
GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

1

Galaxian
CSEE 4840 Embedded System Design

Final Report

*Department of Computer Science

†Department of Electrical Engineering

†Department of Computer Engineering

School of Engineering and Applied Science,

Columbia University in the City of New York

May 2011

Xiaotian Huo

Computer Engineering Department

xh2144@columbia.edu

Yaolong Gao

Electrical Engineering Department

yg2258@columbia.edu

Qi Ding

Computer Science Department

qd2110@columbia.edu

Feng Ding

Electrical Engineering Department

fd2266@columbia.edu

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

2

CONTENT

ABSTRACT: ... 3

1 INTRODUCTION: ... 3

2 ARCHITECTURE .. 4

3 DESIGN IMPLEMENTATION .. 6

3.1 Keyboard .. 6

3.2 VGA .. 6

3.2.1 Several elements‟ pictures ... 6

3.2.2 VGA Design ... 8

3.2.3 Star background: ... 9

3.3 Audio ... 11

4 Software Design ... 13

4.1 Objects on the Screen .. 13

4.2 Animation ... 14

4.3 Interface Talking to the Hardware ... 15

5 Work Division and Lessons Learned .. 17

6 Codes .. 18

6.1 de2_vga_raster.vhd ... 18

6.2 lab3.vhd (top model file) .. 103

6.3 de2_wm8731_audio.vhd ... 106

6.4 audio_controller.vhd .. 111

6.5 audio_driver.vhd ... 111

6.6 galaxian.c .. 114

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

3

ABSTRACT:

The main goal of this project is to implement a classic video game Galaxian based on

the Altera Cyclone II FPGA board. The project involves both hardware set up and

software programming. Moreover, this project is focused on the video signal

processing and image display with the FPGA board. This design report will provide

the general idea of the project and the details of the implementation.

1 INTRODUCTION:

Galaxian is a 1979 fixed shooter arcade game by Namco and released by Midway

Mfg. in the US. The game is a great success on the first generation of Family

Computer platform (also known as FCs). This game introduced several firsts to the

game industry at that time. Although true color (as opposed to a color overlay for a

game that was otherwise black and white) began appearing as early as 1975, Galaxian

took graphics a step further with multi-colored animated sprites and explosions, a

crude theme song, different colored fonts for the score and high score, more

prominent background "music" and the scrolling starfield, and graphic icons that

showed the number of ships left and how many rounds the player had completed. Due

to these features, rebuilding this game becomes a perfect project to exploit the FPGA

board with its powerful image processing functionality.

To implement the game, the project involves both hardware set up and software

programming. Especially, due to the complex display of the game, the hardware set

up will take the most of the work, including the display of images like “spaceship”

and “enemy”, the arrangement of enemies in the screen and the set up of PS2

keyboard.

For the software, the difficulty lies in how to manage the objects on the screen,

especially the flying path of the enemy and how they track the spaceship. The

algorithm will have to handle the path of the fly, the position that avoids collision

among enemies themselves and how to aim at the player.

The game starts after pressing “enter” key. After that the enemy and the spaceship

will both show up. A galaxy background always moves from the top to the bottom.

On the right side of the screen, game information is displayed: High score and current

score of the player, number of life, and the current level. In the gameplay, player

controls the ship using PS2 keyboard. Game interface is shown on the VGA. The

position of swarm would fluctuate back and forth during the game. The swarm would

fall out of wave one by one to attack the ship, if it is not destroyed, it would fly back

to the wave. The flying path of the bullet and the swarm are depended on the current

position of the ship. In other words, both swarm and the bullet rejected by them has

tracing function.In the beginning, the player has 3 lives for the ship, which moves left

and right at the bottom of the wraparound screen. Several rows of enemies are on the

screen (formed a matrix), they would jump out of row and randomly projecting bullest

to the sapceship. After one wave of swarm is destroyed, the player will face the next

wave. Scores are calculated during the game, and are updated every time an enemy is

destroyed. Different kind of enemy receives different level of scores. The high score

is set to 5000 at first. If the player exceeds the score, the new high score will be

recorded.

http://en.wikipedia.org/wiki/Fixed_shooter
http://en.wikipedia.org/wiki/Arcade_game
http://en.wikipedia.org/wiki/Namco
http://en.wikipedia.org/wiki/Midway_Games
http://en.wikipedia.org/wiki/Midway_Games
http://en.wikipedia.org/wiki/United_States

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

4

2 ARCHITECTURE

In this project, there are three major hardware devices, i.e. the FPGA board, the

display, keyboard and sound box. To make these devices work properly, they should

be connected together and set up the FPGA board. The figure below is the block

diagram of the basic hardware architecture and thus makes the FPGA board

programmable.

Avalon Bus

SRAM

sla
v
e

NIOS 2

Processor

sla
v
e

Keyboard
Module

Keyboard

sla
v
e

VGA Controller

VGA Raster

LCD Displayer

sla
v
e

Figure 2-1 Basic Architecture

Audio Module

Audio Controller

Sound Box

sla
v
e

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

5

The green block in fig 2-1 indicates the real hardware devices and all the other blocks

together with the Avalon Bus is the architecture of the FPGA board. Here, orange

blocks stands for Avalon slaves and the blue block is the CPU. The keyboard module,

VGA controller and the Audio controller are interfaces which make the block can

communicate through the Avalon bus. Here, the keyboard module uses the given code

which provided in Lab 3 hence its interface and control logic written in VHDL code is

in a same file. The VGA controller and Audio controller are written in our project. All

these three blocks will be bind to the Avalon bus with SOPC builder in the Quartus.

The VGA raster is the block which actually communicates with the LCD displayer

through VGA port and displays the game graphics. In the VGA block, the basic

graphic patterns will be pre-set and the software will send the coordinates of positions

to the VGA raster hence realize the control of the game graphics. The audio controller

and audio module works in a similar way to the VGA controller and VGA raster.

Software will tell the audio block when to play which kind of sound. The details of

the implementation will be provided in the upcoming sections.

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

6

3 DESIGN IMPLEMENTATION

3.1 Keyboard

Our project uses keyboard as the primary input device for the user to control and play

the game. To build the keyboard as a peripheral device, we take reference to the audio

part of Lab 3. By using SOPC builder and include the .vhd file provided in Lab 3, we

successfully bind the keyboard to the Avalon bus on the DE2 board. We only

implement the read interface for the keyboard since for our project, the system do not

need to write data to the keyboard such as control the LED light to indicate Caps Lock

is on or off. The data length for keyboard interface is kept the same as the VGA block,

which is 32-bit long.

Once the keyboard is connected to the Avalon bus, we can read the data from

keyboard in the Nios2 which tells us which button(s) user presses. The following list

is the buttons we set for the game.

Button Usage

a Control the spaceship to move left

d Control the spaceship to move right

j Restart the game after game over

enter Start the game, pause/resume the game

space Shoot bullet

Here is the detail information when we implementing these keys.

1. When implement the plane movement keys, we do not use the data read from the

keyboard directly. This will cause a subtle stuck for the plane to move when user

keep pressing the button without release. Instead, we put some logic condition to

see if the user keeps pressing the movement button without release it. This feature

improves the user experience to the game and makes the control easier.

2. We implement the feature that the user can shoot bullet while the plane is moving.

There is no confliction or latency on the movement keys and space key. This is

realized in a similar way as we eliminate the subtle stuck when the user keeps

pressing a button as described above.

3.2 VGA

3.2.1 Several elements’ pictures

Enemies

Figure 3.2.1-1 Red bee Figure 3.2.1-2 Purple bee Figure 3.2.1-3 Green bee

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

7

Spaceship

Figure 3.2.1-4 User‟s spaceship Figure 3.2.1-5 Small spaceship

Start picture

Figure 3.2.1-6 Start image

Several texts

Figure 3.2.1-7 Numbers

Figure 3.2.1-8 Others texts

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

8

Explosion

Figure 3.2.1-9 Big explosion pic Figure 3.2.1-9 Small explosion pic

3.2.2 VGA Design

3 different bees and 1 command

In our project, we have 5 lines bees in the bee matrix. The shapes of the last 4 lines‟

bees are equal. However, the color of bees is different with each other. In order to

save the memory and logic element in FPGA, we just used one picture for 3 different

kinds of bees. In our hardware, we first receive the signal that represents the type of

the bee from software. Then we draw the bee‟s color according to that signal.

Bee matrix

In the game Galaxian, we have to determine each bee in each position in the hardware

to draw that bee correctly. In order to reduce the number of for loops in the hardware,

we separated each bee in column/row just the same size of the bee (16 pixels). That

means we can simply shift right 4 of the bee coordinate. The result is the number of

the column/row of that bee in the matrix.

360 degrees bees

The bee, which is flying down, can rotate 360 degrees. We only used 3 pictures to

show 16 different pictures in our game. In the hardware, we also receive the signal

about the angle of the flying bee. We maybe reversal or switch the x coordinate with y

coordinate according to the signal of degree.

Figure 3.2.2-1 30 degrees Figure 3.2.2-2 60 degrees Figure 3.2.2-3 Normal pic

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

9

Connect with software

 Show the picture

In NIOS_ide, software will send the signal to hardware when the condition matched.

However, the hardware maybe receives the signal during drawing the picture. In that

case, the position of the object is changed in the hardware. Hardware will draw that

picture according to the new position message. That will cause the flipping on the

screen. In our project, we only receive the data of all the fast changed objects at the

screen synchronization time, which is vga_vsync = „1‟ and vga_hsync = „1‟. This

means we update the data when the screen point reset.

 Synchronize the time

During the design of our project, we realized there were problem about the time

synchronization problem between software and hardware. When there are huge

numbers of calculations in the software, the hardware will be delayed by the software

because the data signal is delayed by software. So, in each loop in software, the time

will be different according to the number of conditions in software.

In order to solve that problem, we transform the synchronization signal at the

beginning of whole while loop in software to hardware. That signal tells hardware

start count times. In the hardware, time count is fixed. When hardware counts to a

constant number, it will send back a signal to software. If the software finishes its job

before that time, software just wait until the signal comes.

Figure 3.2.2-4 SW and HW synchronization

3.2.3 Star background:

We implemented a background with 28 stars in 4 phases. In each phase, 7 stars shine

and disappear at the same time over and over again in cycles. Each star has 2 pixels in

y-axis and 1 pixel in x-axis. Stars are moving from the top of the screen to the bottom

again and again in iterations. To achieve a more verisimilar effect, 7 stars in the same

phase are distributed “randomly” in vertical dimension and evenly in horizontal

dimension. Moreover, the color of stars is changing each time they shine. When 4

phases of stars shine at the different time slot, they form a virtual galaxy.

Phase bias:

We divided 28 stars in 4 phases, each phase shine and dim at the same time. The

percentage of shining time takes 50%. So whenever we see the screen, half of the

stars are bright and the other half is dim.

Hardware Software

Start_count = „1‟

dataSendBack = „1‟

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

10

To implement this, we set up a counter. This counter keep counting between 0 and

40000, whenever it reaches 1/4 of 40000, the first phase of stars toggles its brightness.

Similarly, when the counter reaches 2/4, 3/4, 4/4 of 4000, the other three phases of

stars toggles their brightness respectively.

Color changing

We didn‟t assign color for each star. It‟s easy to implement but consumes a lot of

resources. Instead we assign color for each phase of stars (7 stars). But the color is

keeping changing through the process. We assigned a “shine” to store the color

information, start with “001”. When every a star goes from dim to bright, the color

information change step to step from “001” to “111”. So the color appears to each

phase is actually a sequence:

Purple, white, red, yellow, brown, green, blue.

Position distribution:

In order to save system resources, we don‟t assign position for each star – that would

be 28 star vertical addresses and 28 horizontal addresses. Instead, we only assign

position for the first star, and assign constant relative addresses for the rest of stars. In

this way, the relative motions between stars remain zero, and every time we want to

acquire all star positions, we only need to calculate them based on the first star (say

this “first star” has position of (base-coordinate-x, base-coordinate-y)).

28 stars are distributed evenly in x-axis, and 4 phases of stars are alternatively

distributed. To be more specific, four phases of stars‟ horizontal position are:

base-coordinate-x + 88*i (i = 0~6)

base-coordinate-x + 88*j +22 (j = 0~6)

base-coordinate-x + 88*m +44 (m = 0~6)

base-coordinate-x + 88*n +66 (n = 0~6)

That means for each big slot of 88 pixels, 4 phases alternatively take a small slot of 22

pixels.

Vertical position bias for each star is stored in an array.

For each phase (7 stars), they always shine at the same time, so we want them more

scatter.

We divided the vertical 480 pixels into 7 parts. For each phase, every star has a

unique part, and for every adjacent pair of stars, we want the distance between them is

as far as possible. The distribution is as follows:

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

11

 y-axis star 1 star 2 star 3 star 4 star 5 star 6 star 7

phase 1 3 6 1 7 4 2 5

phase 2 6 1 7 4 2 5 3

phase 3 1 7 4 2 5 3 6

phase 4 5 3 6 1 7 4 2

We normalize these parts, multiply by 480 pixels. Then we added a fine tuning to

each phase‟s part, we get the vertical position bias distribution:

 y-axis star 1 star 2 star 3 star 4 star 5 star 6 star 7

phase 1 189 393 53 461 257 121 325

phase 2 423 83 491 287 151 355 219

phase 3 38 446 242 106 310 174 378

phase 4 295 159 363 23 431 227 91

Every star‟s vertical position can be expressed by base-Y-coordinate + vertical bias.

Base-Y-coordinate is the Y-coordinate of the first star.

After these steps, then the galaxy really appears to be “randomly” distributed at

“random” phase with “random” colors.

3.3 Audio

In our original plan, we tried to implement the SD card interface for the audio part of

the game such that we can play the music files stored in the SD card. However, we

did not find enough materials to support us on doing this. Instead, we build several

ROMs on the DE2 board using the tool wizard in the Quartus and store the audio files

in these ROMs. The sound was first recorded from the original game. Then we use

music edit software to lower the sample rate for the recorded sound. After this, we

transform the wmv file into mif file using the software on the internet and finally store

these mif files in the ROMs we built. To play these mif files, we did some

modifications based on the audio part of Lab 3. The infrastructure of the audio

implementation involves some discussion with the Battle City team.

The structure of the main functional audio blocks are shown in the below figure.

The audio_driver blocks is connected to the Avalon bus and contains the wm8371

block, which is provided in the audio part of Lab 3. The wm8371 is instantiated inside

the audio_driver block. It is in the wm8371 block does the main function of audio

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

12

play. We reconfigure the structure of the wm8371 by adding a finite state machine

(FSM) to control the play of each piece of music. When the play finishes, a signal will

be generated and tell the software that the play finishes.

The interface of the audio_driver is also 32-bit wide. By sending command to the

audio block, the software can control which piece of music to play. In this project we

implement 3 kinds of music. One is the sound of the plane firing, one is the sound for

explosion and the last one is for the enemy attacking. If there is a conflict to choose

which sound to play, our plan is that always play the sound that happens last. This is

to say, if during the enemy attacking period we fire a bullet, it will then play the

sound of firing the bullet. This is also the case in the original game.

The main constrain in this method of implementation audio block is that it will

consume too much memory on the DE2 board, which is the main reason for only three

kind of sound. If the memory is large enough, it is easy to perform some modification

and add more kinds of sound in our project.

The structure of the main functional audio blocks are shown in the below figure.

Figure 3.3-1 Audio structure

Audio_driver

wm8371

Connect to bus

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

13

4 Software Design

4.1 Objects on the Screen

We implemented all the game logic in the software. The main moving objects in the

game are 36 alien enemies (20 green, 8 purple, 6 red, and 2 command enemies) lining

up in formation or flying downing the screen, one player spaceship, one bullet from

the spaceship, and bullets from the enemies. Other information objects include

explosion, the start picture, high score and current score, level and player life

indicator, and the “game over” picture. Each type of enemy has different score and

different moving speed.

Our biggest challenge is how to control the positions of these objects on the screen,

especially the flying enemies. The enemy will first circle down from the formation

and then fly towards the spaceship and drop bullets at the spaceship at the same time.

At first, we used to calculate the position of the

enemy in the circle and for the path towards the spaceship. But

the trigonometric functions and floating point computation greatly slows down the

calculation and leaves the movement at an inconsistent speed. Our solution is to

precompute the change of the position in the circle, store it in an array and use it for

all the enemies regardless of their original positions in the formation since their

relative change is all the same except for the difference of left and right direction. We

keep a count for the step the enemy has taken when circling to access the element in

the array. A smaller 1/4 circle array is used for turning.

In order to make the effect that the enemy is tracing the spaceship, we simplified the

route by making all the enemies fly at a angle and check their relative position to

the spaceship twice during the flying down, the first check at the time when they

finish the circle and the second check at the time when their vertical movement

reaches 150, and then fly to the side where the spaceship is.

The similar solution is used for the bullets from the enemy. Rather than flying

towards exactly where the spaceship is, the bullet moves at either
angle depending on how far the enemy is from the spaceship at the time the bullet is

dropping down. Actually, this makes the game even harder.

 The maximum number of enemies flying together on the screen is 8. All the

information about a flying enemy is stored in an eight-element array of type bee

which is defined by us:

typedef struct {

 int flying; // 1 flying, 0 in formation

 int angle; // which direction the enemy is facing

 int flyingH; // horizontal position

 int flyingV; // vertical position

 int row; // the original row in the formation

 int column; // the original column in the formation

 int flySide; // 1 fly from left side, -1 fly from right side

 int angleCount; // counter used for circling step counting

 int circleCount; // counter used for circling speed control

 int smoothCount; // counter used for turning speed control

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

14

 int flyCount; // counter used for flying speed control

 int flyCountToBe; // different speed value for flyCount based on bee type

 int bulletLeftCount; // counter used for projecting bullet

 int done; // 1 fly back to formation after flying out, 0 keey flying

 int k; // 1 fly to right, -1 fly to left

 int turn; // whether the bee is turning

 int track; // whether the bee needs to check spaceship position

 int type; // the type of the bee

 int bulletLeft; // how many bullet to be projected

} bee;

The information of each bullet dropped by the enemy is store in a linked list of type

bullet. Maximum number is 30.

typedef struct bullet{

 int h; // horizontal position

 int v; // vertical position

 int k; // 1 move right, -1 move left, 0 move down

 int number; // the number of the bullet on the screen

 int beeBulletMoveDown; // counter for the movement speed

 struct bullet* prevBullet; // pointer to the previous bullet

 struct bullet* nextBullet; // pointer to the next bullet

} bullet;

4.2 Animation

In order to make the flying enemy look alive rather than just a picture moving down,

we need the images of the enemy heading towards 16 different directions. Here we

only drew 3 images for each type of enemy. And by changing its color and convert

the angle, we achieve 16 images for each type of the enemy, which saves us a lot of

resource. When the flying enemy is in the circle, its head is towards the direction it‟s

moving to. We count each step here and convert the count to the direction.

After the circle, it‟s always facing the spaceship. In this way, the enemy looks

intelligent and agile. To find the right direction the enemy should face, we have to use

floating point to calculate the slope of the line where the enemy and spaceship are on

and then choose the right angle based on the value of the slope.

For the enemies in the formation, we use a five-element integer array,

int alive[5] = {8320, 43680, 174760, 699050, 699050};

00000010000010000000

00001010101010100000

10101010101010101010

10101010101010101010

10101010101010101010

each element representing a line and the binary representation of the integer indicating

the enemy at the according bit is in the formation (1) or not (0). This design allows us

to reform the formation easily. The entire formation will move left and right together

intermittently.

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

15

When an enemy is shot by the spaceship or the spaceship is hit by a flying enemy or

enemy‟s bullet, there is an explosion. The explosion of the enemy and spaceship goes

through two phases. The explosion of the spaceship is bigger. With the explosion

image getting bigger in each phase, we created the effect of a dynamic explosion.

We randomly choose the leftmost or rightmost enemies to fly down at different time

interval depending on the current level of the game and the enemies still alive. Notice

that the command enemy is always companied by at most two red enemies below it

following certain pattern. So we add additional test when choosing an enemy to make

them fly down together.

4.3 Interface Talking to the Hardware

With so many objects showing on the screen, it is very important for us to make full

use of both the 32-bit data field and the 5-bit address field efficiently. To write data to

vga, we use IOWR_32DIRECT(VGA_BASE, address, data). Reading data

IORD_32DIRECT(VGA_BASE, 0) is only used to receive the synchronization signal

from the hardware in order to control the tempo of the entire while loop. To write data

to audio, we use IOWR_32DIRECT(AUDIO_BASE, 0, data). After sending a sound

signal to audio, we also send a stop signal so that the sound won‟t be played

repeatedly. We use IORD_8DIRECT(PS2_BASE, offset) to read data from the

keyboard.

The detailed interface for VGA is as following:

address data utility

hardware software flags (31-20) 19-10 9-0

01101 52 Synchronization

01100 48 angle(30-27) +

type(24-23) +

number(22-20)

flyingH flyingV Flying Enemy

01010 40 Number (25-20) h v Enemy Bullet

01000 32 beeMaxH beeMaxV Formation

00111 28 planeH planeV Spaceship

00110 24 bullet bullet Player Bullet

00101 20 The 5
th

 line (24),

the 4
th

 line (23),

the 3
rd

 line (22),

the 2
nd

 line (21),

the 1
st
 line (20)

alive Enemy in

Formation

00100 16 1 startPicV Start Screen

2 level (5-3) + player life

(2-0)

Level & Player

Life

3 Clear Screen

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

16

4 1 (show) , 0 (hide) Ready

5 1 (show) , 0 (hide) Pause

6 h v G

7 h v A

8 h v M

9 h v E

10 h v O

11 h v V

12 h v E

13 h v R

00011 12 small explosion

pic 1; otherwise, 0

expH expV Spaceship

Explosion

00010 8 small explosion

pic 1; otherwise, 0

expH expV Enemy

Explosion

00001 4 1s(19-16) + 10s(15-12) +

100s(11-8) + 1000s(7-4)

+ 10000s(3-0)

High Score

00000 0 1s(19-16) + 10s(15-12) +

100s(11-8) + 1000s(7-4)

+ 10000s(3-0)

Current Score

The direction of the enemy is as below.

Angle Decimal representation

350 – 360, 0 – 10 (straight up) 0

10 – 30 (left up 30) 4

30 – 60 (left up 45) 8

60 – 80 (left up 60) 12

80 – 100 (left) 1

100 – 120 (left down 30) 14

120 – 150 (left down 45) 10

150 – 170 (left down 60) 6

170 – 190 (down) 2

190 – 210 (right down 60) 7

210 – 240 (right down 45) 11

240 – 260 (right down 30) 15

260 – 280 (right) 3

280 – 300 (right up 60) 13

300 – 330 (right up 45) 9

330 – 350 (right up 30) 5

The type of the enemy is as below:

Type Decimal representation

Green Enemy 0

Purple Enemy 1

Red Enemy 2

Command Enemy 3

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

17

5 Work Division and Lessons Learned

Xiaotian: vga architecture, image, synchronization

Feng: star background design, image processing

Yaolong: ps2 keyboard, audio implementation

Qi: software, communication with hardware

The division of the duty is important. When the team member knows what he/she

needs to do clearly, the development can be very efficient. Code should be well

commented if the meaning is not clear. Because we have thousands of lines, it helps

other people to understand and can also help the one who wrote the code to pick up

the idea after a long time. Finish the milestone on time so that you can have an easy

life at the end. Use the most simple way to solve problems, even it looks naïve,

because the simplest is likely to be the most efficient. Have fun with the project!

