry;

14 // Disable the watchdog timer

15 *AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

16

17 lcd_init();

18 keyboard_init();

19

20 for (;;) {

21

22 int num1;

23 int num2;

24 int result;

25

26 keyboard_get_entry(&entry);

27

28 if (entry.operation == ’\r’) /*If the user enters a number

29 add it to the stack*/

30 {

31 stack[stackPointer++] = entry.number; // Advance the stack pointer

32 lcd_init();

33 }

34 if (entry.number != INT_MAX) // If a number is entered

35 {

36 stack[stackPointer] = entry.number;

37 }

38

39 if (entry.operation == ’+’ || // User has entered an operation

40 entry.operation == ’-’ ||

41 entry.operation == ’*’ ||

42 entry.operation == ’/’)

43 {

44 if (entry.number == INT_MAX) // Only an operation is entered

45 {

46 stackPointer--;

47 }

48

49 num1 = stack[stackPointer--]; // Pop the first number and decrement

50 // the stack pointer

51 num2 = stack[stackPointer]; // Pop the next number

52

53 switch(entry.operation)

54 {

55 case ’+’:

56

57 result = num1 + num2;

58 stack[stackPointer] = result; //Push the result onto the stack

59 lcd_print_int(result);

60 break;

61

62 case ’-’:

63

64 result = num2 - num1;

65 stack[stackPointer] = result;

66 lcd_print_int(result);

67 break;

68

69 case ’*’:

70

71 result = num1 * num2;

72 stack[stackPointer] = result;

73 lcd_print_int(result);

74 break;

75

76 case ’/’: //Division does not work due to faults we cannot control

77

78 result = num1 / num2;

79 stack[stackPointer] = result;

80 lcd_print_int(result);

81 break;

82 }

83 stackPointer++;

84 }

85 }

86 return 0;

87 }

Figure 6.4: Our Solution in main.c to Lab 4: Reverse Polish Notation Calculator

7 Lessons Learned

Throughout this semester, we have been working with the C programming language. We
learned not only about the syntax of C programming language, but more importantly, to
formulate algorithms before approaching problems with an engineers mindset. In the first
two labs, we started programming right after we have received the assignment, and luckily,
it did not take us too long to finish the assignment. However, this method did not work
for us in the third and fourth lab. We started programming right after we received the
assignment again, but we could not figure out the solution, and it seemed that we were
running in circles. Rather than programming like a blind man with a Rubiks cube, we took
out a piece of paper and started to write out our algorithm for the problem. We wrote down
the different variables, and the outcome of each steps of the program. In about five minutes
of thinking, discussing and writing out the iterations, we were able to find a crucial error
in our program, and immediately made adjustments to our program. The most important
lesson we learned from this experience is that before approaching the problem, we should
always think out the algorithm and write it out on a piece of paper. This is a valuable skill
to have, and can be applied not only to computer science, but other subjects as well.

8 Criticism of the Course

In the beginning of this semester, we were highly encouraged by Professor Vallancourt to take
a gateway subsection that we have never been exposed to in order to broaden our aspects of
different fields of engineering. Accordingly, some of us who came into this course were newly
exposed to computer science and had a difficult time in understanding the shotgun intro-
duction to C programming language. On the other hand, the other half of our members who
have been programming for years and years were able to work at the fast paced environment
and were able to grasp the materials very quickly. Regardless of our background knowledge
of computer science, we all truly enjoyed being in this computer programming section of our

gateway course because we were all able to transition out of our science-oriented high school
way of thinking to an engineering point of view. Fundamental concepts of computer science
and hacking skills was learned and reviewed in an engineering context. We especially enjoyed
the time when we broke apart a broken computer keyboard to learn about the schematics
of the plastic keyboard processor chips and how the matrix circuits grid worked underneath
the keys. By doing so, we were easily able to implement the knowledge to our calculators
keyboards.

Although this course definitely had more pros than cons, there were several things that could
be improved in this course. First the rooms were a bit uncomfortable because of its tight
space and sometimes we ended up standing or kneeling because there were not enough chairs
for everyone. Secondly, since all of the students in this course had a gateway lecture starting
at 10:00am and continued onto gateway section right afterwards until 4:00pm, which usually
ended up extending until around 4:30pm, we basically had to spend our whole Friday in a
lab. Although we all love computer science and didnt mind staying later to up the labs,
we sometimes wished that we could get out early to enjoy our Friday. In future, it would
be beneficial for students if they were allowed access to the computers labs to work on the
calculator project during the weekdays evenings. This would be beneficial especially for
those students who have other extracurricular activities on Friday evenings and would give
students ample time to finish up the required labs.

In addition, because of the varying backgrounds of everyones experience in computer pro-
gramming, we think it would be a great idea if there could be some extra lecture sessions for
those who need extra help in computer language and the basics of programming. This would
allow the newbies to catch up faster and understand the lab materials better. Because each
one of us had different background knowledge in computer science, its difficult to describe
the difficulty level of this course. We could say it was a split because the individual labs
definitely came easier for some and difficult for some others. But overall, this course was
very enjoyable and manageable for everyone.

During the start of our lab, we usually always had a clear general idea of how the pieces
should fit together in the end, but the problem was writing down the code that would support
our big picture. When we had trouble finding the bug and got stuck on figuring out the
code, it was very helpful to discuss it with the group and go over the code step by step.
Writing out the plan of action before starting to code was very helpful as well. Nonetheless
the code reviews were the most helpful material. By looking at the code reviews, we were
able to compare our code with other groups results to improve upon our codes. Since every
group came up with different coding solutions, it was interesting to compare our results with
other groups results and find a simpler way making it work.

Notes

1Hp-20b repurposing project. Online http://www.wiki4hp.com/doku. php?id=20b:repurposing project.

2Stephen Edwards. Repurposing an HP Calculator Lab 1: Hello World, Fall 2011.

3D.J.R. Cristaldi, S. Pennisi, F. Pulvirenti, ”Liquid Crystal Display Drivers - Techniques and Circuits”,
Springer, Mar., 2009.

4Developer kit for HP 20b financial calculator, October 2009.

5Developer kit.

6Stephen Edwards. Repurposing an HP Calculator Lab 2: Listening to the Keyboard, Fall 2011.

7Developer kit.

