# PONG

Charles Hastings

Rachid Jeitani

Embedded Systems Design Project

#### Overview

- Classic Pong without so much socializing
- Each player controls a paddle using a mouse
- One paddle per monitor
- Uses network to coordinate scores, serving and balls going back and forth

# Block Diagram



#### Mouse

- PS/2 mouse protocol is rather unstructured
  - No complex packet structure, just a few bytes
  - Reliable legacy hardware is sparse
- Interrupt on data in FIFO, ISR integrates
- Polling interface also implemented in attempt to improve system stability

#### Ethernet

- 100Mbit=fast, 16-bit ISA=slow
  - Interface appears to limit 30Hz status updates
  - IP and UDP removed to reduce overheard
  - DMA is the next step
- Polling interface implemented, too
- Needs a clock! And power-on reset

#### VGA

- Three main visual layers
  - Background (16x16 bitmap)
  - Game Objects (Paddles & Ball)
  - Foreground (320x240 bitmap)
- Uses two different memories to store data

## Storing Graphics

- RAM for Game Objects and Background
  - 26 elements, each 16-bits wide
  - Stores the 16x16 background tile
  - Stores paddle & ball positions
  - Stores colors
- Foreground RAM
  - 4800 elements, each 16-bits wide
  - Stores ¼ of the screen which is then stretched to fill it

### VGA Block Diagram



#### Lessons Learned

- Integration of working parts can still be timeconsuming
- Tools are your best friend and your worst enemy
- Plan hardware to the last detail. Trial and error is very time consuming
- Immediate success takes the fun out of it

#### Tools

- Quartus, SOPC Builder, NiOS
- Wireshark (packet capture)
- BitTwister (win32 pcap replay)
- Subversion
- GIMP (for XBM arrays)
- NAFE (font editor)