Thanks for Prof. Edwards and our TA Sungjun Kim for all the help and suggestion!

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

18

6 Codes

6.1 de2_vga_raster.vhd

-- Simple VGA raster display

--

-- VGA Design for Galaxian

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_unsigned.all;

entity de2_vga_raster is

 port (

 clk : in std_logic;

 reset_n : in std_logic;

 read : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 address : in unsigned(4 downto 0);

 readdata : out unsigned(31 downto 0);

 writedata : in unsigned(31 downto 0);

 VGA_CLK, -- Clock

 VGA_HS, -- H_SYNC

 VGA_VS, -- V_SYNC

 VGA_BLANK, -- BLANK

 VGA_SYNC : out std_logic; -- SYNC

 VGA_R, -- Red[9:0]

 VGA_G, -- Green[9:0]

 VGA_B : out std_logic_vector(9 downto 0) -- Blue[9:0]

);

end de2_vga_raster;

architecture rtl of de2_vga_raster is

 constant CoorGlaH : integer := 145;

 constant CoorGlaV : integer := 100;

 constant GLA_LONG: integer := 250;

 constant GLA_HEIGHT: integer := 300;

 signal glaH, glaV, glaG, glaColorG : std_logic;

 signal galaxianColor : unsigned (2 downto 0);

 -- Video parameters

 constant HTOTAL : integer := 800;

 constant HSYNC : integer := 96;

 constant HBACK_PORCH : integer := 48;

 constant HACTIVE : integer := 640;

 constant HFRONT_PORCH : integer := 16;

 constant VTOTAL : integer := 525;

 constant VSYNC : integer := 2;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

19

 constant VBACK_PORCH : integer := 33;

 constant VACTIVE : integer := 480;

 constant VFRONT_PORCH : integer := 10;

 -- Signals for the video controller

 signal Hcount : unsigned(9 downto 0); -- Horizontal position (0-800)

 signal Vcount : unsigned(9 downto 0); -- Vertical position (0-524)

 signal EndOfLine, EndOfField : std_logic;

 signal vga_hblank, vga_hsync,

 vga_vblank, vga_vsync : std_logic; -- Sync. signals

 signal b1V, b1H, b2V, b2H, b3V, b3H :unsigned (9 downto 0);

 signal Rb1V, Rb1H, Rb2V, Rb2H, Rb3V, Rb3H :unsigned (9 downto 0);

 signal b1Hshow, b1Vshow, b2Hshow, b2Vshow, b3Hshow, b3Vshow : std_logic;

 signal b1, b2, b3 :std_logic;

 constant BULLET_LONG : integer := 1;

 constant BULLET_HEIGHT : integer := 3;

 signal clk25 : std_logic := '0';

 signal TransColorSignal : unsigned (2 downto 0);

 --------------signal for the plane-------------------

 signal planeH, planeV, planeG :std_logic;

 signal CoorPlaneH, TCoorPlaneH : unsigned (9 downto 0) := "0000011001";

 signal CoorPlaneV, TCoorPlaneV : unsigned (9 downto 0) := "0110010000";

 constant PLANE_SIZE : integer := 20;

 ----------------signal for the bee-------------------

 signal bee_GreenG, bee_PurpleG, bee_RedG, big_beeG :std_logic;

 signal CoorBeeH : unsigned (9 downto 0) := "0000011001";

 signal CoorBeeV : unsigned (9 downto 0) := "0001100100";

 constant BEE_SIZE : integer := 16;

 ----------------signal for the flying bee-------------------

 type CoorBeeSet is array (0 to 7) of unsigned (9 downto 0);

 type BeeAngleSet is array (0 to 7) of unsigned (3 downto 0);

 type BeeTypeSet is array (0 to 7) of unsigned (1 downto 0);

 signal FlybeeH, FlybeeV, FlybeeGback, FlybeeG : unsigned (0 to 7);

 signal FlyBeeType: BeeTypeSet:= (

 ("00"),("00"),("00"),("00"),("00"),("00"),("00"),("00"));

 signal TCoorFlyBeeH, CoorFlyBeeH : CoorBeeSet:= (

 ("0000011001"),("0000011001"),("0000011001"),("0000011001"),

 ("0000011001"),("0000011001"),("0000011001"),("0000011001"));

 signal TCoorFlyBeeV, CoorFlyBeeV : CoorBeeSet:= (

 ("0001100100"),("0001100100"),("0001100100"),("0001100100"),

 ("0001100100"),("0001100100"),("0001100100"),("0001100100"));

 signal FlyBeeAngle : BeeAngleSet:= (

 ("0000"),("0000"),("0000"),("0000"),("0000"),("0000"),("0000"),("0000"));

 ----------------signal for the Explode-------------------

 signal ExplodeH, ExplodeV, ExplodeG :std_logic;

 signal BigExplodeH, BigExplodeV, BigExplodeG :std_logic;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

20

 signal CoorExplodeH, planeExplodeH : unsigned (9 downto 0) := "0000000000";

 signal CoorExplodeV, planeExplodeV : unsigned (9 downto 0) := "0000000000";

 signal TCoorExplodeH, TplaneExplodeH: unsigned (9 downto 0) := "1001011000";

 signal TCoorExplodeV, TplaneExplodeV: unsigned (9 downto 0) := "0000000000";

 signal Small: std_logic := '0';

 signal planeSmall: std_logic:= '0';

 ----------------signal for the bee matrix-------------------

 signal beeMaxH, beeMaxV, beeMaxG :std_logic;

 signal CoorBeeMaxH : unsigned (9 downto 0) := "0000110010";

 signal CoorBeeMaxV : unsigned (9 downto 0) := "0000110010";

 constant BEEMAX_LONG : integer := 304;

 constant BEEMAX_HEIGHT : integer := 144;

 ----------------signal for the box-------------------

 constant BOX_LONG : integer := 100;

 constant BOX_HEIGHT: integer := 480;

 signal boxG : std_logic;

 ----------------------signal for the data send back-------------------

 signal dataSendBack: unsigned (31 downto 0);

 ---------------------signal for time delay count-------------------

 signal timeDelayCount: integer := 0;

 signal windFlipCount: integer := 0;

 signal startCount: std_logic := '0';

 constant synctime: integer := 60000;

 signal windFlip: std_logic := '0';

 ---------------------alive matrix--------------------

 type alive_max_type is array (0 to 8) of unsigned (0 to 19);

 signal AliveMax: alive_max_type := (

 ("10101010101010101000"),("00000000000000000000"),

 ("10101010101010100010"),("00000000000000000000"),

 ("10101010101010001010"),("00000000000000000000"),

 ("10101010101010001010"),("00000000000000000000"),

 ("10101010101000101010"));

 signal tmpM1, tmpM2, tmpM3, tmpM4, tmpM5 : unsigned (19 downto 0) :=

"10101010101010101010";

 ---------------------bee type matrix-------------------

 type bee_type_max is array (0 to 8) of unsigned (0 to 1);

 constant BeeTypeMax : bee_type_max := (

 ("11"),("00"),("10"),("00"),("01"),("00"),("00"),("00"),("00"));

 ---------------------score data-----------------------

 type score_type is array (0 to 4) of unsigned (3 downto 0);

 signal hiScoreData, scoreData : score_type := (

 ("0000"),("0101"),("0000"),("0000"),("0000"));

 --------------------bee bullet-----------------------

 type bee_bullet_type is array (0 to 29) of unsigned (9 downto 0);

 signal CoorBeeBulletH, CoorBeeBulletV :bee_bullet_type;

 signal TCoorBeeBulletH, TCoorBeeBulletV :bee_bullet_type;

 signal beeBulletH, beeBulletV, beeBulletG: unsigned (0 to 29);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

21

 signal getBullet: std_logic;

 ----------------signal for the star-------------------

 signal flipstate : std_logic :='0';

 signal flipcount : integer := 0;

 signal flipstate1 : std_logic := '0';

 signal flipstate2 : std_logic := '1';

 signal flipstate3 : std_logic := '1';

 type starposition is array(integer range 0 to 27) of integer;

 signal stararrayV :starposition:= (189,393,53,461,257,121,325,423,

 83,491,287,151,355,219,38,446,242,106,310,174,378,295,159,363,23,431,227,91);

 signal roll :starposition:= (189,393,53,461,257,121,325,423,

 83,491,287,151,355,219,38,446,242,106,310,174,378,295,159,363,23,431,227,91);

 signal coorstarH : unsigned (9 downto 0) := "1001101010";

 signal coorstarV : unsigned (9 downto 0) := "0000011000";

 signal starH, starV, starG :std_logic;

 signal shinecount : integer :=1;

 signal shine : unsigned (2 downto 0):= "001";

 ----------------signal for the star1-------------------

 signal starH1, starV1, starG1 :std_logic;

 signal shinecount1 : integer :=1;

 signal shine1 : unsigned (2 downto 0):= "011";

 ----------------signal for the star2-------------------

 signal starH2, starV2, starG2 :std_logic;

 signal shinecount2 : integer :=1;

 signal shine2 : unsigned (2 downto 0):= "101";

 ----------------signal for the star3-------------------

 signal starH3, starV3, starG3 :std_logic;

 signal shinecount3 : integer :=1;

 signal shine3 : unsigned (2 downto 0):= "111";

 ----------------------color signal-------------------

 type textMatrix1 is array(0 to 9) of unsigned (0 to 54);

 type textMatrix2 is array(0 to 9) of unsigned (0 to 21);

 type normalMatrix is array(integer range 0 to 15, integer range 0 to 15) of unsigned(1

downto 0);

 type matrix is array(integer range 0 to 15, integer range 0 to 15) of unsigned(2 downto 0);

 type matrix24 is array(integer range 0 to 19, integer range 0 to 19) of unsigned(2 downto

0);

 ------------------------information--------------------

 signal mainPic: std_logic := '1';

 signal planeLife : unsigned (2 downto 0);

 signal level : unsigned (2 downto 0);

 signal mainPicV: unsigned (9 downto 0) := "0001100100";

 signal TmpClearScr, clearScr : std_logic := '0';

 signal readySignal, pauseSignal : std_logic := '0';

 signal readyH, readyV, readyG : std_logic;

 signal pauseH, pauseV, pauseG : std_logic;

 signal readyColor, pauseColor: unsigned (2 downto 0);

 constant CoorReadyH: integer:= 250;

 constant CoorReadyV: integer:= 350;

 constant READY_LONG: integer:= 50;

 constant READY_HEIGHT: integer:= 14;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

22

 --------------------------the matrix for text-------------------------------------

 signal hiScore: textMatrix1 := (

 ("000"),

 ("0110011011111100000001111000111100011110011111001111110"),

 ("0110011011111100000011111101111110111111011111101111110"),

 ("0110011000110000000011000001100110110011011001101100000"),

 ("0111111000110001111011111001100000110011011001101111110"),

 ("0111111000110001111001111101100000110011011111001111110"),

 ("0110011000110000000000001101100110110011011111001100000"),

 ("0110011011111100000011111101111110111111011011101111110"),

 ("0110011011111100000001111000111100011110011001101111110"),

 ("000"));

 signal oneUP: textMatrix2 := (

 ("0000000000000000000000"),("0001100011001101111100"),

 ("0011100011001101111110"),("0111100011001101100110"),

 ("0001100011001101100110"),("0001100011001101111110"),

 ("0001100011001101111100"),("0111111011111101100000"),

 ("0111111001111001100000"),("0000000000000000000000"));

 constant CoorTextH : integer := 550;

 constant CoorTextV : integer := 50;

 constant textMatrixLong : integer := 55;

 constant textMatrixHeight : integer := 55;

 signal TextG, TextH, TextV :std_logic;

 ---------------------------number---------------------------

 signal hiScoreColorSignal, scoreColorSignal : unsigned (2 downto 0);

 type numberMatrix is array(0 to 9) of unsigned (0 to 5);

 signal one: numberMatrix := (

 ("000000"),("001100"),("011100"),("111100"),("001100"),

 ("001100"),("001100"),("111111"),("111111"),("000000"));

 signal two: numberMatrix := (

 ("000000"),("011110"),("111111"),("110011"),("000011"),

 ("001110"),("011100"),("111111"),("111111"),("000000"));

 signal three: numberMatrix := (

 ("000000"),("011110"),("111111"),("110011"),("000110"),

 ("000110"),("110011"),("111111"),("011110"),("000000"));

 signal four: numberMatrix := (

 ("000000"),("000110"),("001110"),("011110"),("110110"),

 ("111111"),("111111"),("000110"),("000110"),("000000"));

 signal five: numberMatrix := (

 ("000000"),("011111"),("111111"),("110000"),("111110"),

 ("111111"),("000011"),("111111"),("111110"),("000000"));

 signal six: numberMatrix := (

 ("000000"),("011111"),("111111"),("110000"),("111110"),

 ("111111"),("110011"),("111111"),("011110"),("000000"));

 signal seven: numberMatrix := (

 ("000000"),("111111"),("111111"),("110011"),("000110"),

 ("000110"),("001100"),("001100"),("001100"),("000000"));

 signal eight: numberMatrix := (

 ("000000"),("011110"),("111111"),("110011"),("011110"),

 ("011110"),("110011"),("111111"),("011110"),("000000"));

 signal nine: numberMatrix := (

 ("000000"),("011110"),("111111"),("110011"),("111111"),

 ("011110"),("000110"),("001100"),("001100"),("000000"));

 signal zero: numberMatrix := (

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

23

 ("000000"),("011110"),("111111"),("110011"),("110011"),

 ("110011"),("110011"),("111111"),("011110"),("000000"));

 --------------------------start-----------------------------------

 type startType is array(0 to 13) of unsigned (0 to 49);

 signal start:startType := (

 ("00"),

 ("00011111000111111110000111100001111111000111111110"),

 ("00111111100111111110001111110001111111100111111110"),

 ("01110001100100110010001100110001100001100100110010"),

 ("01100000000000110000001100110001100001100000110000"),

 ("01100000000000110000001100110001100011100000110000"),

 ("01111111000000110000001111110001111111000000110000"),

 ("00111111100000110000011111111001111110000000110000"),

 ("00000001100000110000011000011001111100000000110000"),

 ("00000001100000110000011000011001101110000000110000"),

 ("01100011100000110000011000011001100111000000110000"),

 ("01111111000000110000011000011001100011100000110000"),

 ("00111110000000110000011000011001100001100000110000"),

 ("00"));

 signal ready:startType := (

 ("00"),

 ("01111111000111111110000111100001111110000110000110"),

 ("01111111100111111110001111110001111111000110000110"),

 ("01100001100110000000001100110001100011100110000110"),

 ("01100001100110000000001100110001100001100110000110"),

 ("01100011100110000000001100110001100001100011001100"),

 ("01111111000111111110001111110001100001100011111100"),

 ("01111110000111111110011111111001100001100001111000"),

 ("01111100000110000000011100111001100001100000110000"),

 ("01101110000110000000011000011001100001100000110000"),

 ("01100111000110000000011000011001100011100000110000"),

 ("01100011100111111110011000011001111111000000110000"),

 ("01100001100111111110011000011001111110000000110000"),

 ("00"));

 signal pause:startType := (

 ("00"),

 ("01111111000001111000011000011000011111000111111110"),

 ("01111111100011111100011000011000111111100111111110"),

 ("01100001100011001100011000011001110001100110000000"),

 ("01100001100011001100011000011001100000000110000000"),

 ("01100001100011001100011000011001100000000110000000"),

 ("01111111100011111100011000011001111111000111111110"),

 ("01111111000111111110011000011000111111100111111110"),

 ("01100000000110000110011000011000000001100110000000"),

 ("01100000000110000110011000011000000001100110000000"),

 ("01100000000110000110011000011001100011100110000000"),

 ("01100000000110000110011111111001111111000111111110"),

 ("01100000000110000110001111110000111110000111111110"),

 ("00"));

 ------------------------gameover------------------------------

 type alphaMatrix is array(0 to 13) of unsigned (0 to 9);

 signal g: alphaMatrix := (

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

24

 ("0000000000"),

 ("0001111000"),

 ("0011111100"),

 ("0110000110"),

 ("0110000110"),

 ("0110000000"),

 ("0110000000"),

 ("0110111100"),

 ("0110111110"),

 ("0110000110"),

 ("0110000110"),

 ("0011111110"),

 ("0001111100"),

 ("0000000000"));

 signal a: alphaMatrix := (

 ("0000000000"),

 ("0001111000"),

 ("0011111100"),

 ("0011001100"),

 ("0011001100"),

 ("0011001100"),

 ("0011111100"),

 ("0111111110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0000000000"));

 signal m: alphaMatrix := (

 ("0000000000"),

 ("0110000110"),

 ("0110000110"),

 ("0111001110"),

 ("0111001110"),

 ("0111111110"),

 ("0110110110"),

 ("0110110110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0000000000"));

 signal e: alphaMatrix := (

 ("0000000000"),

 ("0111111110"),

 ("0111111110"),

 ("0110000000"),

 ("0110000000"),

 ("0110000000"),

 ("0111111110"),

 ("0111111110"),

 ("0110000000"),

 ("0110000000"),

 ("0110000000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

25

 ("0111111110"),

 ("0111111110"),

 ("0000000000"));

 signal o: alphaMatrix := (

 ("0000000000"),

 ("0001111000"),

 ("0011111100"),

 ("0011001100"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0011001100"),

 ("0011111100"),

 ("0001111000"),

 ("0000000000"));

 signal v: alphaMatrix := (

 ("0000000000"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0110000110"),

 ("0011001100"),

 ("0011001100"),

 ("0011001100"),

 ("0011001100"),

 ("0000110000"),

 ("0000110000"),

 ("0000110000"),

 ("0000000000"));

 signal r: alphaMatrix := (

 ("0000000000"),

 ("0111111100"),

 ("0111111110"),

 ("0110000110"),

 ("0110000110"),

 ("0110001110"),

 ("0111111100"),

 ("0111111000"),

 ("0111110000"),

 ("0110111000"),

 ("0110011100"),

 ("0110001110"),

 ("0110000110"),

 ("0000000000"));

 signal gH, tmpgH, aH, tmpaH, mH, tmpmH, e1H, tmpe1H,

 oH, tmpoH, vH, tmpvH, e2H, tmpe2H, rH, tmprH: unsigned (9 downto 0);

 signal gV, tmpgV, aV, tmpaV, mV, tmpmV, e1V, tmpe1V,

 oV, tmpoV, vV, tmpvV, e2V, tmpe2V, rV, tmprV: unsigned (9 downto 0);

 signal gHG, aHG, mHG, e1HG, oHG, vHG, e2HG, rHG: std_logic;

 signal gVG, aVG, mVG, e1VG, oVG, vVG, e2VG, rVG: std_logic;

 signal gG, aG, mG, e1G, oG, vG, e2G, rG: std_logic;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

26

 constant ALPHALONG : integer := 10;

 constant ALPHAHEIGHT: integer := 14;

 signal gameoverSignal : std_logic;

 signal gameoverColorSignal : unsigned (2 downto 0);

 type xiaotianType is array(0 to 13) of unsigned (0 to 139);

 signal xiaotian: xiaotianType:= (

 ("00

00"),

 ("0110000110001111110000011110000001111000011111111000111111000001111000

0111000110011110000011111100"),

 ("0110000110001111110000111111000011111100011111111000111111000011111100

011100011000111111000011111100"),

 ("0110000110000011000000110011000011001100010011001000001100000011001100

011110011001100001100000110000"),

 ("0011001100000011000000110011000110000110000011000000001100000011001100

011110011001100001100000110000"),

 ("0011111100000011000000110011000110000110000011000000001100000011001100

011111011001100001100000110000"),

 ("0000110000000011000000111111000110000110000011000000001100000011111100

011011011001100001100000110000"),

 ("0000110000000011000001111111100110000110000011000000001100000111111110

011011011001101101100000110000"),

 ("0011111100000011000001100001100110000110000011000000001100000110000110

011001111001101101100000110000"),

 ("0011001100000011000001100001100110000110000011000000001100000110000110

011001111001100111000000110000"),

 ("0110000110000011000001100001100011001100000011000000001100000110000110

011001111001110111000000110000"),

 ("0110000110001111110001100001100011111100000011000000111111000110000110

011000111000111111100011111100"),

 ("0110000110001111110001100001100001111000000011000000111111000110000110

0110001110011101100011111100"),

 ("00

00"));

 type yaolongType is array(0 to 13) of unsigned (0 to 159);

 signal yaolong: yaolongType:= (

 ("00

000

00000000000"),

 ("0110000110000111100000011110000110000000000111100001110001100001111000

0001111111100111111110011100011

00001111000"),

 ("0110000110001111110000111111000110000000001111110001110001100011111100

0001111111100111111110011100011

00011111100"),

 ("0110000110001100110000110011000110000000001100110001111001100110000110

0001100000000110000000011110011

00110000110"),

 ("0110000110001100110001100001100110000000011000011001111001100110000110

0001100000000110000000011110011

00110000110"),

 ("0011001100001100110001100001100110000000011000011001111101100110000000

0001100000000110000000011111011

00110000000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

27

 ("0011111100001111110001100001100110000000011000011001101101100110000000

0001111111000111111110011011011

00110000000"),

 ("0001111000011111111001100001100110000000011000011001101101100110111100

0001111111000111111110011011011

00110111100"),

 ("0000110000011000011001100001100110000000011000011001100111100110111110

0001100000000110000000011001111

00110111110"),

 ("0000110000011000011001100001100110000000011000011001100111100110000110

0001100000000110000000011001111

00110000110"),

 ("0000110000011000011000110011000110000000001100110001100111100110000110

0001100000000110000000011001111

00110000110"),

 ("0000110000011000011000111111000111111110001111110001100011100011111110

0001100000000111111110011000111

00011111110"),

 ("0000110000011000011000011110000111111110000111100001100011100001111100

0001100000000111111110011000111

00001111100"),

 ("00

000

00000000000"));

 ---------------------------trademarkMatrix-----------------------------

 type trademarkMatrix is array(0 to 14) of unsigned (0 to 127);

 signal trademark: trademarkMatrix := (

 ("00

00"),

 ("0001111100000111110001

1111111001111111100000111100001111110000001111000011111100"),

 ("00001111100011111110001111111001

1111111001111111100000111100011111111000001111000111111110"),

 ("0001000001000000000000000000000000000000000000000111000110011100011001

1000000001100000000001101100011000011000011011000110000110"),

 ("0010011100100000111100011110000110000011000000000110000000011000000001

1000000001100000000001101100011000011000011011000110000110"),

 ("0100100010010001111110111111001110000111000000000110000000011000000001

1000000001100000000011001100011000011000110011000110000110"),

 ("0101000000010001100110110011011110001111000000000110000000011111110001

1111111001111111100011001100001111110000110011000110000110"),

 ("0101000000010000000110110011000110000011000000000110000000001111111001

1111111001111111100110001100001111110001100011000110000110"),

 ("0101000000010000011100110011000110000011000000000110000000000000011001

1000000001100000000111111110011000011001111111100110000110"),

 ("0100100010010000111000110011000110000011000000000110000000000000011001

1000000001100000000111111110011000011001111111100110000110"),

 ("0010011100100001111110111111011111101111110000000111000110011000111001

1000000001100000000000001100011000011000000011000110000110"),

 ("0001000001000001111110011110011111101111110000000011111110011111110001

1111111001111111100000001100001111110000000011000111111110"),

 ("000011111001111100001111100001

1111111001111111100000001100001111110000000011000011111100"),

 ("00

00"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

28

 ("00

00"));

