
SAGa

Sprite Animated Game

Block Diagram

VGA controller
At each new line on the screen:

Cycle 0: check which sprite/s are in that line.
Cycle 1-128: copy the corresponding row from each sprite
to local buffers.
Beyond the cycle 144:

1. Compare all the pixel from each sprites (overlapping).
2. Shift the registers.

Game Logic

Elements
Generate Random Terrain

Random curvature with bounds
Place worms randomly

Over entire game board length
Animations

Organized by frame
Game States

switch statement to control game mode
Game Parameters

Health, active weapon, choosing next worm, etc.
Multiplayer

Send terrain / game states / keys

Game Logic Animations

Problem:
The game requires multiple animations to run
simultaneously
Different animations have different speeds

Solution

All game changes are organized by a master frame rate
Each animation divides the master frame rate

Networking

DM9000A Controller was temperamental!

Required using Verilog for top level entity and including epcs
controller.

Packets sent on keypress for movement, weapon changes,
firing and turn changing as well as for synchronization.

Networking - Synchronization

Delete key triggers synchronization packets.

First synchronization packet sends half of the terrain data.

Second synchronization packet sends the remaining terrain
data as well as worm locations.

Due to packet loss in-game synchronization is occasionally
required.

The machine that registers the synchronization keypress
becomes the master.

Lessons Learned

1. Hardware and software integration can be quite difficult,
especially with multiple peripherals.

2. Displaying "realistic" animations efficiently requires
optimizations to the data structures storing the data as well
as methods for reading and writing said data.

3. Memory limits are very real especially when the number of
sprites and peripherals grows.

Questions?