 ---------------------------the matrix for the plane and bees------------------------

 signal plane :matrix24:= (

 ("000","000","000","000","000","000","000","000","000","011","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","011","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","011","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","011","011","011","000","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","011","011","011","011","011","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","000","011","011","011","011","011","011","011","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","011","011","011","011","011","011","011","011","011"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","011","011","011","011","011","011","011","011","011"

,"000","000","000","000","000","000"),

 ("000","000","010","000","000","011","000","000","001","011","001","000","000","011"

,"000","000","010","000","000","000"),

 ("000","010","010","010","000","000","000","001","001","011","001","001","000","000"

,"000","010","010","010","000","000"),

 ("000","010","001","010","000","000","000","001","001","011","001","001","000","000"

,"000","010","001","010","000","000"),

 ("000","010","001","010","000","000","001","001","001","011","001","001","001","000"

,"000","010","001","010","000","000"),

 ("000","010","001","001","001","001","001","001","001","011","001","001","001","001"

,"001","001","001","010","000","000"),

 ("010","010","001","001","001","001","001","001","001","011","001","001","001","001"

,"001","001","001","010","010","000"),

 ("010","010","001","001","001","001","000","001","001","011","001","001","000","001"

,"001","001","001","010","010","000"),

 ("010","010","001","001","010","000","000","001","001","000","001","001","000","000"

,"010","001","001","010","010","000"),

 ("000","010","001","010","010","000","000","001","000","000","000","001","000","000"

,"010","010","001","010","000","000"),

 ("000","010","001","010","000","000","000","000","000","000","000","000","000","000"

,"000","010","001","010","000","000"),

 ("000","010","010","010","000","000","000","000","000","000","000","000","000","000"

,"000","010","010","010","000","000"),

 ("000","000","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","010","000","000","000")

);

 signal small_explode :matrix:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

29

 ("000","000","000","000","000","000","000","011","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","011","011","100","000","011","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","100","100","011","000","100","011","000","000"

,"000","000"),

 ("000","000","000","000","100","011","000","100","100","100","011","100","000","000"

,"000","000"),

 ("000","000","000","000","011","011","011","011","100","011","011","100","011","000"

,"000","000"),

 ("000","000","000","000","000","011","100","100","011","011","100","000","000","000"

,"000","000"),

 ("000","000","000","000","100","000","100","011","100","000","011","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","011","000","000","011","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000")

);

 signal big_bee :matrix:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","011","011","011","011","000","000","000","000"

,"000","000"),

 ("000","001","001","000","000","011","011","011","011","011","011","000","000","001"

,"001","000"),

 ("000","001","001","000","011","011","010","011","011","010","011","011","000","001"

,"001","000"),

 ("000","001","001","011","011","011","011","011","011","011","011","011","011","001"

,"001","000"),

 ("000","001","001","100","011","011","011","011","011","011","011","011","100","001"

,"001","000"),

 ("000","001","001","100","100","011","011","011","011","011","011","100","100","001"

,"001","000"),

 ("000","000","001","001","100","100","100","100","100","100","100","100","001","001"

,"000","000"),

 ("000","000","000","001","001","100","100","100","100","100","100","001","001","000"

,"000","000"),

 ("000","000","000","000","001","001","000","100","100","000","001","001","000","000"

,"000","000"),

 ("000","000","000","000","000","001","000","100","100","000","001","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

30

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"));

 signal explode :matrix:= (

 ("000","000","000","000","000","000","000","000","000","101","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","101","100","100","100","101","101","101","101","000"

,"000","000"),

 ("100","101","000","000","000","101","101","101","101","100","101","101","101","000"

,"000","000"),

 ("100","100","100","100","101","101","101","100","101","100","101","100","101","101"

,"101","000"),

 ("101","100","101","100","101","101","100","100","100","101","101","100","100","100"

,"101","000"),

 ("000","101","101","100","101","101","100","100","100","101","100","100","100","101"

,"101","000"),

 ("000","000","000","100","100","101","101","101","101","100","100","101","100","101"

,"101","000"),

 ("000","000","000","000","100","100","101","101","101","101","100","100","101","101"

,"101","000"),

 ("000","000","101","101","100","101","101","100","101","100","100","101","101","000"

,"000","000"),

 ("000","000","101","101","101","101","101","100","101","100","100","101","101","000"

,"000","000"),

 ("101","101","101","100","100","100","100","101","101","101","100","100","101","000"

,"000","000"),

 ("101","101","100","100","100","101","100","100","101","100","100","100","100","101"

,"101","000"),

 ("101","100","101","101","101","101","101","101","000","101","101","101","100","100"

,"101","000"),

 ("101","100","101","101","000","000","100","101","000","000","000","101","101","100"

,"100","000"),

 ("101","101","000","000","000","000","100","100","000","000","000","101","101","101"

,"101","000"),

 ("000","000","000","000","000","000","101","101","000","000","000","000","000","000"

,"000","000"));

 signal bee:normalMatrix:= (

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","01","00","00","01","00","00","00","00","00","00"),

 ("00","01","00","00","00","00","01","01","01","01","00","00","00","00","01","00"),

 ("00","01","00","00","00","01","11","01","01","11","01","00","00","00","01","00"),

 ("00","01","01","01","01","01","01","01","01","01","01","01","01","01","01","00"),

 ("00","01","01","01","01","01","01","01","01","01","01","01","01","01","01","00"),

 ("00","00","00","00","01","01","01","01","01","01","01","01","00","00","00","00"),

 ("00","00","00","00","01","01","01","01","01","01","01","01","00","00","00","00"),

 ("00","00","00","00","00","01","01","01","01","01","01","00","00","00","00","00"),

 ("00","10","10","00","00","01","01","01","01","01","01","00","00","10","10","00"),

 ("00","10","10","10","10","10","01","01","01","01","10","10","10","10","10","00"),

 ("00","10","10","10","00","00","00","01","01","00","00","00","10","10","10","00"),

 ("00","10","10","00","00","00","00","01","01","00","00","00","00","10","10","00"),

 ("00","10","00","00","00","00","00","01","01","00","00","00","00","00","10","00"),

 ("00","00","00","00","00","00","00","01","01","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00")

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

31

);

 signal beef:normalMatrix:= (

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","01","00","00","01","00","00","00","00","00","00"),

 ("00","01","00","00","00","00","01","01","01","01","00","00","00","00","01","00"),

 ("00","01","00","00","00","01","11","01","01","11","01","00","00","00","01","00"),

 ("00","01","01","01","01","01","01","01","01","01","01","01","01","01","01","00"),

 ("00","01","01","01","01","01","01","01","01","01","01","01","01","01","01","00"),

 ("00","00","00","00","01","01","01","01","01","01","01","01","00","00","00","00"),

 ("00","10","00","00","01","01","01","01","01","01","01","01","00","00","10","00"),

 ("00","10","10","00","00","01","01","01","01","01","01","00","00","10","10","00"),

 ("00","10","10","10","00","01","01","01","01","01","01","00","10","10","10","00"),

 ("00","10","10","10","10","10","01","01","01","01","10","10","10","10","10","00"),

 ("00","00","00","00","00","00","00","01","01","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","00","01","01","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","00","01","01","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","00","01","01","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00")

);

 signal bee30:normalMatrix:= (

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","10","10","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","10","10","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","10","10","00","00","00","00","01","01","00","00","00","00","10","00"),

 ("00","00","10","10","10","10","01","01","01","01","01","00","00","10","10","00"),

 ("00","00","00","10","10","10","01","01","01","01","01","00","00","10","10","00"),

 ("00","00","00","00","00","01","01","01","01","01","01","10","10","10","10","00"),

 ("00","01","01","01","01","01","01","01","01","01","01","10","10","10","00","00"),

 ("00","01","01","00","01","01","01","01","01","01","00","00","00","00","00","00"),

 ("00","01","01","00","01","11","01","01","01","01","00","00","00","00","00","00"),

 ("00","00","00","00","01","01","01","11","01","01","01","01","00","00","00","00"),

 ("00","00","00","00","01","01","01","01","01","00","00","01","01","00","00","00"),

 ("00","00","00","01","00","00","00","01","00","00","00","01","01","00","00","00"),

 ("00","00","00","00","00","00","01","00","00","00","00","01","00","00","00","00"),

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00")

);

 signal bee45:normalMatrix:= (

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","00","10","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","00","10","10","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","10","10","10","00","00","00","00","00","00","00","00","00"),

 ("00","00","00","00","10","10","10","00","00","01","01","01","00","00","00","00"),

 ("00","01","01","00","00","10","10","01","01","01","01","01","00","00","00","00"),

 ("00","01","01","01","00","01","01","10","01","01","01","01","00","00","00","00"),

 ("00","01","00","01","01","01","01","01","01","01","01","00","00","00","00","00"),

 ("00","00","00","01","01","01","01","01","01","10","01","00","00","00","00","00"),

 ("00","00","00","01","11","01","01","01","01","01","10","10","10","10","10","00"),

 ("00","00","01","01","01","01","01","01","01","01","10","10","10","10","00","00"),

 ("00","01","00","01","01","01","11","01","01","00","00","10","10","00","00","00"),

 ("00","00","00","00","01","01","01","01","01","01","00","00","00","00","00","00"),

 ("00","00","00","00","00","01","00","00","00","01","01","00","00","00","00","00"),

 ("00","00","00","00","01","00","00","00","01","01","01","00","00","00","00","00"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

32

 ("00","00","00","00","00","00","00","00","00","00","00","00","00","00","00","00")

);

 signal small_plane:matrix:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","011","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","011","011","011","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","011","011","011","011","011","000","000","000","000"

,"000","000"),

 ("000","000","000","000","011","011","011","011","011","011","011","000","000","000"

,"000","000"),

 ("000","000","000","000","011","000","000","011","000","000","011","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","001","011","001","000","000","000","000","000"

,"000","000"),

 ("000","000","010","000","000","000","001","011","001","000","000","000","010","000"

,"000","000"),

 ("000","010","010","010","000","001","001","011","001","001","000","010","010","010"

,"000","000"),

 ("000","010","001","010","001","001","001","011","001","001","001","010","001","010"

,"000","000"),

 ("000","010","001","001","001","001","001","011","001","001","001","001","001","010"

,"000","000"),

 ("000","010","001","001","001","000","001","011","001","000","001","001","001","010"

,"000","000"),

 ("000","010","001","010","000","000","001","011","001","000","000","010","001","010"

,"000","000"),

 ("000","010","010","010","000","000","001","000","001","000","000","010","010","010"

,"000","000"),

 ("000","000","010","000","000","000","000","000","000","000","000","000","010","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"));

 signal bigbee30:matrix:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","100","100","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","100","100","000","000","000"

,"000","000"),

 ("000","000","000","000","001","001","000","000","000","100","100","000","000","000"

,"000","000"),

 ("000","000","000","001","001","000","000","000","100","100","000","000","000","000"

,"000","000"),

 ("000","000","001","001","000","000","000","000","100","100","000","001","001","000"

,"000","000"),

 ("000","001","001","000","000","000","000","100","100","000","000","000","001","001"

,"000","000"),

 ("000","001","100","100","100","100","100","100","100","100","000","000","000","001"

,"001","000"),

 ("000","001","100","100","100","100","100","100","100","100","100","100","100","100"

,"001","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

33

 ("000","001","001","100","100","100","100","100","100","100","100","100","100","001"

,"001","000"),

 ("000","001","000","011","011","100","100","100","100","100","100","100","000","001"

,"001","000"),

 ("000","000","000","011","011","011","011","011","011","011","011","000","000","001"

,"001","000"),

 ("000","000","000","000","011","010","011","011","011","011","000","000","000","000"

,"000","000"),

 ("000","000","000","000","011","011","011","010","011","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","011","011","011","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"));

 signal bigbee45:matrix:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"),

 ("000","000","000","000","001","001","001","001","001","000","000","000","000","100"

,"100","000"),

 ("000","001","001","001","001","001","001","001","001","000","000","000","100","100"

,"100","000"),

 ("000","001","001","100","100","100","000","000","000","000","000","100","100","100"

,"000","000"),

 ("000","001","001","001","000","100","100","100","000","000","100","100","100","000"

,"000","000"),

 ("000","000","000","011","100","100","100","100","100","100","100","100","000","000"

,"000","000"),

 ("000","000","000","011","100","100","100","100","100","100","100","000","000","000"

,"000","000"),

 ("000","000","000","011","011","100","100","100","100","100","100","000","000","001"

,"001","000"),

 ("000","000","000","011","011","011","100","100","100","100","100","100","000","001"

,"001","000"),

 ("000","000","000","011","010","011","011","100","100","100","100","100","000","001"

,"001","000"),

 ("000","000","000","011","011","011","011","011","100","100","100","100","100","001"

,"001","000"),

 ("000","000","000","000","011","011","010","011","011","100","100","000","100","001"

,"001","000"),

 ("000","000","000","000","000","011","011","011","011","011","011","001","100","001"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","001","001","001"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","001","001","001"

,"000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000"));

 signal red_flag:matrix24:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

34

 ("000","010","010","011","011","011","011","011","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","011","011","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","011","011","011","011","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","011","011","011","011","011","011"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","011","011","011","011","011","011"

,"011","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","011","011","011","011","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","011","011","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","011","011","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","011","011","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","011","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","010","010","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"));

 constant INFO_H: integer := 550;

 constant INFO_V: integer := 125;

 constant info_size: integer := 50;

 signal infoH, infoV, infoG : std_logic;

 signal infoColor :unsigned(2 downto 0);

 signal big_explode: matrix24:= (

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"),

 ("000","000","000","101","101","000","000","000","000","101","101","101","101","000"

,"000","000","000","000","000","000"),

 ("000","101","000","101","101","101","000","000","000","101","101","101","101","000"

,"000","101","101","101","000","000"),

 ("000","101","101","100","100","101","101","000","000","101","100","100","101","000"

,"101","100","100","100","100","000"),

 ("000","101","100","100","100","100","101","000","000","101","101","100","101","000"

,"101","101","100","101","101","000"),

 ("000","101","101","100","101","100","100","101","101","101","101","100","101","101"

,"100","101","101","000","000","000"),

 ("000","000","000","100","100","101","100","100","101","101","100","100","100","100"

,"100","101","101","000","000","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

35

 ("000","000","000","000","000","101","101","101","100","101","100","101","100","100"

,"101","000","000","000","000","000"),

 ("000","000","000","000","000","100","101","100","100","101","100","101","101","100"

,"101","101","101","000","000","000"),

 ("000","000","000","101","100","101","101","100","101","101","100","101","100","100"

,"101","101","101","000","000","000"),

 ("000","000","101","101","100","101","100","100","100","100","101","101","101","100"

,"100","101","101","000","000","000"),

 ("000","100","100","101","101","100","100","100","101","101","100","101","101","100"

,"100","101","000","000","000","000"),

 ("000","100","100","101","101","100","100","100","101","101","100","100","100","100"

,"101","101","101","101","000","000"),

 ("000","101","100","101","101","101","100","100","100","100","101","100","101","100"

,"101","100","100","100","000","000"),

 ("000","101","000","000","000","101","101","101","100","101","100","101","101","101"

,"101","101","100","100","000","000"),

 ("000","000","000","101","100","101","101","100","101","101","101","100","101","101"

,"101","101","100","101","000","000"),

 ("000","000","101","101","100","100","100","100","101","101","101","101","101","100"

,"100","101","000","000","000","000"),

 ("000","000","101","100","101","100","101","101","101","101","101","000","101","101"

,"101","101","101","101","101","101"),

 ("000","101","101","101","101","101","101","000","101","000","000","000","000","000"

,"101","101","100","100","101","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000"));

 type cursorType is array(0 to 15) of unsigned (0 to 15);

 signal cursor: cursorType:= (

 ("0000000000000000"),("0000000000000000"),("0000000000000000"),("001100000000

0000"),("0011110000000000"),

 ("0011111100000000"),("0011111111000000"),("0011111111110000"),("001111111111

1100"),("0011111111110000"),

 ("0011111111000000"),("0011111100000000"),("0011110000000000"),("001100000000

0000"),("0000000000000000"),

 ("0000000000000000"));

 type picMatrix is array(integer range 0 to 99, integer range 0 to 49) of unsigned(2 downto

0);

 signal galaxian1: picMatrix := (

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

36

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

37

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","100","100","100","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","100","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","100","100","100","100","10

0","100","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","100","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","100","100","100","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","100","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","100","100","100","100","000","000","000","000","000","000","000","000","00

0","000","000","000","100","100"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

38

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","100","000","000","000","000","000","000","000","000","000","000","100","100","10

0","100","100","100","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","100","000","000","000","000","000","000","000","000","000","000","100","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

100","100","100","000","000","000","000","000","000","000","000","000","000","100","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","100","

000","000","000","000","000","000","000","000","000","000","100","100","100","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","100","100","100","100","

000","000","000","000","000","000","000","000","000","000","100","100","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","

000","000","000","000","000","000","000","000","100","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","

000","000","000","000","000","000","000","000","100","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","100","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","100","100","100","100","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","100","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","100","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","100","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","100","100","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","100","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

39

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","100","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","100","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","100","100","100","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","100","100","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","100","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","100","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","100","100","100","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

40

 ("111","111","111","111","111","111","111","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","100","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","100","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","100","100","111","111","111","111","111","111","111","111","111","111","111","100","10

0","100","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","111","111","111","111","111","111","111","111","111","100","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","100","100","100","100","100","100","100","100","100","100","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

41

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","100","100","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","100","100","100","000","000","000","000","000","000","000","100","100","100","100","

100","100","100","100","100","100","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","000","000","000","100","111","111","111","

111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","100","100","100","100","100","100","100","100","111","111","111","

111","111","111","111","100","000","000","000","000","000","000","000","000","000","000","10

0","100","100","100","100","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","100","100","000","000","000","000","000","000","000","000","000","000","10

0","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","100","000","000","000","100","100","100","100","100","100","100","100","100","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","100","100","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

100","100","100","100","100","100","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","100","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","100","100","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

42

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"));

 signal galaxian2: picMatrix := (

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

43

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

44

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","100","100","100","100","10

0","100","100","100","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","100","100","100","100","100","100","100","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","100","100","100","100","

100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","100","10

0","100","100","100","100","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","100","100","100","100","100","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","100","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","100","100","100","100","100","100","111","11

1","111","111","111","111","111"),

 ("100","100","100","100","100","100","100","111","111","111","111","111","111","111"

,"111","100","100","100","100","100","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","111","111","111","111","111","111"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","100","100","100","100","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","111","111","100","100","100"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","100","100","100","100","100"),

 ("000","000","000","000","000","000","000","000","000","100","100","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","100","100","100","100","

100","100","111","111","111","111","111","111","111","111","111","111","111","111","111","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","100","100","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

45

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","100","100","000","000","000"

,"000","000","000","000","000","000","000","100","100","100","100","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","100","100","100","100","10

0","000","000","000","000","000"),

 ("100","100","100","100","100","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","100","100","100","100","100","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","100","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","100","000","000","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","100","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","100","000","000","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","100","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","100","000","000","000","000","000","000","000","000","100"

,"100","100","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","100","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","100","100","000","000","000","000","000","000","000","000","100"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","100","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","100","000","000","000","000","000","100","100","100","100","100","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","100","100","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","100","100","000","000","000","000","000","100","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","100","100","100","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","100","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","100","100","100","100","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","100","100","100","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","100","100","100","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

46

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","100","100","100"

,"100","100","100","100","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","100","000","000","000"

,"000","100","100","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","100","100","100","100","100","100","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","100","000","000","000","000","000","000","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","100","100","100","000","000","000","000","000","000","000","000","000","100"

,"100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","100","100","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","100","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","100","100","100","100","111","111","111"

,"111","111","100","100","100","100","100","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","100","111","111","111","111","111","111"

,"111","100","000","000","000","000","000","100","100","100","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","000","000","100","100","100","100","100","100","100"

,"100","100","000","000","000","000","000","000","000","000","100","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","100","100","100","111","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","000","000","000","100","100","100","100","100","100"

,"100","100","100","100","000","000","000","000","000","000","000","000","000","000","100","

111","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","000","000","100","100","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","100","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

47

100","111","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","100","111","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","111","111","111"

,"111","111","100","100","000","000","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","111","111","111"

,"111","100","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","111","111","100"

,"100","100","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","100","100","111","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","100","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","100","111","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","100","100","111","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","100","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","100","111","100","000","000","000","000"

,"000","000","000","000","000","100","100","100","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","100","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","100","111","100","000","000","000","000"

,"000","000","000","000","000","100","111","100","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","100","111","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","100","100","100","000","000","000","000"

,"000","000","000","000","000","100","111","100","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","100","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","100","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","100","111","111","111","100","000","000","000","000","000","000","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

48

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","100","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","100","111","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","100","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","100","111","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","100","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","100","111","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","100","111","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","100","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","100","100","100","100","100","100","100","000","000","000","000","000","000"

,"000","000","000","000","000","100","100","100","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","100","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","100","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","100","100","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","100","

100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","100","

111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","100","100","100","000","000","000","000","100","100","100","100","100","100","111","

111","111","111","100","100","100","100","100","100","100","100","100","100","100","100","10

0","100","100","100","100","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","100","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","100","100","100","100","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

49

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

50

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111")

);

 signal galaxian3: picMatrix := (

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

51

 ("111","111","111","111","111","111","111","111","111","100","100","100","100","100"

,"100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","

100","100","100","100","100","100","100","100","100","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","100","100","100","100","100","100","100","100","100","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","100","100","100","100","100","10

0","100","100","100","100","100"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","100","100","100","100","100","100","100","100","100","100","100","100","100","

100","100","100","100","100","100","100","100","100","100","100","100","100","100","100","10

0","100","100","100","100","100"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","100","100","100","100","100","100","100","100","100","100","100","100","100"

,"100","100","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","100","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

52

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

53

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","100","100","100","100","100","100","100","100","100","100","100","100","100"

,"100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","100","100","100","100","100","100","100","100","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","100","000","000","000","000","000","000","000","000","100","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","100","000","000","000","000","000","000","000","000","000","100","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

54

 ("100","100","100","100","100","100","100","100","100","000","000","000","000","000"

,"000","000","100","100","100","100","100","111","111","111","111","111","100","100","100","

100","100","100","000","000","000","000","000","000","000","000","000","100","100","100","10

0","111","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","100","000","000","000","000","000"

,"000","000","000","000","000","000","000","100","111","111","111","100","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","100","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","100","000","000","000","000","000"

,"000","000","000","000","000","000","000","100","100","100","100","100","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","100","111","111","111","111"),

 ("100","111","111","111","111","111","111","111","111","100","100","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","100","100","100","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","100","111","111","100"),

 ("100","111","111","111","111","111","111","111","111","100","100","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","100","111","100","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","100","100","100","000"),

 ("100","111","111","111","111","111","111","111","100","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","100","100","111","111","111","

100","100","100","100","100","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","111","111","111","100","100","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","100","100","111","111","111","

111","111","111","111","100","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","111","111","100","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","100","111","111","

111","111","111","111","111","100","100","100","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","111","111","100","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","100","111","111","

111","111","111","111","111","111","111","111","100","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","111","

111","111","111","111","111","111","111","111","111","100","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","100","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","100","100","

111","111","111","111","111","111","111","111","111","100","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","100","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","100","100","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","111","100","000","000","000","000","000","000","000","000","000"

,"100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","100","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","100","000","000","000","000","000","000","000","000","000","000"

,"100","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","100","000","000","000","00

0","000","000","000","000","000"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

55

 ("100","111","111","100","000","000","000","000","000","000","000","000","000","000"

,"100","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

100","100","111","111","111","111","111","111","111","100","100","100","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","100","000","000","000","000","000","000","000","000","000","000"

,"100","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","111","100","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","100","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","100","100","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","100","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","111","111","100","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","111","100","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","111","111","100","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","111","100","100","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","100","100","100","100","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","100","000","000","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","100","10

0","100","000","000","000","000"),

 ("100","100","000","000","000","000","000","000","000","000","000","000","000","000"

,"100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","000","000","100","11

1","100","000","000","000","000"),

 ("100","100","000","000","000","000","000","000","000","000","000","000","000","000"

,"100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","100","100","111","11

1","111","100","100","000","000"),

 ("100","100","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","100","111","111","11

1","111","111","100","000","000"),

 ("100","100","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","100","100","111","111","111","11

1","111","111","111","100","000"),

 ("100","100","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","100","100","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("100","111","100","100","100","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","100","100","100","000","000","000","

000","000","000","000","100","100","100","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","100","111","111","100","000","000","000","

000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

56

 ("111","111","111","111","111","111","100","100","100","100","100","100","100","100"

,"100","100","100","100","100","100","100","100","111","111","111","111","100","100","100","

100","100","100","100","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

57

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"));

 signal galaxian4: picMatrix := (

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

58

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","100","100","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","100","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","100","100","100","100","100","100","100","100","100","100","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","100","100","100","100","100","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","100","100","100","100","100","100","100","100","100","100","100","000","000"

,"000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","100","000","000"

,"000","000","000","000","000","000","100","100","100","100","100","100","100","100","100","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","100"

,"100","100","100","100","100","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","100","000","000","000","000","000","000","000","000","000","000","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","100","100","100","100","100","100","100","100","000","000","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

59

100","100","100","100","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","100","000","000","

000","000","000","000","000","100","100","100","100","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","100","000","

000","000","000","000","000","000","000","000","000","000","100","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","100","

100","100","100","000","000","000","000","000","000","000","100","100","100","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","100","100","100","100","100","000","000","000","000","000","100","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","100","000","000","000","000","000","100","100","10

0","100","100","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","100","100","100","100","000","000","000","00

0","000","000","100","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","100","100","000","000","00

0","000","000","000","100","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","100","100","10

0","000","000","000","000","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","10

0","100","000","000","000","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","100","000","000","000","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","100","100","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

60

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","100","100","100","100","100","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

100","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","100","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","100","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","100","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","100","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","100","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","100","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","100","000","000","

000","000","000","000","000","100","111","111","111","111","111","111","111","111","111","11

1","111","111","100","100","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","100","000","

000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","11

1","111","100","000","000","000"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","100","

000","000","000","100","111","111","111","111","111","111","111","111","111","111","111","11

1","111","100","000","000","000"),

 ("111","111","111","111","111","111","100","100","100","100","100","100","100","100"

,"100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

100","100","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","100","000","100"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

61

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","100","100"),

 ("111","111","111","100","100","100","000","000","000","000","000","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","111","100","100","100","100","

100","100","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","100","000","000","000","000","000","000","000","000","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","100","000","000","000","000","

000","000","000","100","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","100","100","000","000","000","000","000","000","000","000","000","000","000"

,"000","100","111","111","111","111","111","111","111","111","100","000","000","000","000","

000","000","000","100","111","100","100","100","100","100","100","100","100","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","111","111","111","111","111","111","111","111","100","000","000","000","000","000","

000","000","000","100","100","000","000","000","000","000","000","000","000","100","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","111","111","111","111","111","100","100","000","000","000","000","000","

000","000","000","100","100","000","000","000","000","000","000","000","000","100","100","10

0","100","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","111","111","111","111","100","000","000","000","000","000","000","000","

000","100","100","100","111","100","100","100","000","000","000","000","000","000","000","00

0","000","100","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","111","111","111","100","100","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","100","000","000","000","000","000","000","000","00

0","000","100","100","100","111"),

 ("000","000","000","000","000","000","000","000","000","000","100","100","100","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","100","000","000","000","000","000","000","000","00

0","000","000","000","000","100"),

 ("000","000","000","000","000","000","000","000","000","000","100","111","111","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","100","000","000","000","000","000","000","000","00

0","000","000","000","000","100"),

 ("000","000","000","000","000","000","000","000","100","100","111","111","111","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","100","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","100","111","111","111","111","111"

,"111","111","111","111","111","100","000","000","000","000","000","000","000","000","000","

000","100","111","100","100","100","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","100","100","100","111","111","111","111","111","111"

,"111","111","111","111","100","000","000","000","000","000","000","000","000","000","000","

100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","100","111","111","111","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

100","100","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","100","100","111","111","111","111","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

62

100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","100","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

100","000","000","000","000","000","000","000","000","000","000","000","100","100","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","100","111","111","111","111","111","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

100","000","000","000","000","000","000","000","000","000","000","000","100","100","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","100","111","111","111","111","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

100","000","000","000","000","000","000","000","000","000","000","000","100","100","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","111","111","111","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","000","000","000","100","111","100","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","100","100","100","100","111","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","100","100","

000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","100","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","100","100","

000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","100","111","111","111"

,"111","111","100","000","000","000","000","000","000","000","000","000","000","100","100","

000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","100","100","100","111"

,"111","100","100","000","000","000","000","000","000","000","000","000","000","100","100","

000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","100","100","

000","000","000","000","000","000","000","000","000","000","000","100","111","111","100","10

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","000","000","000","000","100","100","

000","000","000","000","000","000","000","000","000","000","000","000","100","100","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","000","000","100","100","111","111","

100","000","000","000","000","000","000","000","000","000","000","000","100","100","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","000","000","100","111","111","111","

100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","000","000","100","111","111","111","

100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","000","000","100","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

63

100","000","000","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","100","100","111","111","111","111","

111","100","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","100","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","000","000","000","000","000","000","000","000","100","111","111","111","111","111","

111","111","100","000","000","000","000","000","000","000","000","000","000","000","000","00

0","000","000","000","000","000"),

 ("111","111","100","100","100","100","100","100","100","100","100","100","100","000"

,"000","000","000","100","100","100","100","100","100","111","111","111","111","111","111","

111","111","111","100","100","000","000","000","000","000","000","000","000","000","000","00

0","000","100","100","100","100"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","100","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","100","000","000","000","000","000","000","000","000","000","000","00

0","000","100","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","100","100","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","100","100","100","100","100","100","100","100","100","100","10

0","100","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

64

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"));

 signal galaxian5: picMatrix := (

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

65

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

66

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","100","100","100","100","100","100","100","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","100","000","000","000","000","000","000","000","100","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","100","100","100","100","000","000","000","000","000","000","000","100","100","100","

100","100","100","100","100","100","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","100","100","100","100","100","100","100","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","100","100","100","100","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","100","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","100","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","100","100","100","100","100","100","100","100","100","100","100","100","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","111","111","111","111","111","111","100","100","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"100","100","111","111","111","111","111","111","111","111","111","100","000","000","000","

000","000","000","000","100","100","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

67

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","100"

,"111","111","111","111","111","111","111","111","111","111","100","100","000","000","000","

000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","100","000","000","000","000","000","000","000","100","100","100","100","111"

,"111","111","111","111","111","111","111","111","111","100","000","000","000","000","000","

000","000","100","100","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","100","000","000","000","000","000","000","100","100","111","111","111"

,"111","111","111","111","111","111","111","111","111","100","000","000","000","000","000","

000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","100","100","100","000","000","000","000","000","100","111","111"

,"111","111","111","111","111","111","111","111","100","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","100","000","000","000","000","000","100","100","100"

,"111","111","111","111","111","111","111","100","100","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","100","100","100","000","000","000","000","000"

,"100","111","111","111","111","111","100","000","000","000","000","000","000","000","100","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","100","000","000","000","000","000"

,"100","100","111","111","111","100","100","000","000","000","000","000","000","000","100","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","100","100","100","000","000"

,"000","000","100","111","100","000","000","000","000","000","000","000","100","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","100","000"

,"000","000","100","100","100","000","000","000","000","000","000","000","100","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","100"

,"100","100","000","000","000","000","000","000","000","100","100","100","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","100","000","000","000","000","000","000","000","100","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"100","000","000","000","000","000","100","100","100","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","100","100","100","100","111","111","111","111","111","111","111","111","100"

,"000","000","000","000","000","100","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","100","111","111","111","111","111","111","100","000"

,"000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

68

 ("000","000","000","000","000","000","100","111","111","111","111","111","100","000"

,"000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","100","100","100","100","100","100","000","000"

,"000","000","000","100","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"100","100","100","100","100","100","100","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","100","100","100","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","100","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","100","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","100","100","100","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","100","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","100","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","100","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","100","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","000","000","000","000","000","000","000","100","100","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"100","100","100","100","000","000","000","000","000","000","000","000","000","000","100","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","111","111","111","111","100","000","000","000","000","000","000","000","000"

,"100","111","111","100","000","000","000","000","000","000","000","000","000","000","100","

100","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","100","111","111","111","100","000","000","000","000","000","000","000","000"

,"100","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","100","111","111","111","100","000","000","000","000","000","000","000","000"

,"100","111","111","100","000","000","000","000","000","000","000","000","000","000","000","

000","100","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

69

 ("000","000","100","111","111","100","100","000","000","000","000","000","000","000"

,"100","111","111","111","100","000","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","100","111","111","100","000","000","000","000","000","000","000"

,"000","100","111","111","100","100","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","100","111","100","000","000","000","000","000","000","000"

,"000","000","100","111","111","100","000","000","000","000","000","000","000","000","000","

000","000","100","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","100","100","100","000","000","000","000","000","000","000"

,"000","000","100","111","111","100","000","000","000","000","000","000","000","000","000","

000","000","100","100","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","100","100","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","100","000","000","000","000","000","000","000"

,"000","000","100","111","111","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","100","111","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","100","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","000","100","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","100","100","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","000","100","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","000","100","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","000","100","111","100","000","000","000","000","000","000","000","000","

000","000","000","000","000","000","100","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","000","100","111","111","100","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","100","100","000","000","000","000","000"

,"000","000","000","000","100","111","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

70

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","111","100","000","000","000","000","000","000","

000","000","000","000","000","000","000","100","100","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","111","111","100","000","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","111","111","111","100","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","111","111","111","100","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("000","000","000","000","000","000","000","000","000","000","000","000","000","000"

,"000","000","000","000","000","100","111","111","111","111","100","000","000","000","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("100","100","100","000","000","000","100","100","100","100","100","000","000","000"

,"000","000","000","000","000","100","111","111","111","111","111","100","100","100","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","100","000","000","000","100","111","111","111","100","000","000","000"

,"000","000","000","000","000","100","111","111","111","111","111","111","111","100","000","

000","000","000","000","000","000","000","000","000","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","100","100","100","111","111","111","111","111","100","100","100"

,"100","100","100","100","100","111","111","111","111","111","111","111","111","111","100","

100","100","100","100","100","100","100","100","100","100","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

71

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"),

 ("111","111","111","111","111","111","111","111","111","111","111","111","111","111"

,"111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","

111","111","111","111","111","111","111","111","111","111","111","111","111","111","111","11

1","111","111","111","111","111"));

begin

Delay : process (clk)

begin

 if rising_edge(clk) then

 clk25 <= not clk25;

 end if;

end process Delay;

DataProcess : process (clk)

variable flag :unsigned (11 downto 0);

variable beeNum: integer;

variable bulletNum : integer;

variable chipAndWrite : std_logic;

variable convertFlag: integer;

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 readdata <= (others => '0');

 else

 chipAndWrite := chipselect and write;

 if chipselect = '1' and read = '1' then

 readdata <= dataSendBack;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

72

 elsif chipAndWrite = '1' and address = "01101" then

 startCount <= '1';

 else

 startCount <= '0';

 end if;

 flag := writedata(31 downto 20);

 if chipAndWrite = '1' and address = "01100" then -- flying bee

 beeNum := to_integer(flag(2 downto 0));

 TCoorFlyBeeH(beeNum) <= writedata(19 downto 10);

 TCoorFlyBeeV(beeNum) <= writedata(9 downto 0);

 FlyBeeAngle(beeNum) <= flag(10 downto 7);

 FlyBeeType(beeNum) <= flag(4 downto 3);

 elsif chipAndWrite = '1' and address = "01010" then --

bee bullet

 bulletNum := to_integer(flag(5 downto 0));

 TCoorBeeBulletH(bulletNum) <= writedata(19 downto 10);

 TCoorBeeBulletV(bulletNum) <= writedata(9 downto 0);

 elsif chipAndWrite = '1' and address = "01000" then --

bee matrix

 CoorBeeMaxH <= writedata(19 downto 10);

 CoorBeeMaxV <= writedata(9 downto 0);

 elsif chipAndWrite = '1' and address = "00111" then --

plane

 TCoorPlaneH <= writedata(19 downto 10);

 TCoorPlaneV <= writedata(9 downto 0);

 elsif chipAndWrite = '1' and address = "00110" then --

plane bullet

 Rb1H <= writedata(19 downto 10);

 Rb1V <= writedata(9 downto 0);

 elsif chipAndWrite = '1' and address = "00101" then --

alive matrix

 if (flag(0) = '1') then -- alive 1

 tmpM1 <= writedata(19 downto 0);

 elsif (flag(1) = '1') then -- alive 2

 tmpM2 <= writedata(19 downto 0);

 elsif (flag(2) = '1') then -- alive 3

 tmpM3 <= writedata(19 downto 0);

 elsif (flag(3) = '1') then -- alive 4

 tmpM4 <= writedata(19 downto 0);

 elsif (flag(4) = '1') then -- alive 5

 tmpM5 <= writedata(19 downto 0);

 end if;

 elsif chipAndWrite = '1' and address = "00100" then --

information

 convertFlag := to_integer(flag);

 if convertFlag = 1 then -- main pic

 mainPic <= writedata(0);

 mainPicV <= writedata(19 downto 10);

 elsif convertFlag = 2 then-- other information

 planeLife <= writedata(2 downto 0);

 level <= writedata(5 downto 3);

 elsif convertFlag = 3 then

 TmpClearScr <= '1';

 elsif convertFlag = 4 then-- ready

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

73

 readySignal <= writedata(0);

 elsif convertFlag = 5 then-- pause

 pauseSignal <= writedata(0);

 elsif convertFlag = 6 then-- g

 tmpgH <= writedata(19 downto 10);

 tmpgV <= writedata(9 downto 0);

 elsif convertFlag = 7 then-- a

 tmpaH <= writedata(19 downto 10);

 tmpaV <= writedata(9 downto 0);

 elsif convertFlag = 8 then-- m

 tmpmH <= writedata(19 downto 10);

 tmpmV <= writedata(9 downto 0);

 elsif convertFlag = 9 then-- e

 tmpe1H <= writedata(19 downto 10);

 tmpe1V <= writedata(9 downto 0);

 elsif convertFlag = 10 then -- o

 tmpoH <= writedata(19 downto 10);

 tmpoV <= writedata(9 downto 0);

 elsif convertFlag = 11 then -- v

 tmpvH <= writedata(19 downto 10);

 tmpvV <= writedata(9 downto 0);

 elsif convertFlag = 12 then -- e

 tmpe2H <= writedata(19 downto 10);

 tmpe2V <= writedata(9 downto 0);

 elsif convertFlag = 13 then -- r

 tmprH <= writedata(19 downto 10);

 tmprV <= writedata(9 downto 0);

 end if;

 elsif chipAndWrite = '1' and address = "00011" then --

plane explode

 if (flag(0) = '1') then

 planeSmall <= '1';

 else

 planeSmall <= '0';

 end if;

 TplaneExplodeH <= writedata(19 downto 10);

 TplaneExplodeV <= writedata(9 downto 0);

 elsif chipAndWrite = '1' and address = "00010" then --

bee explode

 if (flag(0) = '1') then -- small explode

 Small <= '1';

 else

 Small <= '0';

 end if;

 TCoorExplodeH <= writedata(19 downto 10);

 TCoorExplodeV <= writedata(9 downto 0);

 elsif chipAndWrite = '1' and address = "00001" then --

high score

 hiScoreData(0) <= writedata(3 downto 0);

 hiScoreData(1) <= writedata(7 downto 4);

 hiScoreData(2) <= writedata(11 downto 8);

 hiScoreData(3) <= writedata(15 downto 12);

 hiScoreData(4) <= writedata(19 downto 16);

 elsif chipAndWrite = '1' and address = "00000" then --

score

 scoreData(0) <= writedata(3 downto 0);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

74

 scoreData(1) <= writedata(7 downto 4);

 scoreData(2) <= writedata(11 downto 8);

 scoreData(3) <= writedata(15 downto 12);

 scoreData(4) <= writedata(19 downto 16);

 end if;

 end if;

 end if;

end process DataProcess;

SyncProcess: process (clk25)

begin

 if rising_edge(clk25) then

 if(vga_vsync = '1' and vga_hsync = '1') then

 b1V <= Rb1V;

 b1H <= Rb1H;

 AliveMax(0) <= tmpM1;

 AliveMax(2) <= tmpM2;

 AliveMax(4) <= tmpM3;

 AliveMax(6) <= tmpM4;

 AliveMax(8) <= tmpM5;

 CoorExplodeH <= TCoorExplodeH;

 CoorExplodeV <= TCoorExplodeV;

 planeExplodeH <= TplaneExplodeH;

 planeExplodeV <= TplaneExplodeV;

 CoorPlaneH <= TCoorPlaneH;

 CoorPlaneV <= TCoorPlaneV;

 clearScr <= TmpClearScr;

 for i in 0 to 6 loop

 CoorFlyBeeH(i) <= TCoorFlyBeeH(i);

 CoorFlyBeeV(i) <= TCoorFlyBeeV(i);

 end loop;

 for j in 0 to 29 loop

 CoorBeeBulletV(j) <= TCoorBeeBulletV(j);

 CoorBeeBulletH(j) <= TCoorBeeBulletH(j);

 end loop;

 gH <= tmpgH; aH <= tmpaH; mH <= tmpmH; e1H <= tmpe1H;

 oH <= tmpoH; vH <= tmpvH; e2H <= tmpe2H; rH <= tmprH;

 gV <= tmpgV; aV <= tmpaV; mV <= tmpmV; e1V <= tmpe1V;

 oV <= tmpoV; vV <= tmpvV; e2V <= tmpe2V; rV <= tmprV;

 end if;

 end if;

end process SyncProcess;

 -- Horizontal and vertical counters

HCounter : process (clk25)

begin

 if rising_edge(clk25) then

 if reset_n = '0' then

 Hcount <= (others => '0');

 elsif EndOfLine = '1' then

 Hcount <= (others => '0');

 else

 Hcount <= Hcount + 1;

 end if;

 end if;

end process HCounter;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

75

EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

VCounter: process (clk25)

begin

 if rising_edge(clk25) then

 if reset_n = '0' then

 Vcount <= (others => '0');

 elsif EndOfLine = '1' then

 if EndOfField = '1' then

 Vcount <= (others => '0');

 else

 Vcount <= Vcount + 1;

 end if;

 end if;

 end if;

end process VCounter;

EndOfField <= '1' when Vcount = VTOTAL - 1 else '0';

 -- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

HSyncGen : process (clk25)

begin

 if rising_edge(clk25) then

 if reset_n = '0' or EndOfLine = '1' then

 vga_hsync <= '1';

 elsif Hcount = HSYNC - 1 then

 vga_hsync <= '0';

 end if;

 end if;

end process HSyncGen;

HBlankGen : process (clk25)

begin

 if rising_edge(clk25) then

 if reset_n = '0' then

 vga_hblank <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH then

 vga_hblank <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then

 vga_hblank <= '1';

 end if;

 end if;

end process HBlankGen;

VSyncGen : process (clk25)

begin

 if rising_edge(clk25) then

 if reset_n = '0' then

 vga_vsync <= '1';

 elsif EndOfLine ='1' then

 if EndOfField = '1' then

 vga_vsync <= '1';

 elsif Vcount = VSYNC - 1 then

 vga_vsync <= '0';

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

76

 end if;

 end if;

end process VSyncGen;

VBlankGen : process (clk25)

begin

 if rising_edge(clk25) then

 if reset_n = '0' then

 vga_vblank <= '1';

 elsif EndOfLine = '1' then

 if Vcount = VSYNC + VBACK_PORCH - 1 then

 vga_vblank <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then

 vga_vblank <= '1';

 end if;

 end if;

 end if;

end process VBlankGen;

-------------------------plane Bullet--------------------------

Bullet1HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 b1Hshow <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + b1H then

 b1Hshow <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + BULLET_LONG + b1H then

 b1Hshow <= '0';

 end if;

 end if;

end process Bullet1HGen;

Bullet1VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 b1Vshow <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + b1V then

 b1Vshow <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + b1V + BULLET_HEIGHT

then

 b1Vshow <= '0';

 end if;

 end if;

end process Bullet1VGen;

b1 <= b1Hshow and b1Vshow;

---------------------------plane--------------------------------

PlaneHGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 planeH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorPlaneH then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

77

 planeH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorPlaneH + PLANE_SIZE then

 planeH <= '0';

 end if;

 end if;

end process PlaneHGen;

PlaneVGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 planeV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + CoorPlaneV then

 planeV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + CoorPlaneV + PLANE_SIZE

then

 planeV <= '0';

 end if;

 end if;

end process PlaneVGen;

planeG <= planeV and planeH;

--------------------------bee matrix-----------------------

BeeMaxHGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 beeMaxH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorBeeMaxH then

 beeMaxH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorBeeMaxH +

BEEMAX_LONG then

 beeMaxH <= '0';

 end if;

 end if;

end process BeeMaxHGen;

BeeMaxVGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 beeMaxV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorBeeMaxV - 1 then

 beeMaxV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorBeeMaxV - 1 +

BEEMAX_HEIGHT then

 beeMaxV <= '0';

 end if;

 end if;

end process BeeMaxVGen;

beeMaxG <= beeMaxV and beeMaxH;

ExplodeHGen: process (clk)

begin

 if rising_edge(clk) then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

78

 if reset_n = '0' then

 ExplodeH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorExplodeH then

 ExplodeH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorExplodeH + BEE_SIZE then

 ExplodeH <= '0';

 end if;

 end if;

end process ExplodeHGen;

ExplodeVGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 ExplodeV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorExplodeV - 1 then

 ExplodeV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorExplodeV - 1 + BEE_SIZE

then

 ExplodeV <= '0';

 end if;

 end if;

end process ExplodeVGen;

ExplodeG <= ExplodeV and ExplodeH;

BigExplodeHGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 BigExplodeH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + planeExplodeH then

 BigExplodeH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + planeExplodeH + PLANE_SIZE

then

 BigExplodeH <= '0';

 end if;

 end if;

end process BigExplodeHGen;

BigExplodeVGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 BigExplodeV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + planeExplodeV - 1 then

 BigExplodeV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH + planeExplodeV - 1 +

PLANE_SIZE then

 BigExplodeV <= '0';

 end if;

 end if;

end process bigExplodeVGen;

BigExplodeG <= BigExplodeV and BigExplodeH;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

79

TextHGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 TextH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorTextH then

 TextH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorTextH + textMatrixLong

then

 TextH <= '0';

 end if;

 end if;

end process TextHGen;

TextVGen: process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 TextV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorTextV - 1 then

 TextV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorTextV - 1 +

textMatrixHeight then

 TextV <= '0';

 end if;

 end if;

end process TextVGen;

TextG <= TextV and TextH;

BeeGen: process (clk)

variable resultTmpH :unsigned (9 downto 0);

variable resultTmpV :unsigned (9 downto 0);

variable resultH :integer;

variable resultV :integer;

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 big_beeG <= '0';

 bee_PurpleG <= '0';

 bee_GreenG <= '0';

 bee_RedG <= '0';

 elsif BeeMaxG = '1' then

 resultTmpH := to_integer(Hcount) - HSYNC - HBACK_PORCH -

CoorBeeMaxH;

 resultH := to_integer(resultTmpH(9 downto 4));

 resultTmpV := to_integer(Vcount) - VSYNC - VBACK_PORCH -

CoorBeeMaxV + 1;

 resultV := to_integer(resultTmpV(9 downto 4));

 if AliveMax (resultV)(resultH) = '1' then

 if BeeTypeMax(resultV) = "11" then

 big_beeG <= '1';

 elsif BeeTypeMax(resultV) = "10" then

 bee_RedG <= '1';

 elsif BeeTypeMax(resultV) = "01" then

 bee_PurpleG <= '1';

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

80

 elsif BeeTypeMax(resultV) = "00" then

 bee_GreenG <= '1';

 end if;

 else

 big_beeG <= '0';

 bee_RedG <= '0';

 bee_PurpleG <= '0';

 bee_GreenG <= '0';

 end if;

 end if;

 end if;

end process BeeGen;

BoxProcess: process(clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 boxG <= '0';

 elsif Hcount >= HSYNC + HBACK_PORCH + HACTIVE - BOX_LONG and

Vcount >= VSYNC + VBACK_PORCH - 1 then

 boxG <= '1';

 elsif Hcount <= HSYNC + HBACK_PORCH + HACTIVE

 or Vcount <= VSYNC + VBACK_PORCH - 1 + BOX_HEIGHT then

 boxG <= '0';

 end if;

 end if;

end process BoxProcess;

----------------------------flying bees------------------------------

FlyBeeHGen: process (clk)

begin

 if rising_edge(clk) then

 for i in 0 to 6 loop

 if reset_n = '0' then

 FlybeeH(i) <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorFlyBeeH(i) then

 FlybeeH(i) <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorFlyBeeH(i) +

BEE_SIZE then

 FlybeeH(i) <= '0';

 end if;

 end loop;

 end if;

end process FlyBeeHGen;

FlyBeeVGen: process (clk)

begin

 if rising_edge(clk) then

 for i in 0 to 6 loop

 if reset_n = '0' then

 FlybeeV(i) <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorFlyBeeV(i) - 1 then

 FlybeeV(i) <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH + CoorFlyBeeV(i) - 1 +

BEE_SIZE then

 FlybeeV(i) <= '0';

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

81

 end if;

 end loop;

 end if;

end process FlyBeeVGen;

FlybeeGBack(0) <= FlybeeV(0) and FlybeeH(0);

FlybeeGBack(1) <= FlybeeV(1) and FlybeeH(1);

FlybeeGBack(2) <= FlybeeV(2) and FlybeeH(2);

FlybeeGBack(3) <= FlybeeV(3) and FlybeeH(3);

FlybeeGBack(4) <= FlybeeV(4) and FlybeeH(4);

FlybeeGBack(5) <= FlybeeV(5) and FlybeeH(5);

FlybeeGBack(6) <= FlybeeV(6) and FlybeeH(6);

FlybeeGGen : process (clk)

variable colorSignal : unsigned (2 downto 0);

variable tmpSignal : unsigned (1 downto 0);

variable flyV : integer;

variable flyH : integer;

begin

 if rising_edge(clk) then

 for i in 0 to 6 loop

 if FlybeeGBack(i) = '1' then

 flyV := to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorFlyBeeV(i));

 flyH := to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorFlyBeeH(i));

 if FlyBeeType(i) = "11" then

 if FlyBeeAngle(i) = "0000" then

 colorSignal := big_bee(flyV, flyH);

 elsif FlyBeeAngle(i) = "0100" then

 colorSignal := bigbee30(16 - flyV, flyH);

 elsif FlyBeeAngle(i) = "1000" then

 colorSignal := bigbee45(16 - flyV, flyH);

 elsif FlyBeeAngle(i) = "1100" then

 colorSignal := bigbee30(16 - flyH - 1, flyV);

 elsif FlyBeeAngle(i) = "0001" then

 colorSignal := big_bee(flyH, flyV);

 elsif FlyBeeAngle(i) = "1110" then

 colorSignal := bigbee30(16 - flyH - 1, 16 -

flyV);

 elsif FlyBeeAngle(i) = "1010" then

 colorSignal := bigbee45(flyV, flyH);

 elsif FlyBeeAngle(i) = "0110" then

 colorSignal := bigbee30(flyV, flyH);

 elsif FlyBeeAngle(i) = "0010" then

 colorSignal := big_bee(16 - flyV, flyH);

 elsif FlyBeeAngle(i) = "0111" then

 colorSignal := bigbee30(flyV, 16 - flyH - 1);

 elsif FlyBeeAngle(i) = "1011" then

 colorSignal := bigbee45(flyV, 16 - flyH - 1);

 elsif FlyBeeAngle(i) = "1111" then

 colorSignal := bigbee30(flyH, 16 - flyV);

 elsif FlyBeeAngle(i) = "0011" then

 colorSignal := big_bee(16 - flyH - 1, flyV);

 elsif FlyBeeAngle(i) = "1101" then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

82

 colorSignal := bigbee30(flyH, flyV);

 elsif FlyBeeAngle(i) = "1001" then

 colorSignal := bigbee45(flyH, flyV);

 elsif FlyBeeAngle(i) = "0101" then

 colorSignal := bigbee30(16 - flyV, 16 - flyH -

1);

 end if;

 if colorSignal = "000" then

 FlybeeG(i) <= '0';

 else

 FlybeeG(i) <= '1';

 end if;

 else

 if FlyBeeAngle(i) = "0000" then

 tmpSignal := bee(flyV, flyH);

 elsif FlyBeeAngle(i) = "0100" then

 tmpSignal := bee30(16 - flyV, flyH);

 elsif FlyBeeAngle(i) = "1000" then

 tmpSignal := bee45(16 - flyV, flyH);

 elsif FlyBeeAngle(i) = "1100" then

 tmpSignal := bee30(16 - flyH, flyV);

 elsif FlyBeeAngle(i) = "0001" then

 tmpSignal := bee(flyH, flyV);

 elsif FlyBeeAngle(i) = "1110" then

 tmpSignal := bee30(16 - flyH, 16 - flyV);

 elsif FlyBeeAngle(i) = "1010" then

 tmpSignal := bee45(flyV, flyH);

 elsif FlyBeeAngle(i) = "0110" then

 tmpSignal := bee30(flyV, flyH);

 elsif FlyBeeAngle(i) = "0010" then

 tmpSignal := bee(16 - flyV, flyH);

 elsif FlyBeeAngle(i) = "0111" then

 tmpSignal := bee30(flyV, 16 - flyH - 1);

 elsif FlyBeeAngle(i) = "1011" then

 tmpSignal := bee45(flyV, 16 - flyH - 1);

 elsif FlyBeeAngle(i) = "1111" then

 tmpSignal := bee30(flyH, 16 - flyV);

 elsif FlyBeeAngle(i) = "0011" then

 tmpSignal := bee(16 - flyH - 1, flyV);

 elsif FlyBeeAngle(i) = "1101" then

 tmpSignal := bee30(flyH, flyV);

 elsif FlyBeeAngle(i) = "1001" then

 tmpSignal := bee45(flyH, flyV);

 elsif FlyBeeAngle(i) = "0101" then

 tmpSignal := bee30(16 - flyV, 16 - flyH - 1);

 end if;

 if tmpSignal = "10" then

 colorSignal := "111";

 elsif tmpSignal = "11" then

 colorSignal := "100";

 elsif FlyBeeType(i) = "10" and tmpSignal = "01" then

 colorSignal := "011";

 elsif FlyBeeType(i) = "00" and tmpSignal = "01" then

 colorSignal := "110";

 elsif FlyBeeType(i) = "01" and tmpSignal = "01" then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

83

 colorSignal := "001";

 end if;

 if tmpSignal = "00" then

 FlybeeG(i) <= '0';

 else

 FlybeeG(i) <= '1';

 end if;

 end if;

 TransColorSignal <= colorSignal;

 end if;

 end loop;

 end if;

end process FlybeeGGen;

----------------------------bee bullet---------------------------------

BeeBulletHGen : process (clk)

begin

 if rising_edge(clk) then

 for i in 0 to 29 loop

 if reset_n = '0' then

 beeBulletH(i) <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + coorBeeBulletH(i) then

 beeBulletH(i) <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + BULLET_LONG +

coorBeeBulletH(i) then

 beeBulletH(i) <= '0';

 end if;

 end loop;

 end if;

end process BeeBulletHGen;

BeeBulletVGen : process (clk)

begin

 if rising_edge(clk) then

 for i in 0 to 29 loop

 if reset_n = '0' then

 beeBulletV(i) <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + coorBeeBulletV(i)

then

 beeBulletV(i) <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + BULLET_HEIGHT +

coorBeeBulletV(i) then

 beeBulletV(i) <= '0';

 end if;

 end loop;

 end if;

end process BeeBulletVGen;

BeeBulletGGen: process (clk)

variable tmp: std_logic;

begin

 if rising_edge(clk) then

 tmp := '0';

 for i in 0 to 29 loop

 beeBulletG(i) <= beeBulletH(i) and beeBulletV(i);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

84

 if (beeBulletG(i) = '1' and tmp = '0') then

 tmp := '1';

 end if;

 end loop;

 getBullet <= tmp;

 end if;

end process BeeBulletGGen;

-----------------------------Score process-----------------------------

ScoreProcess : process (clk)

variable H : unsigned (9 downto 0);

variable V : unsigned (9 downto 0);

variable num : integer;

variable color : std_logic;

begin

 if rising_edge(clk) then

 H := Hcount - HSYNC - HBACK_PORCH - 1 - CoorTextH - 10;

 V := Vcount - VSYNC - VBACK_PORCH + 1 - 65;

 if to_integer(H) >= 0 and to_integer(H) <= 39 and

 to_integer(V) >= 0 and to_integer(V) <= 9 then

 num := to_integer(hiScoreData(to_integer(H(9 downto 3))));

 if num = 1 then

 color := one(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 2 then

 color := two(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 3 then

 color := three(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 4 then

 color := four(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 5 then

 color := five(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 6 then

 color := six(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 7 then

 color := seven(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 8 then

 color := eight(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 9 then

 color := nine(to_integer(V))(to_integer(H(2 downto 0)));

 elsif num = 0 then

 color := zero(to_integer(V))(to_integer(H(2 downto 0)));

 end if;

 if color = '0' then

 hiScoreColorSignal <= "000";

 elsif color = '1' then

 hiScoreColorSignal <= "111";

 end if;

 end if;

 end if;

end process ScoreProcess;

ScoreProcess2 : process (clk)

variable H2 : unsigned (9 downto 0);

variable V2 : unsigned (9 downto 0);

variable num : integer;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

85

variable color : std_logic;

begin

 if rising_edge(clk) then

 H2 := Hcount - HSYNC - HBACK_PORCH - 1 - CoorTextH - 10;

 V2 := Vcount - VSYNC - VBACK_PORCH + 1 - 95;

 if to_integer(H2) >= 0 and to_integer(H2) <= 39 and

 to_integer(V2) >= 0 and to_integer(V2) <= 9 then

 num := to_integer(scoreData(to_integer(H2(9 downto 3))));

 if num = 1 then

 color := one(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 2 then

 color := two(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 3 then

 color := three(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 4 then

 color := four(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 5 then

 color := five(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 6 then

 color := six(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 7 then

 color := seven(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 8 then

 color := eight(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 9 then

 color := nine(to_integer(V2))(to_integer(H2(2 downto 0)));

 elsif num = 0 then

 color := zero(to_integer(V2))(to_integer(H2(2 downto 0)));

 end if;

 if color = '0' then

 scoreColorSignal <= "000";

 elsif color = '1' then

 scoreColorSignal <= "010";

 end if;

 end if;

 end if;

end process ScoreProcess2;

------------------------------stars background---------------------------

starGen: process (clk)

begin

 if rising_edge(clk) then

 starH <= '0';

 starH1 <= '0';

 starH2 <= '0';

 starH3 <= '0';

 for i in 0 to 6 loop

 if

 (to_integer(Hcount(9 downto 0))-HSYNC-HBACK_PORCH-

to_integer(coorstarH)+88*i =0) and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-

roll(i) >=0)and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-roll(i)

<=1)then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

86

 starH <= '1';

 end if;

 end loop;

 for j in 0 to 6 loop

 if

 (to_integer(Hcount(9 downto 0))-HSYNC-HBACK_PORCH-

to_integer(coorstarH)+88*j+22 =0) and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-

roll(j+7) >=0)and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-roll(j+7)

<=1)then

 starH1 <= '1';

 end if;

 end loop;

 for m in 0 to 6 loop

 if

 (to_integer(Hcount(9 downto 0))-HSYNC-HBACK_PORCH-

to_integer(coorstarH)+88*m+44 =0) and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-

roll(m+14) >=0)and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-roll(m+14)

<=1)then

 starH2 <= '1';

 end if;

 end loop;

 for n in 0 to 6 loop

 if

 (to_integer(Hcount(9 downto 0))-HSYNC-HBACK_PORCH-

to_integer(coorstarH)+88*n+66 =0) and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-

roll(n+21) >=0)and

 (to_integer(Vcount(9 downto 0))-VSYNC-VBACK_PORCH-roll(n+21)

<=1)

 then

 starH3 <= '1';

 end if;

 end loop;

 end if;

end process starGen;

--

starG <= starH and flipstate;

starG1 <= starH1 and flipstate1;

starG2 <= starH2 and flipstate2;

starG3 <= starH3 and flipstate3;

flipGen: process (clk)

begin

 if rising_edge(clk) then

 if EndOfField = '1' then

 for l in 0 to 27 loop

 if to_integer(coorstarV)+stararrayV(l)>= 480 then

 roll(l)<=to_integer(coorstarV)+stararrayV(l)-480;

 else

 roll(l)<=to_integer(coorstarV)+stararrayV(l);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

87

 end if;

 end loop;

 if shinecount =1600 then

 shinecount <= 0;

 if coorstarV = "0111011110" then

 coorstarV <= "0000000000";

 else

 coorstarV <= coorstarV + "0000000001";

 end if;

 else

 shinecount <= shinecount +1;

 end if;

 if flipcount = 40000 then

 flipcount <= 0;

 if flipstate ='0' then

 flipstate <= '1';

 elsif flipstate ='1' then

 flipstate <= '0';

 end if;

 if shine = "111" then

 shine <= "001";

 else

 shine <= shine + "001";

 end if;

 if flipstate2 ='0' then

 flipstate2 <= '1';

 elsif flipstate2 ='1' then

 flipstate2 <= '0';

 end if;

 if shine2 = "001" then

 shine2 <= "111";

 else

 shine2 <= shine2 - "001";

 end if;

 elsif flipcount = 20000 then

 flipcount <= flipcount +1;

 if flipstate1 ='0' then

 flipstate1 <= '1';

 elsif flipstate1 ='1' then

 flipstate1 <= '0';

 end if;

 if shine1 = "111" then

 shine1 <= "001";

 else

 shine1 <= shine1 + "001";

 end if;

 if flipstate3 ='0' then

 flipstate3 <= '1';

 elsif flipstate3 ='1' then

 flipstate3 <= '0';

 end if;

 if shine3 = "111" then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

88

 shine3 <= "001";

 else

 shine3 <= shine3 + "001";

 end if;

 else

 flipcount <= flipcount +1;

 end if;

 end if;

 end if;

end process flipGen;

galaxianHGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 glaH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorGlaH then

 glaH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + GLA_LONG + CoorGlaH then

 glaH <= '0';

 end if;

 end if;

end process galaxianHGen;

galaxianVGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 glaV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + mainPicV then

 glaV <= '1';

 elsif (Vcount = VSYNC + VBACK_PORCH - 1 + GLA_HEIGHT + mainPicV)

or

 Vcount = VSYNC + VBACK_PORCH - 1 + VACTIVE then

 glaV <= '0';

 end if;

 end if;

end process galaxianVGen;

glaG <= glaH and glaV;

galaxianGen : process (clk)

variable h,v : integer;

begin

 if rising_edge(clk) then

 if glaG = '1' and mainPic = '1' then

 h := to_integer(Hcount) - (HSYNC + HBACK_PORCH + CoorGlaH);

 v := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(mainPicV));

 if v < 100 then

 --------- big picture

 if h < 50 then

 galaxianColor <= galaxian1(v,h);

 elsif h >= 50 and h < 100 then

 galaxianColor <= galaxian2(v,h - 50);

 elsif h >= 100 and h < 150 then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

89

 galaxianColor <= galaxian3(v,h - 100);

 elsif h >= 150 and h < 200 then

 galaxianColor <= galaxian4(v,h - 150);

 elsif h >= 200 and h < 250 then

 galaxianColor <= galaxian5(v,h - 200);

 end if;

 elsif v >= 205 and v < 220 and h >= 65 and h < 193 then ---------

trademark

 if trademark(v - 205)(h - 65) = '1' then

 galaxianColor <= "010";

 else

 galaxianColor <= "000";

 end if;

 elsif v >= 119 and v < 137 and h >= 87 and h < 103 then --------- cursor

 if cursor(v - 119)(h - 87) = '1' then

 galaxianColor <= "100";

 else

 galaxianColor <= "000";

 end if;

 elsif v >= 120 and v < 134 and h >= 108 and h < 158 then --------- start

 if start(v - 120)(h - 108) = '1' then

 galaxianColor <= "001";

 else

 galaxianColor <= "000";

 end if;

 elsif v >= 160 and v < 174 and h >= 45 and h < 185 then ---------

xiaotian qi

 if xiaotian(v - 160)(h - 45) = '1' then

 galaxianColor <= "010";

 else

 galaxianColor <= "000";

 end if;

 elsif v >= 180 and v < 194 and h >= 45 and h < 205 then ---------

yaolong feng

 if yaolong(v - 180)(h - 45) = '1' then

 galaxianColor <= "010";

 else

 galaxianColor <= "000";

 end if;

 else

 galaxianColor <= "000";

 end if;

 end if;

 end if;

end process galaxianGen;

--------------------------sync with software------------------------

timeCountDelay: process (clk)

begin

 if rising_edge(clk) then

 if startCount = '1' then

 timeDelayCount <= 0;

 end if;

 if timeDelayCount = synctime then

 dataSendBack <= x"0000000F";

 else

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

90

 timeDelayCount <= timeDelayCount + 1;

 dataSendBack <= (others => '1');

 end if;

 end if;

end process timeCountDelay;

--------------------------- wind flip ------------------------------

timeCountDelay2: process (clk)

begin

 if rising_edge(clk) then

 if timeDelayCount = synctime then

 if windFlipCount = 20000 then

 windFlip <= not(windFlip);

 windFlipCount <= 0;

 else

 windFlipCount <= windFlipCount + 1;

 end if;

 end if;

 end if;

end process timeCountDelay2;

------------------------ready---------------------------

readyHGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' or readySignal = '0' then

 readyH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorReadyH then

 readyH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + READY_LONG + CoorReadyH

then

 readyH <= '0';

 end if;

 end if;

end process readyHGen;

readyVGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' or readySignal = '0' then

 readyV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + CoorReadyV then

 readyV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + READY_HEIGHT +

CoorReadyV then

 readyV <= '0';

 end if;

 end if;

end process readyVGen;

readyG <= readyH and readyV;

readyGGen: process (clk)

begin

 if rising_edge(clk) then

 if readyG = '1' then

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

91

 if (ready(to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

CoorReadyV))

 (to_integer(Hcount) - (HSYNC + HBACK_PORCH + CoorReadyH)) =

'1') then

 readyColor <= "011";

 else

 readyColor <= "000";

 end if;

 end if;

 end if;

end process readyGGen;

-----------------------pause----------------------

pauseHGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' or pauseSignal = '0' then

 pauseH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + CoorReadyH then

 pauseH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + READY_LONG + CoorReadyH

then

 pauseH <= '0';

 end if;

 end if;

end process pauseHGen;

pauseVGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' or pauseSignal = '0' then

 pauseV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + CoorReadyV then

 pauseV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + READY_HEIGHT +

CoorReadyV then

 pauseV <= '0';

 end if;

 end if;

end process pauseVGen;

pauseG <= pauseH and pauseV;

pauseGGen: process (clk)

begin

 if rising_edge(clk) then

 if pauseG = '1' then

 if (pause(to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

CoorReadyV))

 (to_integer(Hcount) - (HSYNC + HBACK_PORCH + CoorReadyH)) =

'1') then

 pauseColor <= "011";

 else

 pauseColor <= "000";

 end if;

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

92

 end if;

end process pauseGGen;

--------------------------gameover----------------------

gameover_g_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 gHG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + gH then

 gHG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + gH then

 gHG <= '0';

 end if;

 end if;

end process gameover_g_HGen;

gameover_g_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 gVG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + gV then

 gVG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + gV then

 gVG <= '0';

 end if;

 end if;

end process gameover_g_VGen;

gG <= gHG and gVG;

gameover_a_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 aHG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + aH then

 aHG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + aH then

 aHG <= '0';

 end if;

 end if;

end process gameover_a_HGen;

gameover_a_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 aVG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + aV then

 aVG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + aV then

 aVG <= '0';

 end if;

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

93

end process gameover_a_VGen;

aG <= aHG and aVG;

gameover_m_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 mHG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + mH then

 mHG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + mH then

 mHG <= '0';

 end if;

 end if;

end process gameover_m_HGen;

gameover_m_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 mVG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + mV then

 mVG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + mV then

 mVG <= '0';

 end if;

 end if;

end process gameover_m_VGen;

mG <= mHG and mVG;

gameover_e1_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 e1HG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + e1H then

 e1HG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + e1H then

 e1HG <= '0';

 end if;

 end if;

end process gameover_e1_HGen;

gameover_e1_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 e1VG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + e1V then

 e1VG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + e1V then

 e1VG <= '0';

 end if;

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

94

end process gameover_e1_VGen;

e1G <= e1HG and e1VG;

gameover_o_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 oHG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + oH then

 oHG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + oH then

 oHG <= '0';

 end if;

 end if;

end process gameover_o_HGen;

gameover_o_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 oVG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + oV then

 oVG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + oV then

 oVG <= '0';

 end if;

 end if;

end process gameover_o_VGen;

oG <= oVG and oHG;

gameover_v_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 vHG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + vH then

 vHG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + vH then

 vHG <= '0';

 end if;

 end if;

end process gameover_v_HGen;

gameover_v_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 vVG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + vV then

 vVG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + vV then

 vVG <= '0';

 end if;

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

95

end process gameover_v_VGen;

vG <= vHG and vVG;

gameover_e2_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 e2HG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + e2H then

 e2HG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + e2H then

 e2HG <= '0';

 end if;

 end if;

end process gameover_e2_HGen;

gameover_e2_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 e2VG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + e2V then

 e2VG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + e2V then

 e2VG <= '0';

 end if;

 end if;

end process gameover_e2_VGen;

e2G <= e2HG and e2VG;

gameover_r_HGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 rHG <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + rH then

 rHG <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + ALPHALONG + rH then

 rHG <= '0';

 end if;

 end if;

end process gameover_r_HGen;

gameover_r_VGen : process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 rVG <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + rV then

 rVG <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + ALPHAHEIGHT + rV then

 rVG <= '0';

 end if;

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

96

end process gameover_r_VGen;

rG <= rHG and rVG;

gameoverGen : process (clk)

variable ch, cv: integer;

begin

 if rising_edge(clk) then

 if gG = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(gH));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(gV));

 gameoverSignal <= g(cv)(ch);

 elsif aG = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(aH));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(aV));

 gameoverSignal <= a(cv)(ch);

 elsif mG = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(mH));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(mV));

 gameoverSignal <= m(cv)(ch);

 elsif e1G = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(e1H));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(e1V));

 gameoverSignal <= e(cv)(ch);

 elsif oG = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(oH));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(oV));

 gameoverSignal <= o(cv)(ch);

 elsif vG = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(vH));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(vV));

 gameoverSignal <= v(cv)(ch);

 elsif e2G = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(e2H));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(e2V));

 gameoverSignal <= e(cv)(ch);

 elsif rG = '1' then

 ch := to_integer(Hcount) - (HSYNC + HBACK_PORCH +

to_integer(rH));

 cv := to_integer(Vcount) - (VSYNC + VBACK_PORCH - 1 +

to_integer(rV));

 gameoverSignal <= r(cv)(ch);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

97

 end if;

 if gameoverSignal = '1' then

 gameoverColorSignal <= "010";

 else

 gameoverColorSignal <= "000";

 end if;

 end if;

end process gameoverGen;

---------------------red flag------------------------

infoHGen : process(clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 infoH <= '0';

 elsif Hcount = HSYNC + HBACK_PORCH + INFO_H then

 infoH <= '1';

 elsif Hcount = HSYNC + HBACK_PORCH + info_size + INFO_H then

 infoH <= '0';

 end if;

 end if;

end process infoHGen;

infoVGen : process(clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 infoV <= '0';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + INFO_V then

 infoV <= '1';

 elsif Vcount = VSYNC + VBACK_PORCH - 1 + info_size + INFO_V then

 infoV <= '0';

 end if;

 end if;

end process infoVGen;

infoG <= infoH and infoV;

infoGen :process(clk)

variable H : integer;

variable V : integer;

variable tmpV : integer;

variable num : integer;

variable color : std_logic;

begin

 if rising_edge(clk) then

 if infoG = '1' then

 H := to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 - INFO_H;

 V := to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 - INFO_V;

 if H >= 0 and H < 20 and V >= 0 and V < 20 then

 infoColor <= red_flag(V, H);

 elsif H >= 0 and H < 16 and V >= 30 and V < 46 then

 infoColor <= small_plane(V - 30, H);

 elsif (H >= 25 and H < 31 and V >= 5 and V < 15) then

 tmpV := V - 5;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

98

 num := to_integer(planeLife);

 if num = 1 then

 color := one(tmpV)(H - 25);

 elsif num = 2 then

 color := two(tmpV)(H - 25);

 elsif num = 3 then

 color := three(tmpV)(H - 25);

 elsif num = 4 then

 color := four(tmpV)(H - 25);

 elsif num = 5 then

 color := five(tmpV)(H - 25);

 elsif num = 6 then

 color := six(tmpV)(H - 25);

 elsif num = 7 then

 color := seven(tmpV)(H - 25);

 elsif num = 8 then

 color := eight(tmpV)(H - 25);

 elsif num = 9 then

 color := nine(tmpV)(H - 25);

 elsif num = 0 then

 color := zero(tmpV)(H - 25);

 end if;

 if color = '0' then

 infoColor <= "000";

 elsif color = '1' then

 infoColor <= "100";

 end if;

 elsif (H >= 25 and H < 31 and V >= 35 and V < 45) then

 tmpV := V - 35;

 num := to_integer(level);

 if num = 1 then

 color := one(tmpV)(H - 25);

 elsif num = 2 then

 color := two(tmpV)(H - 25);

 elsif num = 3 then

 color := three(tmpV)(H - 25);

 elsif num = 4 then

 color := four(tmpV)(H - 25);

 elsif num = 5 then

 color := five(tmpV)(H - 25);

 elsif num = 6 then

 color := six(tmpV)(H - 25);

 elsif num = 7 then

 color := seven(tmpV)(H - 25);

 elsif num = 8 then

 color := eight(tmpV)(H - 25);

 elsif num = 9 then

 color := nine(tmpV)(H - 25);

 elsif num = 0 then

 color := zero(tmpV)(H - 25);

 end if;

 if color = '0' then

 infoColor <= "000";

 elsif color = '1' then

 infoColor <= "100";

 end if;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

99

 else

 infoColor <= "000";

 end if;

 end if;

 end if;

end process infoGen;

VideoOut: process (clk, reset_n)

variable colorSignal : unsigned (2 downto 0);

variable flyV : integer;

variable flyH : integer;

variable tmpTextH: integer;

variable tmpTextV: integer;

variable tmpSignal : unsigned (1 downto 0);

variable tmpExplodeH, tmpExplodeV : integer;

begin

 if reset_n = '0' then

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 elsif clk'event and clk = '1' then

 if glaG = '1' and galaxianColor /= "000" and mainPic = '1' then

 colorSignal := galaxianColor;

 elsif TextG = '1' then

 tmptextH := to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

CoorTextH;

 tmptextV := to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

CoorTextV;

 if tmptextH >= 0 and tmptextH <= 54 and tmptextV >= 0 and tmptextV

<= 9 then

 if hiScore (tmptextV)(tmptextH) = '1' then

 colorSignal := "011";

 else

 colorSignal := "000";

 end if;

 elsif tmptextH >= 10 and tmptextH <= 49 and tmptextV >= 15 and

tmptextV <= 24 then

 colorSignal := hiScoreColorSignal;

 elsif tmptextH >= 0 and tmptextH <= 21 and tmptextV >= 30 and

tmptextV <= 39 then

 if oneUP (tmpTextV - 30)(tmpTextH) = '1' then

 colorSignal := "011";

 else

 colorSignal := "000";

 end if;

 elsif tmptextH >= 10 and tmptextH <= 49 and tmptextV >= 45 and

tmptextV <= 54 then

 colorSignal := scoreColorSignal;

 end if;

 elsif infoG = '1' then

 colorSignal := infoColor;

 elsif boxG = '1' then

 colorSignal := "000";

 elsif (FlybeeG(0) = '1' or FlybeeG(1) = '1' or FlybeeG(2) = '1' or FlybeeG(3) = '1'

or

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

100

 FlybeeG(4) = '1' or FlybeeG(5) = '1' or FlybeeG(6) = '1') and

mainPic = '0' then

 colorSignal := TransColorSignal;

 elsif readyG = '1' then

 colorSignal := readyColor;

 elsif pauseG = '1' then

 colorSignal := pauseColor;

 elsif gG = '1' or aG = '1' or mG = '1' or e1G = '1' or

 oG = '1' or vG = '1' or e2G = '1' or rG = '1' then

 colorSignal := gameoverColorSignal;

 elsif ExplodeG = '1' and mainPic = '0' then

 if Small = '1' then

 colorSignal := small_explode(

 to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorExplodeV),

 to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorExplodeH));

 elsif Small = '0' then

 colorSignal := explode(

 to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorExplodeV),

 to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorExplodeH));

 end if;

 elsif BigExplodeG = '1' and mainPic = '0' then -- plane

Explode

 tmpExplodeH := to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(planeExplodeH);

 tmpExplodeV := to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(planeExplodeV);

 if planeSmall = '1' then

 if tmpExplodeH < 16 and tmpExplodeV < 16 then

 colorSignal := explode(tmpExplodeV, tmpExplodeH);

 end if;

 elsif planeSmall = '0' then

 colorSignal := big_explode(tmpExplodeV, tmpExplodeH);

 end if;

 elsif planeG = '1' and mainPic = '0' then

 colorSignal := plane(

 to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorPlaneV),

 to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorPlaneH));

 elsif big_beeG = '1' and mainPic = '0' then

 colorSignal := big_bee(

 to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorBeeMaxV),

 to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorBeeMaxH));

 elsif (b1 = '1' or getBullet = '1') and mainPic = '0' then

 colorSignal := "010";

 elsif BeeMaxG = '1' and mainPic = '0' then

 if windFlip = '1' then

 tmpSignal := bee(

 to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorBeeMaxV),

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

101

 to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorBeeMaxH));

 else

 tmpSignal := beef(

 to_integer(Vcount) - VSYNC - VBACK_PORCH + 1 -

to_integer(CoorBeeMaxV),

 to_integer(Hcount) - HSYNC - HBACK_PORCH - 1 -

to_integer(CoorBeeMaxH));

 end if;

 if bee_RedG = '1' or bee_GreenG = '1' or bee_PurpleG = '1' then

 if tmpSignal = "10" then

 colorSignal := "111";

 elsif tmpSignal = "11" then

 colorSignal := "100";

 elsif bee_RedG = '1' and tmpSignal = "01" then

 colorSignal := "101";

 elsif bee_GreenG = '1' and tmpSignal = "01" then

 colorSignal := "110";

 elsif bee_PurpleG = '1' and tmpSignal = "01" then

 colorSignal := "001";

 elsif tmpSignal = "00" then

 colorSignal := "000";

 end if;

 else

 colorSignal := "000";

 end if;

 elsif starG = '1' then

 colorSignal := shine;

 elsif starG1 = '1' then

 colorSignal := shine1;

 elsif starG2 = '1' then

 colorSignal := shine2;

 elsif starG3 = '1' then

 colorSignal := shine3;

 else

 colorSignal := "000";

 end if;

 if clearScr = '1' then

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 elsif colorSignal = "001" then -- purple

 VGA_R <= "0101111011";

 VGA_G <= "0011001111";

 VGA_B <= "1111111111";

 elsif colorSignal = "011" then -- red

 VGA_R <= "1111111111";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 elsif colorSignal = "100" then -- yellow

 VGA_R <= "1111111111";

 VGA_G <= "1111111111";

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

102

 VGA_B <= "0000000000";

 elsif colorSignal = "101" then -- brown

 VGA_R <= "1100100000";

 VGA_G <= "0000011110";

 VGA_B <= "0000011110";

 elsif colorSignal = "110" then -- green

 VGA_R <= "0000010101";

 VGA_G <= "1101111000";

 VGA_B <= "0000000111";

 elsif colorSignal = "111" then -- light blue

 VGA_R <= "0000010000";

 VGA_G <= "1101010100";

 VGA_B <= "1101010111";

 elsif clearScr = '1' then

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 elsif colorSignal = "010" then -- white

 VGA_R <= "1111111111";

 VGA_G <= "1111111111";

 VGA_B <= "1111111111";

 -------------------------this is background----------------------

 elsif vga_hblank = '0' and vga_vblank ='0' then

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 else

 VGA_R <= "0000000000";

 VGA_G <= "0000000000";

 VGA_B <= "0000000000";

 end if;

 end if;

end process VideoOut;

 VGA_CLK <= clk25;

 VGA_HS <= not vga_hsync;

 VGA_VS <= not vga_vsync;

 VGA_SYNC <= '0';

 VGA_BLANK <= not (vga_hsync or vga_vsync);

end rtl;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

103

6.2 lab3.vhd (top model file)

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity lab3 is

 port (

 signal CLOCK_50 : in std_logic; -- 50 MHz clock

 signal LEDR : out std_logic_vector(17 downto 0); -- Red LEDs

 VGA_CLK, -- Clock

 VGA_HS, -- H_SYNC

 VGA_VS, -- V_SYNC

 VGA_BLANK, -- BLANK

 VGA_SYNC : out std_logic; -- SYNC

 VGA_R, -- Red[9:0]

 VGA_G, -- Green[9:0]

 VGA_B : out STD_LOGIC_VECTOR (9 downto 0); -- Blue[9:0]

 PS2_CLK,

 PS2_DAT : in std_logic;

 AUD_ADCLRCK : inout std_logic; -- ADC LR Clock

 AUD_ADCDAT : in std_logic; -- ADC Data

 AUD_DACLRCK : inout std_logic; -- DAC LR Clock

 AUD_DACDAT : out std_logic; -- DAC Data

 AUD_BCLK : inout std_logic; -- Bit-Stream Clock

 AUD_XCK : out std_logic; -- Chip Clock

 I2C_SDAT : inout std_logic; -- I2C Data

 I2C_SCLK : out std_logic; -- I2C Clock

 SRAM_DQ : inout std_logic_vector(15 downto 0); -- Data bus 16 Bits

 SRAM_ADDR : out std_logic_vector(17 downto 0); -- Address bus 18 Bits

 SRAM_UB_N, -- High-byte Data Mask

 SRAM_LB_N, -- Low-byte Data Mask

 SRAM_WE_N, -- Write Enable

 SRAM_CE_N, -- Chip Enable

 SRAM_OE_N : out std_logic -- Output Enable

);

end lab3;

architecture rtl of lab3 is

 signal counter : unsigned(15 downto 0);

 signal reset_n : std_logic := '1';

 signal audio_request : std_logic;

 signal audio_clock_18 : std_logic;

 signal audio_counter : unsigned(31 downto 0);

 signal temp : std_logic_vector(31 downto 0);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

104

component audio_driver is

port(

 clock_50 : in std_logic;

 clock_18 : in std_logic;

 cpu_cmd : in std_logic_vector(31 downto 0);

 -- Audio interface signals

 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock

 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data

 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock

 AUD_DACDAT : out std_logic; -- Audio CODEC DAC Data

 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock

);

end component;

component de2_i2c_av_config is

port (

 iCLK : in std_logic;

 iRST_N : in std_logic;

 I2C_SCLK : out std_logic;

 I2C_SDAT : inout std_logic

);

end component;

component audio_pll is

port (

 inclk0 : in std_logic := '0';

 c0 : out std_logic

);

end component;

begin

pll : audio_pll port map(

 inclk0 => CLOCK_50,

 c0 => audio_clock_18

);

AUD_XCK <= audio_clock_18;

i2c : de2_i2c_av_config port map (

 iCLK => CLOCK_50,

 iRST_n => '1',

 I2C_SCLK => I2C_SCLK,

 I2C_SDAT => I2C_SDAT

);

v1: audio_driver port map (

 clock_50 =>CLOCK_50,

 clock_18 => audio_clock_18,

 cpu_cmd => temp,

 --Audio interface signals

 AUD_ADCLRCK => AUD_ADCLRCK,

 AUD_ADCDAT => AUD_ADCDAT,

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

105

 AUD_DACLRCK => AUD_DACLRCK,

 AUD_DACDAT => AUD_DACDAT,

 AUD_BCLK => AUD_BCLK

);

process (CLOCK_50)

 begin

 if rising_edge(CLOCK_50) then

 if counter = x"ffff" then

 reset_n <= '1';

 else

 reset_n <= '0';

 counter <= counter + 1;

 end if;

 end if;

 end process;

 nios : entity work.nios_system port map (

 clk => CLOCK_50,

 reset_n => reset_n,

 SRAM_ADDR_from_the_sram => SRAM_ADDR,

 SRAM_CE_N_from_the_sram => SRAM_CE_N,

 SRAM_DQ_to_and_from_the_sram => SRAM_DQ,

 SRAM_LB_N_from_the_sram => SRAM_LB_N,

 SRAM_OE_N_from_the_sram => SRAM_OE_N,

 SRAM_UB_N_from_the_sram => SRAM_UB_N,

 SRAM_WE_N_from_the_sram => SRAM_WE_N,

 VGA_BLANK_from_the_vga => VGA_BLANK,

 VGA_B_from_the_vga => VGA_B,

 VGA_CLK_from_the_vga => VGA_CLK,

 VGA_G_from_the_vga => VGA_G,

 VGA_HS_from_the_vga => VGA_HS,

 VGA_R_from_the_vga => VGA_R,

 VGA_SYNC_from_the_vga => VGA_SYNC,

 VGA_VS_from_the_vga => VGA_VS,

 PS2_Clk_to_the_ps2 => PS2_CLK,

 PS2_Data_to_the_ps2 => PS2_DAT,

 data_from_the_audio => temp

);

end rtl;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

106

6.3 de2_wm8731_audio.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity de2_wm8731_audio is

port (

 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)

 reset_n : in std_logic;

 clk_50 : in std_logic;

 disable : in std_logic; --when '1', no output from wm8731

 sound : in std_logic_vector(3 downto 0); -- select which sound will be played

 sound_finish1 : out std_logic;-- exp

 sound_finish2 : out std_logic;-- fire

 sound_finish3 : out std_logic;-- fall

 -- Audio interface signals

 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock

 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data

 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock

 AUD_DACDAT : out std_logic; -- Audio CODEC DAC Data

 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock

);

end de2_wm8731_audio;

architecture rtl of de2_wm8731_audio is

 signal lrck : std_logic;

 signal bclk : std_logic;

 signal xck : std_logic;

 signal lrck_divider : unsigned(7 downto 0);

 signal bclk_divider : unsigned(3 downto 0);

 signal set_bclk : std_logic;

 signal set_lrck : std_logic;

 signal clr_bclk : std_logic;

 signal lrck_lat : std_logic;

 signal shift_out : unsigned(15 downto 0);

 signal rom_data_bullet : unsigned(15 downto 0);-- from "bullet" rom to mux

 signal rom_data_explo : unsigned(15 downto 0); -- from "exploration" rom to mux

 signal rom_data_fall : unsigned(15 downto 0);-- from "fall" rom to mux

--signal rom_data_begin : unsigned(15 downto 0);

 signal mem_addr_bullet : unsigned(12 downto 0);

 signal mem_addr_explo : unsigned(12 downto 0);

signal mem_addr_fall : unsigned(13 downto 0);

--signal mem_addr_begin : unsigned(13 downto 0);

 signal counter1 : unsigned(2 downto 0);

 signal counter2 : unsigned(2 downto 0);

 signal counter3 : unsigned(3 downto 0);

--signal counter4 : unsigned(3 downto 0);

 signal data_from_mux : unsigned(15 downto 0);

 signal temp : std_logic; -- control the output from wm8731

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

107

component beebullet is

port

(

address : IN STD_LOGIC_VECTOR (12 DOWNTO 0);

clock : IN STD_LOGIC ;

q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);

end component;

component beeexplo is

port

(

address : IN STD_LOGIC_VECTOR (12 DOWNTO 0);

clock : IN STD_LOGIC ;

q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);

end component;

component beefall is

port

(

address : IN STD_LOGIC_VECTOR (13 DOWNTO 0);

clock : IN STD_LOGIC ;

q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);

end component;

begin

 -- LRCK divider

 -- Audio chip main clock is 18.432MHz / Sample rate 48KHz

 -- Divider is 18.432 MHz / 48KHz = 192 (X"C0")

 -- Left justify mode set by I2C controller

 audio_bullet : beebullet port map(

 address => std_logic_vector(mem_addr_bullet),

 clock => clk_50,

 unsigned(q) => rom_data_bullet

);

audio_explo : beeexplo port map (

 address => std_logic_vector(mem_addr_explo),

 clock => clk_50,

 unsigned(q) => rom_data_explo

);

audio_fall : beefall port map(

 address => std_logic_vector(mem_addr_fall),

 clock => clk_50,

 unsigned(q) => rom_data_fall

);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

108

process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 lrck_divider <= (others => '0');

 elsif lrck_divider = X"BF" then -- "C0" minus 1

 lrck_divider <= X"00";

 else

 lrck_divider <= lrck_divider + 1;

 end if;

 end if;

end process;

process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 bclk_divider <= (others => '0');

 elsif bclk_divider = X"B" or set_lrck = '1' then

 bclk_divider <= X"0";

 else

 bclk_divider <= bclk_divider + 1;

 end if;

 end if;

end process;

 set_lrck <= '1' when lrck_divider = X"BF" else '0';

process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 lrck <= '0';

 elsif set_lrck = '1' then

 lrck <= not lrck;

 end if;

 end if;

end process;

 -- BCLK divider

 set_bclk <= '1' when bclk_divider(3 downto 0) = "0101" else '0';

 clr_bclk <= '1' when bclk_divider(3 downto 0) = "1011" else '0';

process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 bclk <= '0';

 elsif set_lrck = '1' or clr_bclk = '1' then

 bclk <= '0';

 elsif set_bclk = '1' then

 bclk <= '1';

 end if;

 end if;

end process;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

109

 -- Audio data shift output

process (clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 shift_out <= (others => '0');

 elsif set_lrck = '1' then

 shift_out <= data_from_mux;

 elsif clr_bclk = '1' then

 shift_out <= shift_out (14 downto 0) & '0';

 end if;

 -- when disable = 1, no audio data output, which means mute.

 if disable = '1' then

 temp <= '0';

 else

 temp <= shift_out(15);

 end if;

 end if;

end process;

 -- Audio outputs

 AUD_ADCLRCK <= lrck;

 AUD_DACLRCK <= lrck;

 AUD_DACDAT <= temp;

 AUD_BCLK <= bclk;

 -- read data from ROM

 -- mux to select which sound to be played

data_from_mux <= rom_data_bullet when sound = "0001" else

 rom_data_explo when sound = "0010" else

 rom_data_fall when sound = "0100" else

 x"0000";

 -- counter 1 for bullet

process(clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 mem_addr_bullet <= (others => '0');

 sound_finish1 <= '0';

 counter1<="000";

 elsif lrck_lat = '1' and lrck = '0' then

 if counter1 = "101" then

 counter1 <= "000";

 if mem_addr_bullet = x"0dff" then

 mem_addr_bullet <= (others => '0');

 sound_finish1 <='1';

 else

 mem_addr_bullet <= mem_addr_bullet + 1;

 end if;

 else

 counter1 <= counter1 + 1;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

110

 end if;

 end if;

 end if;

end process;

 -- counter 2 for explo

process(clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 mem_addr_explo <= "0000000000000";

 sound_finish2 <= '0';

 counter2<="000";

 elsif lrck_lat = '1' and lrck = '0' then

 if counter2 = "101" then

 counter2 <= "000";

 if mem_addr_explo = x"1049" then

 mem_addr_explo <= "0000000000000";

 sound_finish2 <='1';

 else

 mem_addr_explo <= mem_addr_explo + 1;

 end if;

 else

 counter2 <= counter2 + 1;

 end if;

 end if;

 end if;

end process;

 -- counter 3 for fall

process(clk)

begin

 if rising_edge(clk) then

 if reset_n = '0' then

 mem_addr_fall <= "00000000000000";

 sound_finish3 <= '0';

 counter3<="0000";

 elsif lrck_lat = '1' and lrck = '0' then

 if counter3 = "1010" then

 counter3 <= "0000";

 if mem_addr_fall = x"2845" then

 mem_addr_fall <= "00000000000000";

 sound_finish3 <='1';

 else

 mem_addr_fall <= mem_addr_fall + 1;

 end if;

 else

 counter3 <= counter3 + 1;

 end if;

 end if;

 end if;

end process;

process(clk)

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

111

begin

 if rising_edge(clk) then

 lrck_lat <= lrck;

 end if;

end process;

end architecture;

6.4 audio_controller.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity audio_bus is

 port (

 clk : in std_logic;

 reset_n : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 writedata : in unsigned(15 downto 0);

 cpu_cmd : in std_logic_vector(31 downto 0)

);

end audio_bus;

architecture rtl of audio_bus is

begin

 process (clk)

 begin

 if rising_edge(clk) then

 if reset_n = '0' then

 tone <= x"1000";

 else

 if chipselect = '1' then

 if write = '1' then

 tone <= writedata;

 end if;

 end if;

 end if;

 end if;

 end process;

end rtl;

6.5 audio_driver.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity audio_driver is

port(

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

112

 clock_50 : in std_logic;

 clock_18 : in std_logic;

 clk : in std_logic;

 reset_n1 : in std_logic;

 read : in std_logic;

 write : in std_logic;

 chipselect : in std_logic;

 address : in unsigned(4 downto 0);

 readdata : out unsigned(31 downto 0);

 --writedata : in unsigned(31 downto 0);

 cpu_cmd : in std_logic_vector(31 downto 0);

 -- Audio interface signals

 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock

 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data

 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock

 AUD_DACDAT : out std_logic; -- Audio CODEC DAC Data

 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock

);

end audio_driver;

architecture behavior of audio_driver is

signal disable : std_logic; -- when '1' disable audio module

signal reset_n : std_logic; -- when '0' reset audio module

signal sound_sel : std_logic_vector(3 downto 0); -- when "0001", play "fire", when "0010",

play "explosion"

signal play_finish1 : std_logic;-- exp

signal play_finish2 : std_logic;-- fire

signal play_finish3 : std_logic;-- falling down

signal reset_sm : std_logic; -- when '1' reset state machine

component de2_wm8731_audio is

port (

 clk : in std_logic; -- Audio CODEC Chip Clock AUD_XCK (18.43 MHz)

 reset_n : in std_logic;

 clk_50 : in std_logic;

 disable : in std_logic;

 sound : in std_logic_vector(3 downto 0); -- select which sound will be played

 sound_finish1 : out std_logic;-- exp

 sound_finish2 : out std_logic;-- fire

 sound_finish3 : out std_logic;-- fall

 --sound_finish4 : out std_logic;-- begin

 -- Audio interface signals

 AUD_ADCLRCK : out std_logic; -- Audio CODEC ADC LR Clock

 AUD_ADCDAT : in std_logic; -- Audio CODEC ADC Data

 AUD_DACLRCK : out std_logic; -- Audio CODEC DAC LR Clock

 AUD_DACDAT : out std_logic; -- Audio CODEC DAC Data

 AUD_BCLK : inout std_logic -- Audio CODEC Bit-Stream Clock

);

end component;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

113

signal audio_request : std_logic;

type state is (s0, bullet, explode, falling);

signal fsm_state : state;

begin

reset_sm <= cpu_cmd(28);

-- state machine of player

process(clock_50,reset_sm, cpu_cmd, fsm_state)

begin

 if rising_edge(clock_50) then

 if(reset_sm = '1') then

 fsm_state <= s0;

 elsif fsm_state = s0 then

 if cpu_cmd = x"00000061" then

 fsm_state <= bullet;

 elsif cpu_cmd = x"00000062" then

 fsm_state <= explode;

 elsif cpu_cmd = x"00000063" then

 fsm_state <= falling;

 else

 fsm_state <= s0;

 end if;

 elsif fsm_state = bullet then

 if cpu_cmd = x"00000062" then

 fsm_state <= explode;

 elsif cpu_cmd = x"00000063" then

 fsm_state <= falling;

 elsif play_finish2 = '1' then

 fsm_state <= s0;

 else

 fsm_state <= bullet;

 end if;

 elsif fsm_state = explode then

 if cpu_cmd = x"00000061" then

 fsm_state <= bullet;

 elsif cpu_cmd = x"00000063" then

 fsm_state <= falling;

 elsif play_finish1 = '1' then

 fsm_state <= s0;

 else

 fsm_state <= explode;

 end if;

 elsif fsm_state = falling then

 if cpu_cmd = x"00000061" then

 fsm_state <= bullet;

 elsif cpu_cmd = x"00000062" then

 fsm_state <= explode;

 elsif play_finish3 = '1' then

 fsm_state <= s0;

 else

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

114

 fsm_state <= falling;

 end if;

 end if;

 end if;

end process;

reset_n <= '0' when fsm_state = s0 else

 '1' when fsm_state = bullet else

 '1' when fsm_state = explode else

 '1' when fsm_state = falling else

 '1';

disable <= '1' when fsm_state = s0 else

 '0' when fsm_state = bullet else

 '0' when fsm_state = explode else

 '0' when fsm_state = falling else

 '0';

sound_sel <= "0001" when fsm_state = bullet else

 "0010" when fsm_state = explode else

 "0100" when fsm_state = falling else

 "0000";

--port map to the wm8731 module

audio: de2_wm8731_audio port map(

 clk => clock_18,

 reset_n => reset_n,

 clk_50 =>clock_50,

 disable => disable,

 sound => sound_sel,

 sound_finish1 => play_finish1,

 sound_finish2 => play_finish2,

 sound_finish3 => play_finish3,

 -- Audio interface signals

 AUD_ADCLRCK => AUD_ADCLRCK,

 AUD_ADCDAT => AUD_ADCDAT,

 AUD_DACLRCK => AUD_DACLRCK,

 AUD_DACDAT => AUD_DACDAT,

 AUD_BCLK => AUD_BCLK

);

end architecture;

6.6 galaxian.c

#include <io.h>

#include <system.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <math.h>

#include <string.h>

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

115

#define maxFlyingBeeNum 7

#define maxPlaneLife 3

#define maxBeeLife 36

int flags = 0;

volatile unsigned int data;

typedef struct {

 int flying;

 int angle;

 int flyingH;

 int flyingV;

 int row;

 int column;

 int flySide;

 int angleCount;

 int circleCount;

 int smoothCount;

 int flyCount;

 int flyCountToBe;

 int bulletLeftCount;

 int done;

 int k;

 int turn;

 int track;

 int type;

 int bulletLeft;

} bee;

typedef struct bullet{

 int h;

 int v;

 int k;

 int number;

 int beeBulletMoveDown;

 struct bullet* prevBullet;

 struct bullet* nextBullet;

} bullet;

static inline void resetFlyingBee (bee* thisBee)

{

 thisBee->flying = 0;

 thisBee->angle = 0;

 thisBee->flyingH = 600;

 thisBee->flyingV = 440;

 thisBee->row = -1;

 thisBee->column = -1;

 thisBee->flySide = 0;

 thisBee->angleCount = 0;

 thisBee->circleCount = 0;

 thisBee->smoothCount = 0;

 thisBee->flyCount = 0;

 thisBee->flyCountToBe = 0;

 thisBee->bulletLeftCount = 0;

 thisBee->done = 0;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

116

 thisBee->k = -1;

 thisBee->turn = 0;

 thisBee->track = 0;

 thisBee->type = 0;

 thisBee->bulletLeft = 0;

}

static inline void showStart (int startPicV)

{

 flags = 1;

 data = (flags << 20) + (startPicV << 10) + 1;

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void hideStart (int startPicV)

{

 flags = 1;

 data = (flags << 20) + (startPicV << 10);

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void showInfo (int level, int life)

{

 flags = 2;

 data = (flags << 20) + (life << 3) + (level+1);

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void clearScreen()

{

 flags = 3;

 data = (flags << 20);

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void showReady()

{

 flags = 4;

 data = (flags << 20) + 1;

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void hideReady()

{

 flags = 4;

 data = (flags << 20);

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void showPause()

{

 flags = 5;

 data = (flags << 20) + 1;

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

117

static inline void hidePause()

{

 flags = 5;

 data = (flags << 20);

 IOWR_32DIRECT(VGA_BASE, 16, data);

}

static inline void showGameOver ()

{

 int i, j = 0;

 int gameover[8][2] = {{100, 50}, {310, 50}, {120, 450}, {330, 450}, {150, 450}, {360, 50},

{170, 50}, {380, 450}};

 int path[8][2] = { {1, 2}, {-1, 2}, {1, -2}, {-1, -2}, {1, -2}, {-1, 2}, {1, 2}, {-1, -2}};

 flags = 6;

 while (j++ < 100) {

 IOWR_32DIRECT(VGA_BASE, 52, 0);

 for (i = 0; i < 8; i++) {

 gameover[i][0] += path[i][0];

 gameover[i][1] += path[i][1];

 data = ((flags + i) << 20) + (gameover[i][0] << 10) + gameover[i][1];

 IOWR_32DIRECT(VGA_BASE, 16, data);

 }

 usleep(10000);

 while (IORD_32DIRECT(VGA_BASE, 0) != 0x0F);

 }

 while (1) {

 if(IORD_8DIRECT(PS2_BASE, 0)) {

 if (IORD_8DIRECT(PS2_BASE, 4) == 0x3B) {

 break;

 }

 }

 }

 for (i = 0; i < 8; i++) {

 data = ((flags + i) << 20) + (600 << 10) + 400;

 IOWR_32DIRECT(VGA_BASE, 16, data);

 }

}

static inline void showPlane (int planeH, int planeV)

{

 data = (planeH << 10) + planeV;

 IOWR_32DIRECT(VGA_BASE, 28, data);

}

static inline void showBullet(int bulletH, int bulletV)

{

 data = (bulletH << 10) + bulletV;

 IOWR_32DIRECT(VGA_BASE, 24, data);

}

static inline void showBeeBullet(bullet* thisBullet)

{

 flags = thisBullet->number;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

118

 data = (flags << 20) + (thisBullet->h << 10) + thisBullet->v;

 IOWR_32DIRECT(VGA_BASE, 40, data);

}

static inline void addBullet(int planeH, int planeV, int flyingH, int flyingV, int number, bullet**

head)

{

 bullet* newBullet = malloc(sizeof(bullet));

 if (newBullet == NULL)

 return;

 if (planeH < flyingH - 10)

 newBullet->k = -1;

 else if (planeH > flyingH + 10)

 newBullet->k = 1;

 else

 newBullet->k = 0;

 newBullet->h = flyingH;

 newBullet->v = flyingV;

 newBullet->number = number;

 newBullet->beeBulletMoveDown = 0;

 if (head == NULL) {

 newBullet->prevBullet = NULL;

 newBullet->nextBullet = NULL;

 *head = newBullet;

 } else {

 newBullet->prevBullet = NULL;

 newBullet->nextBullet = *head;

 (*head)->prevBullet = newBullet;

 *head = newBullet;

 }

}

static inline void delBullet(bullet* thisBullet)

{

 thisBullet->h = 600;

 thisBullet->v = 400;

 showBeeBullet(thisBullet);

 if (thisBullet->prevBullet != NULL)

 thisBullet->prevBullet->nextBullet = thisBullet->nextBullet;

 if (thisBullet->nextBullet != NULL)

 thisBullet->nextBullet->prevBullet = thisBullet->prevBullet;

 free(thisBullet);

 thisBullet = NULL;

}

static inline void clearBulletList(bullet* head)

{

 bullet* curr;

 while (head != NULL) {

 curr = head;

 head = curr->nextBullet;

 delBullet(curr);

 }

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

119

}

static inline void showBeeMax(int beeMaxH, int beeMaxV)

{

 data = (beeMaxH << 10) + beeMaxV;

 IOWR_32DIRECT(VGA_BASE, 32, data);

}

static inline void showAlive(int alive[])

{

 int i = 0;

 for (i = 0; i < 5; i++) {

 data = (1 << (i + 20)) + alive[i];

 IOWR_32DIRECT(VGA_BASE, 20, data);

 }

}

static inline void showFlyingBee(bee thisBee, int i)

{

 flags = (thisBee.angle << 7) + (thisBee.type << 3) + i;

 data = (flags << 20) + (thisBee.flyingH << 10) + thisBee.flyingV;

 IOWR_32DIRECT(VGA_BASE, 48, data);

}

static inline void showExplosion (int expH, int expV, int small)

{

 data = (small << 20) + (expH << 10) + expV;

 IOWR_32DIRECT(VGA_BASE, 8, data);

}

static inline void showPlaneExplosion (int expH, int expV, int small)

{

 data = (small << 20) + (expH << 10) + expV;

 IOWR_32DIRECT(VGA_BASE, 12, data);

}

static inline void showScore (int *hiScore, int score)

{

 int first, second, third, fourth, fifth;

 fifth = score / 10000;

 fourth = score / 1000 - fifth*10;

 third = score / 100 - fifth*100 - fourth*10;

 second = score / 10 - fifth*1000 - fourth*100 - third*10;

 first = score - fifth*10000 - fourth*1000 - third*100 - second*10;

 if (*hiScore < score) {

 *hiScore = score;

 data = (first << 16) + (second << 12) + (third << 8) + (fourth << 4) + fifth;

 IOWR_32DIRECT(VGA_BASE, 4, data);

 }

 data = (first << 16) + (second << 12) + (third << 8) + (fourth << 4) + fifth;

 IOWR_32DIRECT(VGA_BASE, 0, data);

}

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

120

static inline int chooseBeeToFly(bee* thisBee, int alive[])

{

 int i, j;

 int side = rand()%10;

 if (side < 5) {

 for (i = 0; i < 19; i+=2) {

 for (j = 0; j < 5; j++) {

 if ((alive[j] & (1 << (19 - i))) >> (19 - i) == 1) {

 thisBee->row = i;

 thisBee->column = j<<1;

 thisBee->flySide = 1;

 alive[j] ^= 1 << (19 -i);

 return 1;

 }

 }

 }

 } else {

 for (i = 18; i >= 0; i-=2) {

 for (j = 0; j < 5; j++) {

 if ((alive[j] & (1 << (19 - i))) >> (19 - i) == 1) {

 thisBee->row = i;

 thisBee->column = j<<1;

 thisBee->flySide = -1;

 alive[j] ^= 1 << (19 -i);

 return 1;

 }

 }

 }

 }

 return 0;

}

static inline int convertAngle (int original, int invert)

{

 int transAngle;

 float angle = original * 180 / 106;

 if (invert < 0)

 angle = 360 - angle;

 if ((angle >= 0 && angle < 10) || (angle >= 350 && angle < 360)) {

 transAngle = 0; // 0 0 0 0 = 0

 } else if (angle >= 10 && angle < 30) {

 transAngle = 4; // 0 1 0 0 = 4

 } else if (angle >= 30 && angle < 60) {

 transAngle = 8; // 1 0 0 0 = 8

 } else if (angle >= 60 && angle < 80) {

 transAngle = 12; // 1 1 0 0 = 12

 } else if (angle >= 80 && angle < 100) {

 transAngle = 1; // 0 0 0 1 = 1

 } else if (angle >= 100 && angle < 120) {

 transAngle = 14; // 1 1 1 0 = 14

 } else if (angle >= 120 && angle < 150) {

 transAngle = 10; // 1 0 1 0 = 10

 } else if (angle >= 150 && angle < 170) {

 transAngle = 6; // 0 1 1 0 = 6

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

121

 } else if (angle >= 170 && angle < 190) {

 transAngle = 2; // 0 0 1 0 = 2

 } else if (angle >= 190 && angle < 210) {

 transAngle = 7; // 0 1 1 1 = 7

 } else if (angle >= 210 && angle < 240) {

 transAngle = 11; // 1 0 1 1 = 11

 } else if (angle >= 240 && angle < 260) {

 transAngle = 15; // 1 1 1 1 = 15

 } else if (angle >= 260 && angle < 280) {

 transAngle = 3; // 0 0 1 1 = 3

 } else if (angle >= 280 && angle < 300) {

 transAngle = 13; // 1 1 0 1 = 13

 } else if (angle >= 300 && angle < 330) {

 transAngle = 9; // 1 0 0 1 = 9

 } else if (angle >= 330 && angle < 350) {

 transAngle = 5; // 0 1 0 1 = 5

 }

 return transAngle;

}

static inline void facePlane (bee* thisBee, int planeH, int planeV)

{

 if (planeH == thisBee->flyingH) {

 if (planeV >= thisBee->flyingV)

 thisBee->angle = 2;

 else

 thisBee->angle = 0;

 return;

 }

 float k = (float) (planeV - thisBee->flyingV) / (planeH - thisBee->flyingH);

 if (planeV >= thisBee->flyingV) {

 if (k >= 5.67128) {

 thisBee->angle = 2;

 } else if (k >= 1.73205) {

 thisBee->angle = 7;

 } else if (k >= 0.57735) {

 thisBee->angle = 11;

 } else if (k > 0) {

 thisBee->angle = 15;

 } else if (k == 0) {

 if (planeH < thisBee->flyingH)

 thisBee->angle = 1;

 else

 thisBee->angle = 3;

 } else if (k >= -0.01) {

 thisBee->angle = 1;

 } else if (k >= -0.57735) {

 thisBee->angle = 14;

 } else if (k >= -1.73205) {

 thisBee->angle = 10;

 } else if (k >= -5.67128) {

 thisBee->angle = 6;

 } else {

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

122

 thisBee->angle = 2;

 }

 }

 else {

 if (k >= 5.67128) {

 thisBee->angle = 0;

 } else if (k >= 1.73205) {

 thisBee->angle = 4;

 } else if (k >= 0.57735) {

 thisBee->angle = 8;

 } else if (k > 0) {

 thisBee->angle = 12;

 } else if (k == 0) {

 if (planeH < thisBee->flyingH)

 thisBee->angle = 1;

 else

 thisBee->angle = 3;

 } else if (k >= -0.01) {

 thisBee->angle = 3;

 } else if (k >= -0.57735) {

 thisBee->angle = 13;

 } else if (k >= -1.73205) {

 thisBee->angle = 9;

 } else if (k >= -5.67128) {

 thisBee->angle = 5;

 } else {

 thisBee->angle = 0;

 }

 }

}

int main() {

 int i;

 int fire = 0;

 int bulletAllowed = 1;

 int beeMaxDirection = 1;

 int beeMaxMoveWait = 0;

 int beeMaxMoveHold = 0;

 int breakcode = 0;

 int leftMove = 0;

 int rightMove = 0;

 int pause = 0;

 unsigned char code;

 int planeMoveCount = 0;

 int beeMaxMoveCount = 0;

 int bulletCount = 0;

 int beeBulletCount = 0;

 int explodeCount = 0;

 int outExplodeCount = 0;

 int planeExplodeCount = 0;

 int rebornCount = 0;

 int waitCount = 0;

 int bulletNum = 0;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

123

 int flyingBeeNum = 0;

 int planeLife = maxPlaneLife;

 int beeLife = maxBeeLife;

 int bulletH;

 int bulletV = 400;

 int planeH = 267;

 int planeV = 400;

 int beeMaxH = 100;

 int beeMaxV = 50;

 int outExpH;

 int outExpV;

 int startPicV = 480;

 const int BEEMAX_LONG = 304;

 const int BEEMAX_HEIGHT = 144;

 int level = 0;

 int score = 0;

 int hiScore = 5000;

 bullet* head = NULL;

 bee flyingBee[maxFlyingBeeNum];

 int alive[5] = {8320, 43680, 174760, 699050, 699050};

 const int initAlive[5] = {8320, 43680, 174760, 699050, 699050};

 int scoreArray[5] = {60, 50, 40, 30, 30};

 int backAngle[16] = {0, 0, 5, 4, 9, 8, 13, 12, 3, 1, 15, 14, 11, 10, 7, 6};

 int beeBullet[8] = {1, 2, 2, 3, 3, 3, 4, 4};

 int waitTime = 2000;

 int beeLifeThreshold[8][4] = {{20, 10, 5, 1},

 {22, 12, 6, 2},

 {24, 14, 7, 3},

 {26, 16, 8, 4},

 {28, 18, 9, 5},

 {30, 20, 10, 6},

 {32, 22, 11, 7},

 {34, 24, 12, 8}};

 int waitTimeThreshold[8][5] = {{7600, 7100, 6600, 6100, 5600},

 {7400, 6900, 6400, 5900, 5400},

 {7200, 6700, 6200, 5700, 5200},

 {7000, 6500, 6000, 5500, 5000},

 {6800, 6300, 5800, 5300, 4800},

 {6600, 6100, 5600, 5100, 4600},

 {6400, 5900, 5400, 4900, 4400},

 {6200, 5700, 5200, 4700, 4200}};

 int circleChangeH[132] = { 0, 0, 0, 0, 0, 0,-1, 0, 0, 0,

 -1, 0, 0,-1, 0, 0,-1, 0,-1,-1,

 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,

 -1,-1,-1,

 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

124

 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1, 0, 0,-1, 0, 0,-1, 0,-1,-1,

 0, 0, 0, 0, 0, 0,-1, 0, 0, 0,

 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

 1, 1, 0, 1, 0, 0, 1, 0, 0, 1,

 1, 1, 1, 1, 1, 1};

 int circleChangeV[132] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,-1,-1,-1,-1,-1,-1, 0,

 -1,-1, 0,-1,-1, 0,-1, 0, 0,-1,

 0, 0,-1, 0, 0, 0,-1, 0, 0, 0,

 0, 0, 0,

 0, 0, 0,

 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,

 1, 1, 0, 1, 1, 0, 1, 0, 0, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 0, 1, 1, 1, 1, 1};

 int turnChangeH[20] = { 1, 0, 1, 1, 0, 0, 1, 0, 0, 0,

 0, 0, 0,-1, 0, 0,-1,-1, 0,-1};

start:

 // clear any flying bee left on the screen

 for (i = 0; i < maxFlyingBeeNum; i++) {

 resetFlyingBee(&flyingBee[i]);

 showFlyingBee(flyingBee[i], i);

 }

 // clear gameover if left on the screen

 for (i = 0; i < 8; i++) {

 data = ((flags + i) << 20) + (600 << 10) + 400;

 IOWR_32DIRECT(VGA_BASE, 16, data);

 }

 hideReady();

 hidePause();

 showScore(&hiScore, score);

 showInfo(level, planeLife);

 /*-----game start screen-----*/

 for (i = 480; i > 100; i--) {

 startPicV = i;

 showStart(startPicV);

 usleep(10000);

 while(IORD_8DIRECT(PS2_BASE, 0) == 1) {

 code = IORD_8DIRECT(PS2_BASE, 4);

 }

 }

 while (1) {

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

125

 if(IORD_8DIRECT(PS2_BASE, 0)) {

 if (IORD_8DIRECT(PS2_BASE, 4) == 0x5A) {

 hideStart(startPicV);

 break;

 }

 }

 }

 while (1) {

 IOWR_32DIRECT(VGA_BASE, 52, 0);

 showInfo(level, planeLife);

 /*-----keyboard control plane coordinate-----*/

 if(IORD_8DIRECT(PS2_BASE, 0)) {

 code = IORD_8DIRECT(PS2_BASE, 4);

 if (breakcode == 1) {

 breakcode = 0;

 switch (code) {

 case 0x1C:

 leftMove = 0;

 break;

 case 0x23:

 rightMove = 0;

 break;

 default:

 break;

 }

 } else {

 switch (code) {

 case 0x29:

 if (fire == 0 && rebornCount == 0) {

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000061);

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000008);

 fire = 1;

 bulletH = planeH + 10;

 }

 break;

 case 0x1C:

 leftMove = -1;

 break;

 case 0x23:

 rightMove = 1;

 break;

 case 0x5A:

 pause = 1;

 leftMove = 0;

 rightMove = 0;

 showPause();

 case 0xF0:

 breakcode = 1;

 }

 }

 }

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

126

 while (pause == 1) {

 if(IORD_8DIRECT(PS2_BASE, 0)) {

 code = IORD_8DIRECT(PS2_BASE, 4);

 if (breakcode == 1) {

 breakcode = 0;

 if (code == 0x5A) {

 pause = 0;

 hidePause();

 break;

 }

 } else {

 if (code == 0xF0)

 breakcode = 1;

 }

 }

 }

 if (planeLife == 0 && planeExplodeCount == 0 && outExplodeCount == 0 &&

explodeCount == 0) {

 showGameOver();

 fire = 0;

 bulletV = 400;

 level = 0;

 score = 0;

 showScore(&hiScore, score);

 planeLife = maxPlaneLife;

 memcpy(alive, initAlive, sizeof(alive));

 beeLife = maxBeeLife;

 waitCount = 0;

 rebornCount = 0;

 clearBulletList(head);

 leftMove = 0;

 rightMove = 0;

 goto start;

 }

 if (rebornCount == 0 && planeLife > 0) {

 if (planeMoveCount == 10) {

 planeMoveCount = 0;

 if ((planeH == 50 && leftMove == -1) || (planeH == 480 && rightMove == 1)) {

 }

 else

 planeH += leftMove + rightMove;

 } else

 planeMoveCount++;

 showPlane(planeH, planeV);

 showBullet(bulletH, bulletV);

 } else {

 if (rebornCount == 1000 && planeLife > 0)

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

127

 showReady();

 rebornCount--;

 if (rebornCount == 0) {

 bulletAllowed = 1;

 hideReady();

 }

 }

 /*-----bullet coordinate-----*/

 if (bulletCount == 1) {

 bulletCount = 0;

 if (fire == 1) {

 bulletV--;

 if (bulletV == 0) {

 bulletV = 400;

 fire = 0;

 showBullet(600, 400);

 if (rebornCount > 0)

 bulletAllowed = 0;

 }

 } else {

 bulletH = planeH + 10;

 }

 if (bulletAllowed == 1 && bulletV < 400)

 showBullet(bulletH, bulletV);

 } else

 bulletCount++;

 /*-----bee alive matrix-----*/

 if (beeLife == 0 && explodeCount == 0 && outExplodeCount == 0 &&

 planeExplodeCount == 0 && fire == 0 && head == NULL) {

 if (level < 7)

 level++;

 beeLife = maxBeeLife;

 planeH = 267;

 memcpy(alive, initAlive, sizeof(alive));

 usleep(1000000);

 waitCount = 0;

 // clear plane moving direction

 leftMove = 0;

 rightMove = 0;

 while(IORD_8DIRECT(PS2_BASE, 0) == 1) {

 code = IORD_8DIRECT(PS2_BASE, 4);

 }

 }

 showAlive(alive);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

128

 /*-----bee matrix coordinate-----*/

 if (beeMaxMoveCount == 20) {

 beeMaxMoveCount = 0;

 if (beeMaxMoveWait == 0) {

 beeMaxH += beeMaxDirection;

 if (beeMaxH <= 100)

 beeMaxDirection = 1;

 else if (beeMaxH >= 150)

 beeMaxDirection = -1;

 beeMaxMoveHold++;

 if (beeMaxMoveHold == 10)

 beeMaxMoveWait = 1;

 showBeeMax(beeMaxH, beeMaxV);

 } else {

 beeMaxMoveHold--;

 if (beeMaxMoveHold == 0)

 beeMaxMoveWait = 0;

 }

 } else

 beeMaxMoveCount++;

 /*-----bullet hits bee in matrix-----*/

 if (bulletV >= beeMaxV && bulletV <= beeMaxV + BEEMAX_HEIGHT &&

 bulletH >= beeMaxH && bulletH <= beeMaxH + BEEMAX_LONG) {

 int col = (bulletV - beeMaxV) / 16;

 int row = (bulletH - beeMaxH) / 16;

 if (col%2 == 0 && (alive[col>>1] & (1 << (19 - row))) >> (19 - row) == 1) {

 alive[col>>1] &= ~ (1 << (19 - row));

 beeLife--;

 score += scoreArray[col>>1];

 showScore(&hiScore, score);

 fire = 0;

 bulletV = 400;

 outExpH = beeMaxH + 16*row;

 outExpV = beeMaxV + 16*col;

 showExplosion(outExpH, outExpV, 1);

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000062);

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000008);

 showBullet(600, 400);

 explodeCount = 1;

 }

 }

 /*----------explode count-----------*/

 if (explodeCount != 0) {

 if (explodeCount != 300) {

 explodeCount++;

 if (explodeCount == 150) {

 showExplosion(outExpH, outExpV, 0);

 }

 } else {

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

129

 explodeCount = 0;

 showExplosion(600, 400, 0);

 }

 }

 /*----------out explode count-----------*/

 if (outExplodeCount != 0) {

 if (outExplodeCount != 300) {

 outExplodeCount++;

 if (outExplodeCount == 150) {

 showExplosion(outExpH, outExpV, 0);

 }

 } else {

 outExplodeCount = 0;

 showExplosion(600, 400, 0);

 }

 }

 /*----------plane explode count-----------*/

 if (planeExplodeCount != 0) {

 if (planeExplodeCount != 300) {

 planeExplodeCount++;

 if (planeExplodeCount == 150) {

 showPlaneExplosion(planeH, planeV, 0);

 }

 } else {

 planeExplodeCount = 0;

 showPlaneExplosion(600, 400, 0);

 planeH = 267;

 }

 }

 /*-----flying bee coordinate-----*/

 if (beeLife > beeLifeThreshold[level][0])

 waitTime = waitTimeThreshold[level][0];

 else if (beeLife > beeLifeThreshold[level][1])

 waitTime = waitTimeThreshold[level][1];

 else if (beeLife > beeLifeThreshold[level][2])

 waitTime = waitTimeThreshold[level][2];

 else if (beeLife > beeLifeThreshold[level][3])

 waitTime = waitTimeThreshold[level][3];

 else

 waitTime = waitTimeThreshold[level][4];

 if (waitCount < waitTime)

 waitCount++;

 else {

 if (flyingBeeNum < maxFlyingBeeNum){

 int chosenRow[2];

 int chosenCol[2];

 int chosenSide;

 int chosenNum = 0;

 for (i = 0; i < maxFlyingBeeNum; i++) {

 if (flyingBee[i].flying == 0) {

 if (chosenNum > 0) {

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

130

 chosenNum--;

 flyingBee[i].row = chosenRow[chosenNum];

 flyingBee[i].column = chosenCol[chosenNum];

 flyingBee[i].flySide = chosenSide;

 alive[flyingBee[i].column>>1] ^= 1 << (19 - flyingBee[i].row);

 flyingBeeNum++;

 flyingBee[i].flying = 1;

 flyingBee[i].flyingH = beeMaxH + 16*flyingBee[i].row;

 flyingBee[i].flyingV = beeMaxV + 16*flyingBee[i].column;

 flyingBee[i].bulletLeft = beeBullet[level];

 switch (flyingBee[i].column) {

 case 0:

 flyingBee[i].type = 3;

 flyingBee[i].flyCountToBe = 7;

 break;

 case 2:

 flyingBee[i].type = 2;

 flyingBee[i].flyCountToBe = 7;

 break;

 case 4:

 flyingBee[i].type = 1;

 flyingBee[i].flyCountToBe = 6;

 break;

 default:

 flyingBee[i].type = 0;

 flyingBee[i].flyCountToBe = 8;

 break;

 }

 waitCount = 0;

 } else if (chooseBeeToFly(&flyingBee[i], alive) == 1) {

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000063);

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000008);

 flyingBeeNum++;

 flyingBee[i].flying = 1;

 flyingBee[i].flyingH = beeMaxH + 16*flyingBee[i].row;

 flyingBee[i].flyingV = beeMaxV + 16*flyingBee[i].column;

 flyingBee[i].bulletLeft = beeBullet[level];

 switch (flyingBee[i].column) {

 case 0:

 flyingBee[i].type = 3;

 flyingBee[i].flyCountToBe = 7;

 break;

 case 2:

 flyingBee[i].type = 2;

 flyingBee[i].flyCountToBe = 7;

 break;

 case 4:

 flyingBee[i].type = 1;

 flyingBee[i].flyCountToBe = 6;

 break;

 default:

 flyingBee[i].type = 0;

 flyingBee[i].flyCountToBe = 8;

 break;

 }

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

131

 waitCount = 0;

 chosenSide = flyingBee[i].flySide;

 if (flyingBee[i].column == 0) {

 if ((alive[1] & (1 << (19 - flyingBee[i].row))) >> (19 - flyingBee[i].row) == 1)

{

 chosenRow[chosenNum] = flyingBee[i].row;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (flyingBee[i].row < 10) {

 if ((alive[1] & (1 << (19 - flyingBee[i].row + 2))) >> (19 - flyingBee[i].row

+ 2) == 1) {

 chosenRow[chosenNum] = flyingBee[i].row - 2;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (chosenNum == 2)

 continue;

 if ((alive[1] & (1 << (19 - flyingBee[i].row - 2))) >> (19 - flyingBee[i].row

- 2) == 1) {

 chosenRow[chosenNum] = flyingBee[i].row + 2;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 } else {

 if ((alive[1] & (1 << (19 - flyingBee[i].row - 2))) >> (19 - flyingBee[i].row

- 2) == 1) {

 chosenRow[chosenNum] = flyingBee[i].row + 2;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (chosenNum == 2)

 continue;

 if ((alive[1] & (1 << (19 - flyingBee[i].row + 2))) >> (19 - flyingBee[i].row

+ 2) == 1) {

 chosenRow[chosenNum] = flyingBee[i].row - 2;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 }

 } else if (flyingBee[i].column == 2) {

 if (flyingBee[i].row < 10) {

 if ((alive[0] & (1 << (19 - 6))) >> (19 - 6) == 1) {

 chosenRow[chosenNum] = 6;

 chosenCol[chosenNum] = 0;

 chosenNum++;

 } else {

 break;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

132

 }

 switch (flyingBee[i].row) {

 case 4:

 if ((alive[1] & (1 << (19 - 6))) >> (19 - 6) == 1) {

 chosenRow[chosenNum] = 6;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (chosenNum == 2)

 break;

 if ((alive[1] & (1 << (19 - 8))) >> (19 - 8) == 1) {

 chosenRow[chosenNum] = 8;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 break;

 case 8:

 if ((alive[1] & (1 << (19 - 6))) >> (19 - 6) == 1) {

 chosenRow[chosenNum] = 6;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (chosenNum == 2)

 break;

 if ((alive[1] & (1 << (19 - 4))) >> (19 - 4) == 1) {

 chosenRow[chosenNum] = 4;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 break;

 default:

 break;

 }

 } else {

 if ((alive[0] & (1 << (19 - 12))) >> (19 - 12) == 1) {

 chosenRow[chosenNum] = 12;

 chosenCol[chosenNum] = 0;

 chosenNum++;

 } else {

 break;

 }

 switch (flyingBee[i].row) {

 case 14:

 if ((alive[1] & (1 << (19 - 12))) >> (19 - 12) == 1) {

 chosenRow[chosenNum] = 12;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (chosenNum == 2)

 break;

 if ((alive[1] & (1 << (19 - 10))) >> (19 - 10) == 1) {

 chosenRow[chosenNum] = 10;

 chosenCol[chosenNum] = 2;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

133

 chosenNum++;

 }

 break;

 case 10:

 if ((alive[1] & (1 << (19 - 12))) >> (19 - 12) == 1) {

 chosenRow[chosenNum] = 12;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 if (chosenNum == 2)

 break;

 if ((alive[1] & (1 << (19 - 14))) >> (19 - 14) == 1) {

 chosenRow[chosenNum] = 14;

 chosenCol[chosenNum] = 2;

 chosenNum++;

 }

 break;

 default:

 break;

 }

 }

 }

 }

 if (chosenNum == 0)

 break;

 }

 }

 }

 }

 if (flyingBeeNum > 0) {

 for (i = 0; i < maxFlyingBeeNum; i++) {

 if (flyingBee[i].flying == 1) {

 if (flyingBee[i].angleCount < 132) {

 if (flyingBee[i].circleCount == flyingBee[i].flyCountToBe) {

 flyingBee[i].circleCount = 0;

 flyingBee[i].flyingH += flyingBee[i].flySide *

circleChangeH[flyingBee[i].angleCount];

 flyingBee[i].flyingV += circleChangeV[flyingBee[i].angleCount];

 flyingBee[i].angle = convertAngle(flyingBee[i].angleCount,

flyingBee[i].flySide);

 flyingBee[i].angleCount++;

 if (flyingBee[i].angleCount == 106 &&

 ((flyingBee[i].flySide > 0 && flyingBee[i].flyingH > planeH) ||

 (flyingBee[i].flySide < 0 && flyingBee[i].flyingH < planeH)))

 flyingBee[i].angleCount = 132;

 if (flyingBee[i].angleCount == 132) {

 flyingBee[i].k = flyingBee[i].flySide;

 flyingBee[i].track = flyingBee[i].flyingV;

 }

 showFlyingBee(flyingBee[i], i);

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

134

 } else

 flyingBee[i].circleCount++;

 } else {

 if (flyingBee[i].flyCount == flyingBee[i].flyCountToBe) {

 flyingBee[i].flyCount = 0;

 switch (flyingBee[i].done) {

 case 1:

 flyingBee[i].flyingH = beeMaxH + 16*flyingBee[i].row;

 if (beeMaxV + 16*flyingBee[i].column - flyingBee[i].flyingV > 0 &&

 beeMaxV + 16*flyingBee[i].column - flyingBee[i].flyingV < 33 &&

 (beeMaxV + 16*flyingBee[i].column - flyingBee[i].flyingV)%4 == 0) {

 flyingBee[i].angle = backAngle[((beeMaxV + 16*flyingBee[i].column -

flyingBee[i].flyingV) >> 1) - flyingBee[i].row/10 - 1];

 } else if (flyingBee[i].flyingV == beeMaxV + 16*flyingBee[i].column) {

 flyingBeeNum--;

 alive[flyingBee[i].column>>1] ^= 1 << (19 -flyingBee[i].row);

 resetFlyingBee(&flyingBee[i]);

 }

 break;

 case 0:

 if (rebornCount == 0)

 facePlane(&flyingBee[i], planeH, planeV);

 if (flyingBee[i].flyingV == flyingBee[i].track) {

 if ((flyingBee[i].flyingH+8) - (planeH+10) < 0) {

 if (flyingBee[i].k != 1) {

 flyingBee[i].k = 1;

 flyingBee[i].turn = 1;

 }

 } else {

 if (flyingBee[i].k != -1) {

 flyingBee[i].k = -1;

 flyingBee[i].turn = -1;

 }

 }

 if (flyingBee[i].flyingH >= 20 && flyingBee[i].flyingH <= 510) {

 addBullet(planeH+10, planeV+10, flyingBee[i].flyingH+8,

flyingBee[i].flyingV+8, bulletNum++, &head);

 flyingBee[i].bulletLeft--;

 }

 }

 // smoothly turn

 if (flyingBee[i].turn != 0) {

 if (flyingBee[i].smoothCount < 20) {

 flyingBee[i].flyingH -=

flyingBee[i].turn*turnChangeH[flyingBee[i].smoothCount++];

 } else if (flyingBee[i].smoothCount == 20) {

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

135

 flyingBee[i].smoothCount = 0;

 flyingBee[i].turn = 0;

 flyingBee[i].flyingH += flyingBee[i].k;

 }

 } else {

 flyingBee[i].flyingH += flyingBee[i].k;

 // change direction before flying out of the screen

 if (flyingBee[i].flyingV < 420) {

 if (flyingBee[i].flyingH > 500 && flyingBee[i].k == 1) {

 flyingBee[i].k = -1;

 flyingBee[i].turn = -1;

 } else if (flyingBee[i].flyingH < 20 && flyingBee[i].k == -1) {

 flyingBee[i].k = 1;

 flyingBee[i].turn = 1;

 }

 }

 if (flyingBee[i].flyingV == beeMaxV + 16*flyingBee[i].column + 150) {

 if (rebornCount == 0) {

 if ((flyingBee[i].flyingH+8) - (planeH+10) < 0) {

 if (flyingBee[i].k != 1) {

 flyingBee[i].k = 1;

 flyingBee[i].turn = 1;

 }

 } else {

 if (flyingBee[i].k != -1) {

 flyingBee[i].k = -1;

 flyingBee[i].turn = -1;

 }

 }

 if (flyingBee[i].type == 1)

 addBullet(planeH+10, planeV+10, flyingBee[i].flyingH+8,

flyingBee[i].flyingV+8, bulletNum++, &head);

 }

 }

 }

 break;

 default:

 break;

 }

 flyingBee[i].flyingV++;

 showFlyingBee(flyingBee[i], i);

 // fly out the screen

 if (flyingBee[i].flyingV == 470) {

 flyingBee[i].flyingV = 0;

 if (beeLife > level) {

 flyingBee[i].angle = 2;

 flyingBee[i].done = 1;

 } else {

 flyingBee[i].bulletLeft = beeBullet[level];

 }

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

136

 }

 if (bulletNum >= 30)

 bulletNum = 0;

 // shoot bullet to plane

 if (flyingBee[i].bulletLeft > 0 && flyingBee[i].bulletLeft < beeBullet[level]) {

 if (flyingBee[i].bulletLeftCount == 30) {

 flyingBee[i].bulletLeftCount = 0;

 addBullet(planeH+10, planeV+10, flyingBee[i].flyingH+8,

flyingBee[i].flyingV+8, bulletNum++, &head);

 flyingBee[i].bulletLeft--;

 } else

 flyingBee[i].bulletLeftCount++;

 }

 // flying bee hits the plane

 if (flyingBee[i].flyingV >= 388 && flyingBee[i].flyingV <= 416 &&

 fabs(flyingBee[i].flyingH - planeH -2) <= 16 &&

 rebornCount ==0 && planeLife > 0) {

 showPlaneExplosion(planeH, planeV, 1);

 planeExplodeCount = 1;

 score += scoreArray[flyingBee[i].column>>1]>>1;

 showScore(&hiScore, score);

 resetFlyingBee(&flyingBee[i]);

 showFlyingBee(flyingBee[i], i);

 showPlane(600, 400);

 showBullet(600, 400);

 flyingBeeNum--;

 beeLife--;

 planeLife--;

 rebornCount = 2000;

 // clear plane moving direction

 leftMove = 0;

 rightMove = 0;

 while(IORD_8DIRECT(PS2_BASE, 0) == 1) {

 code = IORD_8DIRECT(PS2_BASE, 4);

 }

 }

 }

 flyingBee[i].flyCount++;

 }

 // bullet hits flying bee

 if (bulletV <= flyingBee[i].flyingV+16 && bulletV >= flyingBee[i].flyingV &&

 bulletH <= flyingBee[i].flyingH+14 && bulletH >= flyingBee[i].flyingH+2 &&

 fire == 1) {

 outExpH = flyingBee[i].flyingH;

 outExpV = flyingBee[i].flyingV;

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000062);

 IOWR_32DIRECT(AUDIO_BASE, 0, 0x00000008);

 showExplosion(outExpH, outExpV, 1);

 outExplodeCount = 1;

 score += scoreArray[flyingBee[i].column>>1]<<1;

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

137

 showScore(&hiScore, score);

 fire = 0;

 bulletV = 400;

 showBullet(600, 400);

 resetFlyingBee(&flyingBee[i]);

 showFlyingBee(flyingBee[i], i);

 flyingBeeNum--;

 beeLife--;

 }

 }

 }

 }

 /*-----bee bullet coordinate-----*/

 if (beeBulletCount == 3) {

 beeBulletCount = 0;

 bullet* curr;

 curr = head;

 while (curr != NULL) {

 bullet* next;

 next = curr->nextBullet;

 // bee bullet flying out of screen

 if (curr->v >= 477 || curr->h >= 500 || curr->h <= 0) {

 if (head == curr)

 head = next;

 delBullet(curr);

 curr = next;

 continue;

 }

 // bee bullet hits the plane

 if (curr->v >= 400 && curr->v <= 420 &&

 curr->h - planeH <= 20 && curr->h >= planeH &&

 rebornCount == 0 && planeLife > 0) {

 showPlaneExplosion(planeH, planeV, 1);

 planeExplodeCount = 1;

 showPlane(600, 400);

 leftMove = 0;

 rightMove = 0;

 showBullet(600, 400);

 planeLife--;

 rebornCount = 2000;

 if (head == curr)

 head = next;

 delBullet(curr);

 curr = next;

 continue;

 }

 if (curr->beeBulletMoveDown == 1) {

 curr->h += curr->k;

 curr->beeBulletMoveDown = 0;

 } else {

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN

138

 curr->beeBulletMoveDown = 1;

 }

 curr->v++;

 showBeeBullet(curr);

 curr = next;

 }

 } else

 beeBulletCount++;

 while (IORD_32DIRECT(VGA_BASE, 0) != 0x0F);

 }

 return 0;

}

